1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 # define SHORT_COIL() LOW(GPIO_SSC_DOUT)
26 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
30 * Function to do a modulation and then get samples.
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
36 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t periods
, uint32_t useHighFreq
, uint8_t *command
)
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
43 uint16_t period_0
= periods
>> 16;
44 uint16_t period_1
= periods
& 0xFFFF;
46 // 95 == 125 KHz 88 == 124.8 KHz
47 int divisor_used
= (useHighFreq
) ? 88 : 95;
48 sample_config sc
= { 0,0,1, divisor_used
, 0};
49 setSamplingConfig(&sc
);
52 BigBuf_Clear_keep_EM();
54 LFSetupFPGAForADC(sc
.divisor
, 1);
56 // And a little more time for the tag to fully power up
59 // now modulate the reader field
60 while(*command
!= '\0' && *command
!= ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
68 if(*(command
++) == '0')
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
80 DoAcquisition_config(false);
83 /* blank r/w tag data stream
84 ...0000000000000000 01111111
85 1010101010101010101010101010101010101010101010101010101010101010
88 101010101010101[0]000...
90 [5555fe852c5555555555555555fe0000]
94 // some hardcoded initial params
95 // when we read a TI tag we sample the zerocross line at 2Mhz
96 // TI tags modulate a 1 as 16 cycles of 123.2Khz
97 // TI tags modulate a 0 as 16 cycles of 134.2Khz
98 #define FSAMPLE 2000000
100 #define FREQHI 134200
102 signed char *dest
= (signed char *)BigBuf_get_addr();
103 uint16_t n
= BigBuf_max_traceLen();
104 // 128 bit shift register [shift3:shift2:shift1:shift0]
105 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
107 int i
, cycles
=0, samples
=0;
108 // how many sample points fit in 16 cycles of each frequency
109 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
110 // when to tell if we're close enough to one freq or another
111 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
113 // TI tags charge at 134.2Khz
114 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
117 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
118 // connects to SSP_DIN and the SSP_DOUT logic level controls
119 // whether we're modulating the antenna (high)
120 // or listening to the antenna (low)
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
123 // get TI tag data into the buffer
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
128 for (i
=0; i
<n
-1; i
++) {
129 // count cycles by looking for lo to hi zero crossings
130 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
132 // after 16 cycles, measure the frequency
135 samples
=i
-samples
; // number of samples in these 16 cycles
137 // TI bits are coming to us lsb first so shift them
138 // right through our 128 bit right shift register
139 shift0
= (shift0
>>1) | (shift1
<< 31);
140 shift1
= (shift1
>>1) | (shift2
<< 31);
141 shift2
= (shift2
>>1) | (shift3
<< 31);
144 // check if the cycles fall close to the number
145 // expected for either the low or high frequency
146 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
147 // low frequency represents a 1
149 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
150 // high frequency represents a 0
152 // probably detected a gay waveform or noise
153 // use this as gaydar or discard shift register and start again
154 shift3
= shift2
= shift1
= shift0
= 0;
158 // for each bit we receive, test if we've detected a valid tag
160 // if we see 17 zeroes followed by 6 ones, we might have a tag
161 // remember the bits are backwards
162 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
163 // if start and end bytes match, we have a tag so break out of the loop
164 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
165 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
173 // if flag is set we have a tag
175 DbpString("Info: No valid tag detected.");
177 // put 64 bit data into shift1 and shift0
178 shift0
= (shift0
>>24) | (shift1
<< 8);
179 shift1
= (shift1
>>24) | (shift2
<< 8);
181 // align 16 bit crc into lower half of shift2
182 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
184 // if r/w tag, check ident match
185 if (shift3
& (1<<15) ) {
186 DbpString("Info: TI tag is rewriteable");
187 // only 15 bits compare, last bit of ident is not valid
188 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
189 DbpString("Error: Ident mismatch!");
191 DbpString("Info: TI tag ident is valid");
194 DbpString("Info: TI tag is readonly");
197 // WARNING the order of the bytes in which we calc crc below needs checking
198 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
199 // bytes in reverse or something
203 crc
= update_crc16(crc
, (shift0
)&0xff);
204 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
205 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
206 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
207 crc
= update_crc16(crc
, (shift1
)&0xff);
208 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
209 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
210 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
212 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
213 if (crc
!= (shift2
&0xffff)) {
214 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
216 DbpString("Info: CRC is good");
221 void WriteTIbyte(uint8_t b
)
225 // modulate 8 bits out to the antenna
228 if ( b
& ( 1 << i
) ) {
229 // stop modulating antenna 1ms
232 // modulate antenna 1ms
236 // stop modulating antenna 1ms
239 // modulate antenna 1m
246 void AcquireTiType(void)
249 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
250 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
251 #define TIBUFLEN 1250
254 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
256 //clear buffer now so it does not interfere with timing later
257 BigBuf_Clear_ext(false);
259 // Set up the synchronous serial port
260 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
261 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
263 // steal this pin from the SSP and use it to control the modulation
264 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
265 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
267 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
268 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
270 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
271 // 48/2 = 24 MHz clock must be divided by 12
272 AT91C_BASE_SSC
->SSC_CMR
= 12;
274 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
275 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
276 AT91C_BASE_SSC
->SSC_TCMR
= 0;
277 AT91C_BASE_SSC
->SSC_TFMR
= 0;
278 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
284 // Charge TI tag for 50ms.
