2 * Elliptic curves over GF(p): generic functions
4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5 * SPDX-License-Identifier: GPL-2.0
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * This file is part of mbed TLS (https://tls.mbed.org)
27 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
28 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
29 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
30 * RFC 4492 for the related TLS structures and constants
31 * RFC 7748 for the Curve448 and Curve25519 curve definitions
33 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
35 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
36 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
37 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
38 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
40 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
41 * render ECC resistant against Side Channel Attacks. IACR Cryptology
42 * ePrint Archive, 2004, vol. 2004, p. 342.
43 * <http://eprint.iacr.org/2004/342.pdf>
46 #if !defined(MBEDTLS_CONFIG_FILE)
47 #include "mbedtls/config.h"
49 #include MBEDTLS_CONFIG_FILE
52 #if defined(MBEDTLS_ECP_C)
54 #include "mbedtls/ecp.h"
55 #include "mbedtls/threading.h"
56 #include "mbedtls/platform_util.h"
60 #if !defined(MBEDTLS_ECP_ALT)
62 #if defined(MBEDTLS_PLATFORM_C)
63 #include "mbedtls/platform.h"
67 #define mbedtls_printf printf
68 #define mbedtls_calloc calloc
69 #define mbedtls_free free
72 #include "mbedtls/ecp_internal.h"
74 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
75 !defined(inline) && !defined(__cplusplus)
76 #define inline __inline
79 #if defined(MBEDTLS_SELF_TEST)
81 * Counts of point addition and doubling, and field multiplications.
82 * Used to test resistance of point multiplication to simple timing attacks.
84 static unsigned long add_count
, dbl_count
, mul_count
;
87 #if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED) || \
88 defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
89 defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
90 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
91 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
92 defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
93 defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
94 defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
95 defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
96 defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
97 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
98 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
99 #define ECP_SHORTWEIERSTRASS
102 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
103 defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
104 #define ECP_MONTGOMERY
108 * Curve types: internal for now, might be exposed later
113 ECP_TYPE_SHORT_WEIERSTRASS
, /* y^2 = x^3 + a x + b */
114 ECP_TYPE_MONTGOMERY
, /* y^2 = x^3 + a x^2 + x */
118 * List of supported curves:
120 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
124 * Curves are listed in order: largest curves first, and for a given size,
125 * fastest curves first. This provides the default order for the SSL module.
127 * Reminder: update profiles in x509_crt.c when adding a new curves!
129 static const mbedtls_ecp_curve_info ecp_supported_curves
[] =
131 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
132 { MBEDTLS_ECP_DP_SECP521R1
, 25, 521, "secp521r1" },
134 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
135 { MBEDTLS_ECP_DP_BP512R1
, 28, 512, "brainpoolP512r1" },
137 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
138 { MBEDTLS_ECP_DP_SECP384R1
, 24, 384, "secp384r1" },
140 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
141 { MBEDTLS_ECP_DP_BP384R1
, 27, 384, "brainpoolP384r1" },
143 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
144 { MBEDTLS_ECP_DP_SECP256R1
, 23, 256, "secp256r1" },
146 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
147 { MBEDTLS_ECP_DP_SECP256K1
, 22, 256, "secp256k1" },
149 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
150 { MBEDTLS_ECP_DP_BP256R1
, 26, 256, "brainpoolP256r1" },
152 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