287 // stop modulating antenna and listen
294 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
295 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
296 i
++; if(i
>= TIBUFLEN
) break;
301 // return stolen pin to SSP
302 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
303 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
305 char *dest
= (char *)BigBuf_get_addr();
309 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
310 for (j
= 0; j
< 32; j
++) {
311 if(buf
[i
] & (1 << j
)) {
320 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
321 // if crc provided, it will be written with the data verbatim (even if bogus)
322 // if not provided a valid crc will be computed from the data and written.
323 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
325 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
327 crc
= update_crc16(crc
, (idlo
)&0xff);
328 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
329 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
330 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
331 crc
= update_crc16(crc
, (idhi
)&0xff);
332 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
333 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
334 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
336 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
338 // TI tags charge at 134.2Khz
339 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
340 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
341 // connects to SSP_DIN and the SSP_DOUT logic level controls
342 // whether we're modulating the antenna (high)
343 // or listening to the antenna (low)
344 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
347 // steal this pin from the SSP and use it to control the modulation
348 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
349 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
351 // writing algorithm:
352 // a high bit consists of a field off for 1ms and field on for 1ms
353 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
354 // initiate a charge time of 50ms (field on) then immediately start writing bits
355 // start by writing 0xBB (keyword) and 0xEB (password)
356 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
357 // finally end with 0x0300 (write frame)
358 // all data is sent lsb first
359 // finish with 15ms programming time
363 SpinDelay(50); // charge time
365 WriteTIbyte(0xbb); // keyword
366 WriteTIbyte(0xeb); // password
367 WriteTIbyte( (idlo
)&0xff );
368 WriteTIbyte( (idlo
>>8 )&0xff );
369 WriteTIbyte( (idlo
>>16)&0xff );
370 WriteTIbyte( (idlo
>>24)&0xff );
371 WriteTIbyte( (idhi
)&0xff );
372 WriteTIbyte( (idhi
>>8 )&0xff );
373 WriteTIbyte( (idhi
>>16)&0xff );
374 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
375 WriteTIbyte( (crc
)&0xff ); // crc lo
376 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
377 WriteTIbyte(0x00); // write frame lo
378 WriteTIbyte(0x03); // write frame hi
380 SpinDelay(50); // programming time
384 // get TI tag data into the buffer
387 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
388 DbpString("Now use `lf ti read` to check");
391 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
394 uint8_t *tab
= BigBuf_get_addr();
396 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_READER_FIELD
);
398 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
399 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
400 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
405 if (ledcontrol
) LED_D_ON();
407 //wait until SSC_CLK goes HIGH
408 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
410 if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
411 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
422 if (ledcontrol
) LED_D_OFF();
424 //wait until SSC_CLK goes LOW
425 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
427 if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
428 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
446 #define DEBUG_FRAME_CONTENTS 1
447 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
451 // compose fc/8 fc/10 waveform (FSK2)
452 static void fc(int c
, int *n
)
454 uint8_t *dest
= BigBuf_get_addr();
457 // for when we want an fc8 pattern every 4 logical bits
469 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
471 for (idx
=0; idx
<6; idx
++) {
483 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
485 for (idx
=0; idx
<5; idx
++) {
499 // compose fc/X fc/Y waveform (FSKx)
500 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
502 uint8_t *dest
= BigBuf_get_addr();
503 uint8_t halfFC
= fc
/2;
504 uint8_t wavesPerClock
= clock
/fc
;
505 uint8_t mod
= clock
% fc
; //modifier
506 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
507 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
508 // loop through clock - step field clock
509 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
510 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
511 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
512 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
515 if (mod
>0) (*modCnt
)++;
516 if ((mod
>0) && modAdjOk
){ //fsk2
517 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
518 memset(dest
+(*n
), 0, fc
-halfFC
);
519 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
523 if (mod
>0 && !modAdjOk
){ //fsk1
524 memset(dest
+(*n
), 0, mod
-(mod
/2));
525 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
530 // prepare a waveform pattern in the buffer based on the ID given then
531 // simulate a HID tag until the button is pressed
532 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
534 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
539 HID tag bitstream format
540 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
541 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
542 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
543 A fc8 is inserted before every 4 bits
544 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
545 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
549 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
553 // special start of frame marker containing invalid bit sequences
554 fc(8, &n
); fc(8, &n
); // invalid
555 fc(8, &n
); fc(10, &n
); // logical 0
556 fc(10, &n
); fc(10, &n
); // invalid
557 fc(8, &n
); fc(10, &n
); // logical 0
560 // manchester encode bits 43 to 32
561 for (i
=11; i
>=0; i
--) {
562 if ((i
%4)==3) fc(0,&n
);
564 fc(10, &n
); fc(8, &n
); // low-high transition
566 fc(8, &n
); fc(10, &n
); // high-low transition
571 // manchester encode bits 31 to 0
572 for (i
=31; i
>=0; i
--) {
573 if ((i
%4)==3) fc(0,&n
);
575 fc(10, &n
); fc(8, &n
); // low-high transition
577 fc(8, &n
); fc(10, &n
); // high-low transition
582 if (ledcontrol
) LED_A_ON();
583 SimulateTagLowFrequency(n
, 0, ledcontrol
);
584 if (ledcontrol
) LED_A_OFF();
587 // prepare a waveform pattern in the buffer based on the ID given then
588 // simulate a FSK tag until the button is pressed
589 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
590 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
592 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
594 // free eventually allocated BigBuf memory
595 BigBuf_free(); BigBuf_Clear_ext(false);
599 int ledcontrol
= 1, n
= 0, i
= 0;
600 uint8_t fcHigh
= arg1
>> 8;
601 uint8_t fcLow
= arg1
& 0xFF;
603 uint8_t clk
= arg2
& 0xFF;
604 uint8_t invert
= (arg2
>> 8) & 1;
606 for (i
=0; i
<size
; i
++){
608 if (BitStream
[i
] == invert
)
609 fcAll(fcLow
, &n
, clk
, &modCnt
);
611 fcAll(fcHigh
, &n
, clk
, &modCnt
);
615 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh
, fcLow
, clk
, invert
, n
);
617 if (ledcontrol
) LED_A_ON();
618 SimulateTagLowFrequency(n
, 0, ledcontrol
);
619 if (ledcontrol
) LED_A_OFF();
622 // compose ask waveform for one bit(ASK)
623 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
625 uint8_t *dest
= BigBuf_get_addr();
626 uint8_t halfClk
= clock
/2;
627 // c = current bit 1 or 0
629 memset(dest
+(*n
), c
, halfClk
);
630 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
632 memset(dest
+(*n
), c
, clock
);
637 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
639 uint8_t *dest
= BigBuf_get_addr();
640 uint8_t halfClk
= clock
/2;
642 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
643 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
645 memset(dest
+(*n
), c
^ *phase
, clock
);
651 static void stAskSimBit(int *n
, uint8_t clock
) {
652 uint8_t *dest
= BigBuf_get_addr();
653 uint8_t halfClk
= clock
/2;
654 //ST = .5 high .5 low 1.5 high .5 low 1 high
655 memset(dest
+(*n
), 1, halfClk
);
656 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
657 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
658 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
659 memset(dest
+(*n
) + clock
*3, 1, clock
);
663 // args clock, ask/man or askraw, invert, transmission separator
664 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
666 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
669 int ledcontrol
= 1, n
= 0, i
= 0;
670 uint8_t clk
= (arg1
>> 8) & 0xFF;
671 uint8_t encoding
= arg1
& 0xFF;
672 uint8_t separator
= arg2
& 1;
673 uint8_t invert
= (arg2
>> 8) & 1;
675 if (encoding
== 2){ //biphase
677 for (i
=0; i
<size
; i
++){
678 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
680 if (phase
== 1) { //run a second set inverted to keep phase in check
681 for (i
=0; i
<size
; i
++){
682 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
685 } else { // ask/manchester || ask/raw
686 for (i
=0; i
<size
; i
++){
687 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
689 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
690 for (i
=0; i
<size
; i
++){
691 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
695 if (separator
==1 && encoding
== 1)
696 stAskSimBit(&n
, clk
);
697 else if (separator