153 { MBEDTLS_ECP_DP_SECP224R1
, 21, 224, "secp224r1" },
155 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
156 { MBEDTLS_ECP_DP_SECP224K1
, 20, 224, "secp224k1" },
158 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
159 { MBEDTLS_ECP_DP_SECP192R1
, 19, 192, "secp192r1" },
161 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
162 { MBEDTLS_ECP_DP_SECP192K1
, 18, 192, "secp192k1" },
164 #if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED)
165 { MBEDTLS_ECP_DP_SECP128R1
, 0xFE00, 128, "secp128r1" },
167 { MBEDTLS_ECP_DP_NONE
, 0, 0, NULL
},
170 #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
171 sizeof( ecp_supported_curves[0] )
173 static mbedtls_ecp_group_id ecp_supported_grp_id
[ECP_NB_CURVES
];
176 * List of supported curves and associated info
178 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_list( void )
180 return( ecp_supported_curves
);
184 * List of supported curves, group ID only
186 const mbedtls_ecp_group_id
*mbedtls_ecp_grp_id_list( void )
188 static int init_done
= 0;
193 const mbedtls_ecp_curve_info
*curve_info
;
195 for( curve_info
= mbedtls_ecp_curve_list();
196 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
199 ecp_supported_grp_id
[i
++] = curve_info
->grp_id
;
201 ecp_supported_grp_id
[i
] = MBEDTLS_ECP_DP_NONE
;
206 return( ecp_supported_grp_id
);
210 * Get the curve info for the internal identifier
212 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id
)
214 const mbedtls_ecp_curve_info
*curve_info
;
216 for( curve_info
= mbedtls_ecp_curve_list();
217 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
220 if( curve_info
->grp_id
== grp_id
)
221 return( curve_info
);
228 * Get the curve info from the TLS identifier
230 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id
)
232 const mbedtls_ecp_curve_info
*curve_info
;
234 for( curve_info
= mbedtls_ecp_curve_list();
235 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
238 if( curve_info
->tls_id
== tls_id
)
239 return( curve_info
);
246 * Get the curve info from the name
248 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_info_from_name( const char *name
)
250 const mbedtls_ecp_curve_info
*curve_info
;
252 for( curve_info
= mbedtls_ecp_curve_list();
253 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
256 if( strcmp( curve_info
->name
, name
) == 0 )
257 return( curve_info
);
264 * Get the type of a curve
266 static inline ecp_curve_type
ecp_get_type( const mbedtls_ecp_group
*grp
)
268 if( grp
->G
.X
.p
== NULL
)
269 return( ECP_TYPE_NONE
);
271 if( grp
->G
.Y
.p
== NULL
)
272 return( ECP_TYPE_MONTGOMERY
);
274 return( ECP_TYPE_SHORT_WEIERSTRASS
);
278 * Initialize (the components of) a point
280 void mbedtls_ecp_point_init( mbedtls_ecp_point
*pt
)
285 mbedtls_mpi_init( &pt
->X
);
286 mbedtls_mpi_init( &pt
->Y
);
287 mbedtls_mpi_init( &pt
->Z
);
291 * Initialize (the components of) a group
293 void mbedtls_ecp_group_init( mbedtls_ecp_group
*grp
)
298 memset( grp
, 0, sizeof( mbedtls_ecp_group
) );
302 * Initialize (the components of) a key pair
304 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair
*key
)
309 mbedtls_ecp_group_init( &key
->grp
);
310 mbedtls_mpi_init( &key
->d
);
311 mbedtls_ecp_point_init( &key
->Q
);
315 * Unallocate (the components of) a point
317 void mbedtls_ecp_point_free( mbedtls_ecp_point
*pt
)
322 mbedtls_mpi_free( &( pt
->X
) );
323 mbedtls_mpi_free( &( pt
->Y
) );
324 mbedtls_mpi_free( &( pt
->Z
) );
328 * Unallocate (the components of) a group
330 void mbedtls_ecp_group_free( mbedtls_ecp_group
*grp
)
339 mbedtls_mpi_free( &grp
->P
);
340 mbedtls_mpi_free( &grp
->A
);
341 mbedtls_mpi_free( &grp
->B
);
342 mbedtls_ecp_point_free( &grp
->G
);
343 mbedtls_mpi_free( &grp
->N
);
348 for( i
= 0; i
< grp
->T_size
; i
++ )
349 mbedtls_ecp_point_free( &grp
->T
[i
] );
350 mbedtls_free( grp
->T
);
353 mbedtls_platform_zeroize( grp
, sizeof( mbedtls_ecp_group
) );
357 * Unallocate (the components of) a key pair
359 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair
*key
)
364 mbedtls_ecp_group_free( &key
->grp
);
365 mbedtls_mpi_free( &key
->d
);
366 mbedtls_ecp_point_free( &key
->Q
);
370 * Copy the contents of a point
372 int mbedtls_ecp_copy( mbedtls_ecp_point
*P
, const mbedtls_ecp_point
*Q
)
376 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P
->X
, &Q
->X
) );
377 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P
->Y
, &Q
->Y
) );
378 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P
->Z
, &Q
->Z
) );
385 * Copy the contents of a group object
387 int mbedtls_ecp_group_copy( mbedtls_ecp_group
*dst
, const mbedtls_ecp_group
*src
)
389 return mbedtls_ecp_group_load( dst
, src
->id
);
395 int mbedtls_ecp_set_zero( mbedtls_ecp_point
*pt
)
399 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->X
, 1 ) );
400 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Y
, 1 ) );
401 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Z
, 0 ) );
408 * Tell if a point is zero
410 int mbedtls_ecp_is_zero( mbedtls_ecp_point
*pt
)
412 return( mbedtls_mpi_cmp_int( &pt
->Z
, 0 ) == 0 );
416 * Compare two points lazyly
418 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point
*P
,
419 const mbedtls_ecp_point
*Q
)
421 if( mbedtls_mpi_cmp_mpi( &P
->X
, &Q
->X
) == 0 &&
422 mbedtls_mpi_cmp_mpi( &P
->Y
, &Q
->Y
) == 0 &&
423 mbedtls_mpi_cmp_mpi( &P
->Z
, &Q
->Z
) == 0 )
428 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
432 * Import a non-zero point from ASCII strings
434 int mbedtls_ecp_point_read_string( mbedtls_ecp_point
*P
, int radix
,
435 const char *x
, const char *y
)
439 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P
->X
, radix
, x
) );
440 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P
->Y
, radix
, y
) );
441 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P
->Z
, 1 ) );
448 * Export a point into unsigned binary data (SEC1 2.3.3)
450 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*P
,
451 int format
, size_t *olen
,
452 unsigned char *buf
, size_t buflen
)
457 if( format
!= MBEDTLS_ECP_PF_UNCOMPRESSED
&&
458 format
!= MBEDTLS_ECP_PF_COMPRESSED
)
459 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
462 * Common case: P == 0
464 if( mbedtls_mpi_cmp_int( &P
->Z
, 0 ) == 0 )
467 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
475 plen
= mbedtls_mpi_size( &grp
->P
);
477 if( format
== MBEDTLS_ECP_PF_UNCOMPRESSED
)
479 *olen
= 2 * plen
+ 1;
482 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
485 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P
->X
, buf
+ 1, plen
) );
486 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P
->Y
, buf
+ 1 + plen
, plen
) );
488 else if( format
== MBEDTLS_ECP_PF_COMPRESSED
)
493 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
495 buf
[0] = 0x02 + mbedtls_mpi_get_bit( &P
->Y
, 0 );
496 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P
->X
, buf
+ 1, plen
) );
504 * Import a point from unsigned binary data (SEC1 2.3.4)
506 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
,
507 const unsigned char *buf
, size_t ilen
)
513 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
518 return( mbedtls_ecp_set_zero( pt
) );
520 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
523 plen
= mbedtls_mpi_size( &grp
->P
);
526 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE
);
528 if( ilen
!= 2 * plen
+ 1 )
529 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
531 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt
->X
, buf
+ 1, plen
) );
532 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt
->Y
, buf
+ 1 + plen
, plen
) );
533 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Z
, 1 ) );
540 * Import a point from a TLS ECPoint record (RFC 4492)
542 * opaque point <1..2^8-1>;
545 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
,
546 const unsigned char **buf
, size_t buf_len
)
548 unsigned char data_len
;
549 const unsigned char *buf_start
;
552 * We must have at least two bytes (1 for length, at least one for data)
555 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
557 data_len
= *(*buf
)++;
558 if( data_len
< 1 || data_len
> buf_len
- 1 )
559 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
562 * Save buffer start for read_binary and update buf
567 return mbedtls_ecp_point_read_binary( grp
, pt
, buf_start
, data_len
);
571 * Export a point as a TLS ECPoint record (RFC 4492)
573 * opaque point <1..2^8-1>;
576 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