==1)
698 Dbprintf("sorry but separator option not yet available");
702 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
704 if (ledcontrol
) LED_A_ON();
705 SimulateTagLowFrequency(n
, 0, ledcontrol
);
706 if (ledcontrol
) LED_A_OFF();
709 //carrier can be 2,4 or 8
710 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
712 uint8_t *dest
= BigBuf_get_addr();
713 uint8_t halfWave
= waveLen
/2;
717 // write phase change
718 memset(dest
+(*n
), *curPhase
^1, halfWave
);
719 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
724 //write each normal clock wave for the clock duration
725 for (; i
< clk
; i
+=waveLen
){
726 memset(dest
+(*n
), *curPhase
, halfWave
);
727 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
732 // args clock, carrier, invert,
733 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
735 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
738 int ledcontrol
= 1, n
= 0, i
= 0;
739 uint8_t clk
= arg1
>> 8;
740 uint8_t carrier
= arg1
& 0xFF;
741 uint8_t invert
= arg2
& 0xFF;
742 uint8_t curPhase
= 0;
743 for (i
=0; i
<size
; i
++){
744 if (BitStream
[i
] == curPhase
){
745 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
747 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
753 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
755 if (ledcontrol
) LED_A_ON();
756 SimulateTagLowFrequency(n
, 0, ledcontrol
);
757 if (ledcontrol
) LED_A_OFF();
760 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
761 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
763 uint8_t *dest
= BigBuf_get_addr();
765 uint32_t hi2
=0, hi
=0, lo
=0;
767 // Configure to go in 125Khz listen mode
768 LFSetupFPGAForADC(95, true);
771 BigBuf_Clear_keep_EM();
773 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
776 if (ledcontrol
) LED_A_ON();
778 DoAcquisition_default(-1,true);
780 size
= 50*128*2; //big enough to catch 2 sequences of largest format
781 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
783 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
784 // go over previously decoded manchester data and decode into usable tag ID
785 if (hi2
!= 0){ //extra large HID tags 88/192 bits
786 Dbprintf("TAG ID: %x%08x%08x (%d)",
790 (unsigned int) (lo
>>1) & 0xFFFF
792 } else { //standard HID tags 44/96 bits
795 uint32_t cardnum
= 0;
797 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
799 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
801 while(lo2
> 1){ //find last bit set to 1 (format len bit)
809 cardnum
= (lo
>>1)&0xFFFF;
813 cardnum
= (lo
>>1)&0x7FFFF;
814 fc
= ((hi
&0xF)<<12)|(lo
>>20);
817 cardnum
= (lo
>>1)&0xFFFF;
818 fc
= ((hi
&1)<<15)|(lo
>>17);
821 cardnum
= (lo
>>1)&0xFFFFF;
822 fc
= ((hi
&1)<<11)|(lo
>>21);
825 else { //if bit 38 is not set then 37 bit format is used
830 cardnum
= (lo
>>1)&0x7FFFF;
831 fc
= ((hi
&0xF)<<12)|(lo
>>20);
834 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
837 (unsigned int) (lo
>>1) & 0xFFFF,
838 (unsigned int) bitlen
,
840 (unsigned int) cardnum
);
843 if (ledcontrol
) LED_A_OFF();
850 hi2
= hi
= lo
= idx
= 0;
853 DbpString("Stopped");
854 if (ledcontrol
) LED_A_OFF();
857 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
858 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
860 uint8_t *dest
= BigBuf_get_addr();
864 BigBuf_Clear_keep_EM();
865 // Configure to go in 125Khz listen mode
866 LFSetupFPGAForADC(95, true);
868 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
871 if (ledcontrol
) LED_A_ON();
873 DoAcquisition_default(-1,true);
875 size
= 50*128*2; //big enough to catch 2 sequences of largest format
876 idx
= AWIDdemodFSK(dest
, &size
);
878 if (idx
<=0 || size
!=96) continue;
880 // 0 10 20 30 40 50 60
882 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
883 // -----------------------------------------------------------------------------
884 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
885 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
886 // |---26 bit---| |-----117----||-------------142-------------|
887 // b = format bit len, o = odd parity of last 3 bits
888 // f = facility code, c = card number
889 // w = wiegand parity
890 // (26 bit format shown)
892 //get raw ID before removing parities
893 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
894 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
895 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
897 size
= removeParity(dest
, idx
+8, 4, 1, 88);
898 if (size
!= 66) continue;
901 // 0 10 20 30 40 50 60
903 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
904 // -----------------------------------------------------------------------------
905 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
906 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
907 // |26 bit| |-117--| |-----142------|
909 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
910 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
911 // |50 bit| |----4000------||-----------2248975-------------|
913 // b = format bit len, o = odd parity of last 3 bits
914 // f = facility code, c = card number
915 // w = wiegand parity
918 uint32_t cardnum
= 0;
921 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
924 fc
= bytebits_to_byte(dest
+ 9, 8);
925 cardnum
= bytebits_to_byte(dest
+ 17, 16);
926 code1
= bytebits_to_byte(dest
+ 8,fmtLen
);
927 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
930 fc
= bytebits_to_byte(dest
+ 9, 16);
931 cardnum
= bytebits_to_byte(dest
+ 25, 32);
932 code1
= bytebits_to_byte(dest
+ 8, (fmtLen
-32) );
933 code2
= bytebits_to_byte(dest
+ 8 + (fmtLen
-32), 32);
934 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
938 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
939 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
940 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
941 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
943 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
944 code1
= bytebits_to_byte(dest
+8,fmtLen
);
945 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
950 if (ledcontrol
) LED_A_OFF();
956 DbpString("Stopped");
957 if (ledcontrol
) LED_A_OFF();
960 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
962 uint8_t *dest
= BigBuf_get_addr();
964 size_t size
=0, idx
=0;
965 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
969 BigBuf_Clear_keep_EM();
970 // Configure to go in 125Khz listen mode
971 LFSetupFPGAForADC(95, true);
973 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
976 if (ledcontrol
) LED_A_ON();
978 DoAcquisition_default(-1,true);
979 size
= BigBuf_max_traceLen();
980 //askdemod and manchester decode
981 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
982 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
985 if (errCnt
<0) continue;
987 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
990 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
994 (uint32_t)(lo
&0xFFFF),
995 (uint32_t)((lo
>>16LL) & 0xFF),
996 (uint32_t)(lo
& 0xFFFFFF));
998 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1001 (uint32_t)(lo
&0xFFFF),
1002 (uint32_t)((lo
>>16LL) & 0xFF),
1003 (uint32_t)(lo
& 0xFFFFFF));
1007 if (ledcontrol
) LED_A_OFF();
1009 *low
=lo
& 0xFFFFFFFF;
1014 hi
= lo
= size
= idx
= 0;
1015 clk
= invert
= errCnt
= 0;
1017 DbpString("Stopped");
1018 if (ledcontrol
) LED_A_OFF();
1021 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1023 uint8_t *dest
= BigBuf_get_addr();
1025 uint32_t code
=0, code2
=0;
1027 uint8_t facilitycode
=0;
1030 uint16_t calccrc
= 0;
1033 BigBuf_Clear_keep_EM();
1035 // Configure to go in 125Khz listen mode
1036 LFSetupFPGAForADC(95, true);
1038 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1040 if (ledcontrol
) LED_A_ON();
1041 DoAcquisition_default(-1,true);
1042 //fskdemod and get start index
1044 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1045 if (idx
<0) continue;
1049 //0 10 20 30 40 50 60
1051 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1052 //-----------------------------------------------------------------------------
1053 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1056 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1057 //preamble F0 E0 01 03 B6 75
1058 // How to calc checksum,
1059 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1060 // F0 + E0 + 01 + 03 + B6 = 28A
1064 //XSF(version)facility:codeone+codetwo
1066 if(findone
){ //only print binary if we are doing one
1067 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1068 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1069 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1070 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1071 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1072 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1073 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1075 code
= bytebits_to_byte(dest
+idx
,32);
1076 code2
= bytebits_to_byte(dest
+idx
+32,32);
1077 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1078 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1079 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1081 crc
= bytebits_to_byte(dest
+idx
+54,8);
1082 for (uint8_t i
=1; i
<6; ++i
)
1083 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1085 calccrc
= 0xff - calccrc
;
1087 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1089 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1090 // if we're only looking for one tag
1092 if (ledcontrol
) LED_A_OFF();
1098 version
=facilitycode
=0;
1104 DbpString("Stopped");
1105 if (ledcontrol
) LED_A_OFF();
1108 /*------------------------------
1109 * T5555/T5557/T5567/T5577 routines
1110 *------------------------------
1111 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1113 * Relevant communication times in microsecond
1114 * To compensate antenna falling times shorten the write times
1115 * and enlarge the gap ones.