,
577 int format
, size_t *olen
,
578 unsigned char *buf
, size_t blen
)
583 * buffer length must be at least one, for our length byte
586 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
588 if( ( ret
= mbedtls_ecp_point_write_binary( grp
, pt
, format
,
589 olen
, buf
+ 1, blen
- 1) ) != 0 )
593 * write length to the first byte and update total length
595 buf
[0] = (unsigned char) *olen
;
602 * Set a group from an ECParameters record (RFC 4492)
604 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group
*grp
, const unsigned char **buf
, size_t len
)
607 const mbedtls_ecp_curve_info
*curve_info
;
610 * We expect at least three bytes (see below)
613 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
616 * First byte is curve_type; only named_curve is handled
618 if( *(*buf
)++ != MBEDTLS_ECP_TLS_NAMED_CURVE
)
619 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
622 * Next two bytes are the namedcurve value
628 if( ( curve_info
= mbedtls_ecp_curve_info_from_tls_id( tls_id
) ) == NULL
)
629 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE
);
631 return mbedtls_ecp_group_load( grp
, curve_info
->grp_id
);
635 * Write the ECParameters record corresponding to a group (RFC 4492)
637 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group
*grp
, size_t *olen
,
638 unsigned char *buf
, size_t blen
)
640 const mbedtls_ecp_curve_info
*curve_info
;
642 if( ( curve_info
= mbedtls_ecp_curve_info_from_grp_id( grp
->id
) ) == NULL
)
643 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
646 * We are going to write 3 bytes (see below)
650 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
653 * First byte is curve_type, always named_curve
655 *buf
++ = MBEDTLS_ECP_TLS_NAMED_CURVE
;
658 * Next two bytes are the namedcurve value
660 buf
[0] = curve_info
->tls_id
>> 8;
661 buf
[1] = curve_info
->tls_id
& 0xFF;
667 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
668 * See the documentation of struct mbedtls_ecp_group.
670 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
672 static int ecp_modp( mbedtls_mpi
*N
, const mbedtls_ecp_group
*grp
)
676 if( grp
->modp
== NULL
)
677 return( mbedtls_mpi_mod_mpi( N
, N
, &grp
->P
) );
679 /* N->s < 0 is a much faster test, which fails only if N is 0 */
680 if( ( N
->s
< 0 && mbedtls_mpi_cmp_int( N
, 0 ) != 0 ) ||
681 mbedtls_mpi_bitlen( N
) > 2 * grp
->pbits
)
683 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
686 MBEDTLS_MPI_CHK( grp
->modp( N
) );
688 /* N->s < 0 is a much faster test, which fails only if N is 0 */
689 while( N
->s
< 0 && mbedtls_mpi_cmp_int( N
, 0 ) != 0 )
690 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N
, N
, &grp
->P
) );
692 while( mbedtls_mpi_cmp_mpi( N
, &grp
->P
) >= 0 )
693 /* we known P, N and the result are positive */
694 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N
, N
, &grp
->P
) );
701 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
703 * In order to guarantee that, we need to ensure that operands of
704 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
705 * bring the result back to this range.
707 * The following macros are shortcuts for doing that.
711 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
713 #if defined(MBEDTLS_SELF_TEST)
714 #define INC_MUL_COUNT mul_count++;
716 #define INC_MUL_COUNT
719 #define MOD_MUL( N ) do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
723 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
724 * N->s < 0 is a very fast test, which fails only if N is 0
726 #define MOD_SUB( N ) \
727 while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 ) \
728 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
731 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
732 * We known P, N and the result are positive, so sub_abs is correct, and
735 #define MOD_ADD( N ) \
736 while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
737 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
739 #if defined(ECP_SHORTWEIERSTRASS)
741 * For curves in short Weierstrass form, we do all the internal operations in
742 * Jacobian coordinates.
744 * For multiplication, we'll use a comb method with coutermeasueres against
745 * SPA, hence timing attacks.