1116 * Q5 tags seems to have issues when these values changes.
1119 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1120 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1121 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1122 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1123 #define READ_GAP 15*8
1125 // VALUES TAKEN FROM EM4x function: SendForward
1126 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1127 // WRITE_GAP = 128; (16*8)
1128 // WRITE_1 = 256 32*8; (32*8)
1130 // These timings work for 4469/4269/4305 (with the 55*8 above)
1131 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1133 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1134 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1135 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1136 // T0 = TIMER_CLOCK1 / 125000 = 192
1137 // 1 Cycle = 8 microseconds(us) == 1 field clock
1139 void TurnReadLFOn(int delay
) {
1140 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1142 // measure antenna strength.
1143 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1145 // Give it a bit of time for the resonant antenna to settle.
1149 // Write one bit to card
1150 void T55xxWriteBit(int bit
) {
1152 TurnReadLFOn(WRITE_0
);
1154 TurnReadLFOn(WRITE_1
);
1155 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1159 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1160 void T55xxResetRead(void) {
1162 //clear buffer now so it does not interfere with timing later
1163 BigBuf_Clear_keep_EM();
1165 // Set up FPGA, 125kHz
1166 LFSetupFPGAForADC(95, true);
1168 // Trigger T55x7 in mode.
1169 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1172 // reset tag - op code 00
1176 // Turn field on to read the response
1177 TurnReadLFOn(READ_GAP
);
1180 doT55x7Acquisition(BigBuf_max_traceLen());
1182 // Turn the field off
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1184 cmd_send(CMD_ACK
,0,0,0,0,0);
1188 // Write one card block in page 0, no lock
1189 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1191 bool PwdMode
= arg
& 0x1;
1192 uint8_t Page
= (arg
& 0x2)>>1;
1195 // Set up FPGA, 125kHz
1196 LFSetupFPGAForADC(95, true);
1198 // Trigger T55x7 in mode.
1199 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1204 T55xxWriteBit(Page
); //Page 0
1207 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1208 T55xxWriteBit(Pwd
& i
);
1214 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1215 T55xxWriteBit(Data
& i
);
1217 // Send Block number
1218 for (i
= 0x04; i
!= 0; i
>>= 1)
1219 T55xxWriteBit(Block
& i
);
1221 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1222 // so wait a little more)
1223 TurnReadLFOn(20 * 1000);
1224 //could attempt to do a read to confirm write took
1225 // as the tag should repeat back the new block
1226 // until it is reset, but to confirm it we would
1227 // need to know the current block 0 config mode
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1234 // Write one card block in page 0, no lock
1235 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1236 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1237 cmd_send(CMD_ACK
,0,0,0,0,0);
1240 // Read one card block in page [page]
1241 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1243 bool PwdMode
= arg0
& 0x1;
1244 uint8_t Page
= (arg0
& 0x2) >> 1;
1246 bool RegReadMode
= (Block
== 0xFF);
1248 //clear buffer now so it does not interfere with timing later
1249 BigBuf_Clear_keep_EM();
1251 //make sure block is at max 7
1254 // Set up FPGA, 125kHz to power up the tag
1255 LFSetupFPGAForADC(95, true);
1258 // Trigger T55x7 Direct Access Mode with start gap
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1264 T55xxWriteBit(Page
); //Page 0
1268 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1269 T55xxWriteBit(Pwd
& i
);
1271 // Send a zero bit separation
1274 // Send Block number (if direct access mode)
1276 for (i
= 0x04; i
!= 0; i
>>= 1)
1277 T55xxWriteBit(Block
& i
);
1279 // Turn field on to read the response
1280 TurnReadLFOn(READ_GAP
);
1283 doT55x7Acquisition(12000);
1285 // Turn the field off
1286 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1287 cmd_send(CMD_ACK
,0,0,0,0,0);
1291 void T55xxWakeUp(uint32_t Pwd
){
1295 // Set up FPGA, 125kHz
1296 LFSetupFPGAForADC(95, true);
1298 // Trigger T55x7 Direct Access Mode
1299 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1304 T55xxWriteBit(0); //Page 0
1307 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1308 T55xxWriteBit(Pwd
& i
);
1310 // Turn and leave field on to let the begin repeating transmission
1311 TurnReadLFOn(20*1000);
1314 /*-------------- Cloning routines -----------*/
1315 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1316 // write last block first and config block last (if included)
1317 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1318 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1321 // Copy HID id to card and setup block 0 config
1322 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1323 uint32_t data
[] = {0,0,0,0,0,0,0};
1324 uint8_t last_block
= 0;
1327 // Ensure no more than 84 bits supplied
1328 if (hi2
> 0xFFFFF) {
1329 DbpString("Tags can only have 84 bits.");
1332 // Build the 6 data blocks for supplied 84bit ID
1334 // load preamble (1D) & long format identifier (9E manchester encoded)
1335 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1336 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1337 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1338 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1339 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1340 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1341 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1343 // Ensure no more than 44 bits supplied
1345 DbpString("Tags can only have 44 bits.");
1348 // Build the 3 data blocks for supplied 44bit ID
1351 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1352 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1353 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1355 // load chip config block
1356 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1358 //TODO add selection of chip for Q5 or T55x7
1359 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1362 // Program the data blocks for supplied ID
1363 // and the block 0 for HID format
1364 WriteT55xx(data
, 0, last_block
+1);
1371 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1372 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1373 //TODO add selection of chip for Q5 or T55x7
1374 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1375 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1378 // Program the data blocks for supplied ID
1379 // and the block 0 config
1380 WriteT55xx(data
, 0, 3);
1385 // Clone Indala 64-bit tag by UID to T55x7
1386 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1387 //Program the 2 data blocks for supplied 64bit UID
1388 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1389 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1390 //TODO add selection of chip for Q5 or T55x7
1391 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1393 WriteT55xx(data
, 0, 3);
1394 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1395 // T5567WriteBlock(0x603E1042,0);
1398 // Clone Indala 224-bit tag by UID to T55x7
1399 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1400 //Program the 7 data blocks for supplied 224bit UID
1401 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1402 // and the block 0 for Indala224 format
1403 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1404 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1405 //TODO add selection of chip for Q5 or T55x7
1406 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1407 WriteT55xx(data
, 0, 8);
1408 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1409 // T5567WriteBlock(0x603E10E2,0);
1412 // clone viking tag to T55xx
1413 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1414 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1415 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1416 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1417 // Program the data blocks for supplied ID and the block 0 config
1418 WriteT55xx(data
, 0, 3);
1420 cmd_send(CMD_ACK
,0,0,0,0,0);
1423 // Define 9bit header for EM410x tags
1424 #define EM410X_HEADER 0x1FF
1425 #define EM410X_ID_LENGTH 40
1427 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1429 uint64_t id
= EM410X_HEADER
;
1430 uint64_t rev_id
= 0; // reversed ID
1431 int c_parity
[4]; // column parity
1432 int r_parity
= 0; // row parity
1435 // Reverse ID bits given as parameter (for simpler operations)
1436 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1438 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1441 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1446 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1447 id_bit
= rev_id
& 1;
1450 // Don't write row parity bit at start of parsing
1452 id
= (id
<< 1) | r_parity
;
1453 // Start counting parity for new row
1460 // First elements in column?
1462 // Fill out first elements
1463 c_parity
[i
] = id_bit
;
1465 // Count column parity
1466 c_parity
[i
% 4] ^= id_bit
;
1469 id
= (id
<< 1) | id_bit
;
1473 // Insert parity bit of last row
1474 id
= (id
<< 1) | r_parity
;
1476 // Fill out column parity at the end of tag
1477 for (i
= 0; i
< 4; ++i
)
1478 id
= (id
<< 1) | c_parity
[i
];
1483 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1487 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1489 clock
= (card
& 0xFF00) >> 8;
1490 clock
= (clock
== 0) ? 64 : clock
;
1491 Dbprintf("Clock rate: %d", clock
);
1492 if (card
& 0xFF) { //t55x7
1493 clock
= GetT55xxClockBit(clock
);
1495 Dbprintf("Invalid clock rate: %d", clock
);
1498 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1499 } else { //t5555 (Q5)
1500 clock
= (clock
-2)>>1; //n = (RF-2)/2
1501 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1504 WriteT55xx(data
, 0, 3);
1507 Dbprintf("Tag %s written with 0x%08x%08x\n",
1508 card
? "T55x7":"T5555",
1509 (uint32_t)(id
>> 32),
1513 //-----------------------------------
1514 // EM4469 / EM4305 routines
1515 //-----------------------------------
1516 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1517 #define FWD_CMD_WRITE 0xA
1518 #define FWD_CMD_READ 0x9
1519 #define FWD_CMD_DISABLE 0x5
1521 uint8_t forwardLink_data
[64]; //array of forwarded bits
1522 uint8_t * forward_ptr
; //ptr for forward message preparation
1523 uint8_t fwd_bit_sz
; //forwardlink bit counter