749 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
750 * Cost: 1N := 1I + 3M + 1S
752 static int ecp_normalize_jac( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
)
757 if( mbedtls_mpi_cmp_int( &pt
->Z
, 0 ) == 0 )
760 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
761 if ( mbedtls_internal_ecp_grp_capable( grp
) )
763 return mbedtls_internal_ecp_normalize_jac( grp
, pt
);
765 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
766 mbedtls_mpi_init( &Zi
); mbedtls_mpi_init( &ZZi
);
771 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi
, &pt
->Z
, &grp
->P
) );
772 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi
, &Zi
, &Zi
) ); MOD_MUL( ZZi
);
773 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->X
, &pt
->X
, &ZZi
) ); MOD_MUL( pt
->X
);
778 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Y
, &pt
->Y
, &ZZi
) ); MOD_MUL( pt
->Y
);
779 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Y
, &pt
->Y
, &Zi
) ); MOD_MUL( pt
->Y
);
784 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Z
, 1 ) );
788 mbedtls_mpi_free( &Zi
); mbedtls_mpi_free( &ZZi
);
794 * Normalize jacobian coordinates of an array of (pointers to) points,
795 * using Montgomery's trick to perform only one inversion mod P.
796 * (See for example Cohen's "A Course in Computational Algebraic Number
797 * Theory", Algorithm 10.3.4.)
799 * Warning: fails (returning an error) if one of the points is zero!
800 * This should never happen, see choice of w in ecp_mul_comb().
802 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
804 static int ecp_normalize_jac_many( const mbedtls_ecp_group
*grp
,
805 mbedtls_ecp_point
*T
[], size_t t_len
)
809 mbedtls_mpi
*c
, u
, Zi
, ZZi
;
812 return( ecp_normalize_jac( grp
, *T
) );
814 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
815 if ( mbedtls_internal_ecp_grp_capable( grp
) )
817 return mbedtls_internal_ecp_normalize_jac_many(grp
, T
, t_len
);
821 if( ( c
= mbedtls_calloc( t_len
, sizeof( mbedtls_mpi
) ) ) == NULL
)
822 return( MBEDTLS_ERR_ECP_ALLOC_FAILED
);
824 mbedtls_mpi_init( &u
); mbedtls_mpi_init( &Zi
); mbedtls_mpi_init( &ZZi
);
827 * c[i] = Z_0 * ... * Z_i
829 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c
[0], &T
[0]->Z
) );
830 for( i
= 1; i
< t_len
; i
++ )
832 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c
[i
], &c
[i
-1], &T
[i
]->Z
) );
837 * u = 1 / (Z_0 * ... * Z_n) mod P
839 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u
, &c
[t_len
-1], &grp
->P
) );
841 for( i
= t_len
- 1; ; i
-- )
845 * u = 1 / (Z_0 * ... * Z_i) mod P
848 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi
, &u
) );
852 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi
, &u
, &c
[i
-1] ) ); MOD_MUL( Zi
);
853 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u
, &u
, &T
[i
]->Z
) ); MOD_MUL( u
);
857 * proceed as in normalize()
859 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi
, &Zi
, &Zi
) ); MOD_MUL( ZZi
);
860 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
[i
]->X
, &T
[i
]->X
, &ZZi
) ); MOD_MUL( T
[i
]->X
);
861 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
[i
]->Y
, &T
[i
]->Y
, &ZZi
) ); MOD_MUL( T
[i
]->Y
);
862 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
[i
]->Y
, &T
[i
]->Y
, &Zi
) ); MOD_MUL( T
[i
]->Y
);
865 * Post-precessing: reclaim some memory by shrinking coordinates
866 * - not storing Z (always 1)
867 * - shrinking other coordinates, but still keeping the same number of
868 * limbs as P, as otherwise it will too likely be regrown too fast.