1524 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1526 //====================================================================
1527 // prepares command bits
1529 //====================================================================
1530 //--------------------------------------------------------------------
1531 // VALUES TAKEN FROM EM4x function: SendForward
1532 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1533 // WRITE_GAP = 128; (16*8)
1534 // WRITE_1 = 256 32*8; (32*8)
1536 // These timings work for 4469/4269/4305 (with the 55*8 above)
1537 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1539 uint8_t Prepare_Cmd( uint8_t cmd
) {
1541 *forward_ptr
++ = 0; //start bit
1542 *forward_ptr
++ = 0; //second pause for 4050 code
1544 *forward_ptr
++ = cmd
;
1546 *forward_ptr
++ = cmd
;
1548 *forward_ptr
++ = cmd
;
1550 *forward_ptr
++ = cmd
;
1552 return 6; //return number of emited bits
1555 //====================================================================
1556 // prepares address bits
1558 //====================================================================
1559 uint8_t Prepare_Addr( uint8_t addr
) {
1561 register uint8_t line_parity
;
1566 *forward_ptr
++ = addr
;
1567 line_parity
^= addr
;
1571 *forward_ptr
++ = (line_parity
& 1);
1573 return 7; //return number of emited bits
1576 //====================================================================
1577 // prepares data bits intreleaved with parity bits
1579 //====================================================================
1580 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1582 register uint8_t line_parity
;
1583 register uint8_t column_parity
;
1584 register uint8_t i
, j
;
1585 register uint16_t data
;
1590 for(i
=0; i
<4; i
++) {
1592 for(j
=0; j
<8; j
++) {
1593 line_parity
^= data
;
1594 column_parity
^= (data
& 1) << j
;
1595 *forward_ptr
++ = data
;
1598 *forward_ptr
++ = line_parity
;
1603 for(j
=0; j
<8; j
++) {
1604 *forward_ptr
++ = column_parity
;
1605 column_parity
>>= 1;
1609 return 45; //return number of emited bits
1612 //====================================================================
1613 // Forward Link send function
1614 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1615 // fwd_bit_count set with number of bits to be sent
1616 //====================================================================
1617 void SendForward(uint8_t fwd_bit_count
) {
1619 fwd_write_ptr
= forwardLink_data
;
1620 fwd_bit_sz
= fwd_bit_count
;
1624 // Set up FPGA, 125kHz
1625 LFSetupFPGAForADC(95, true);
1627 // force 1st mod pulse (start gap must be longer for 4305)
1628 fwd_bit_sz
--; //prepare next bit modulation
1630 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1631 WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
1632 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1633 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1635 // now start writting
1636 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1637 if(((*fwd_write_ptr
++) & 1) == 1)
1638 WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1640 //These timings work for 4469/4269/4305 (with the 55*8 above)
1641 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1642 WaitUS(23*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1643 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1644 WaitUS(9*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1649 void EM4xLogin(uint32_t Password
) {
1651 uint8_t fwd_bit_count
;
1653 forward_ptr
= forwardLink_data
;
1654 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1655 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1657 SendForward(fwd_bit_count
);
1659 //Wait for command to complete
1663 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1665 uint8_t fwd_bit_count
;
1666 uint8_t *dest
= BigBuf_get_addr();
1667 uint16_t bufsize
= BigBuf_max_traceLen();
1670 // Clear destination buffer before sending the command
1671 BigBuf_Clear_ext(false);
1673 //If password mode do login
1674 if (PwdMode
== 1) EM4xLogin(Pwd
);
1676 forward_ptr
= forwardLink_data
;
1677 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1678 fwd_bit_count
+= Prepare_Addr( Address
);
1680 // Connect the A/D to the peak-detected low-frequency path.
1681 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1682 // Now set up the SSC to get the ADC samples that are now streaming at us.
1685 SendForward(fwd_bit_count
);
1687 // Now do the acquisition
1690 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1691 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1693 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1694 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1696 if (i
>= bufsize
) break;
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1701 cmd_send(CMD_ACK
,0,0,0,0,0);
1705 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1707 uint8_t fwd_bit_count
;
1709 //If password mode do login
1710 if (PwdMode
== 1) EM4xLogin(Pwd
);
1712 forward_ptr
= forwardLink_data
;
1713 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1714 fwd_bit_count
+= Prepare_Addr( Address
);
1715 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1717 SendForward(fwd_bit_count
);
1719 //Wait for write to complete
1721 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off