870 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T
[i
]->X
, grp
->P
.n
) );
871 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T
[i
]->Y
, grp
->P
.n
) );
872 mbedtls_mpi_free( &T
[i
]->Z
);
880 mbedtls_mpi_free( &u
); mbedtls_mpi_free( &Zi
); mbedtls_mpi_free( &ZZi
);
881 for( i
= 0; i
< t_len
; i
++ )
882 mbedtls_mpi_free( &c
[i
] );
889 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
890 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
892 static int ecp_safe_invert_jac( const mbedtls_ecp_group
*grp
,
893 mbedtls_ecp_point
*Q
,
897 unsigned char nonzero
;
900 mbedtls_mpi_init( &mQY
);
902 /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
903 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY
, &grp
->P
, &Q
->Y
) );
904 nonzero
= mbedtls_mpi_cmp_int( &Q
->Y
, 0 ) != 0;
905 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q
->Y
, &mQY
, inv
& nonzero
) );
908 mbedtls_mpi_free( &mQY
);
914 * Point doubling R = 2 P, Jacobian coordinates
916 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
918 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
919 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
921 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
923 * Cost: 1D := 3M + 4S (A == 0)
925 * 3M + 6S + 1a otherwise
927 static int ecp_double_jac( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
928 const mbedtls_ecp_point
*P
)
931 mbedtls_mpi M
, S
, T
, U
;
933 #if defined(MBEDTLS_SELF_TEST)
937 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
938 if ( mbedtls_internal_ecp_grp_capable( grp
) )
940 return mbedtls_internal_ecp_double_jac( grp
, R
, P
);
942 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
944 mbedtls_mpi_init( &M
); mbedtls_mpi_init( &S
); mbedtls_mpi_init( &T
); mbedtls_mpi_init( &U
);
946 /* Special case for A = -3 */
947 if( grp
->A
.p
== NULL
)
949 /* M = 3(X + Z^2)(X - Z^2) */
950 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->Z
, &P
->Z
) ); MOD_MUL( S
);
951 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T
, &P
->X
, &S
) ); MOD_ADD( T
);
952 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U
, &P
->X
, &S
) ); MOD_SUB( U
);
953 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &T
, &U
) ); MOD_MUL( S
);
954 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M
, &S
, 3 ) ); MOD_ADD( M
);
959 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->X
, &P
->X
) ); MOD_MUL( S
);
960 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M
, &S
, 3 ) ); MOD_ADD( M
);
962 /* Optimize away for "koblitz" curves with A = 0 */
963 if( mbedtls_mpi_cmp_int( &grp
->A
, 0 ) != 0 )
966 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->Z
, &P
->Z
) ); MOD_MUL( S
);
967 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
, &S
, &S
) ); MOD_MUL( T
);
968 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &T
, &grp
->A
) ); MOD_MUL( S
);
969 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M
, &M
, &S
) ); MOD_ADD( M
);
974 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
, &P
->Y
, &P
->Y
) ); MOD_MUL( T
);
975 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T
, 1 ) ); MOD_ADD( T
);
976 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->X
, &T
) ); MOD_MUL( S
);
977 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S
, 1 ) ); MOD_ADD( S
);
980 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U
, &T
, &T
) ); MOD_MUL( U
);
981 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U
, 1 ) ); MOD_ADD( U
);
984 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
, &M
, &M
) ); MOD_MUL( T
);
985 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T
, &T
, &S
) ); MOD_SUB( T
);
986 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T
, &T
, &S
) ); MOD_SUB( T
);
988 /* S = M(S - T) - U */
989 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S
, &S
, &T
) ); MOD_SUB( S
);
990 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &S
, &M
) ); MOD_MUL( S
);
991 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S
, &S
, &U
) ); MOD_SUB( S
);
994 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U
, &P
->Y
, &P
->Z
) ); MOD_MUL( U
);
995 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U
, 1 ) ); MOD_ADD( U
);
997 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->X
, &T
) );
998 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Y
, &S
) );
999 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Z
, &U
) );
1002 mbedtls_mpi_free( &M
); mbedtls_mpi_free( &S
); mbedtls_mpi_free( &T
); mbedtls_mpi_free( &U
);
1008 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1010 * The coordinates of Q must be normalized (= affine),
1011 * but those of P don't need to. R is not normalized.
1013 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1014 * None of these cases can happen as intermediate step in ecp_mul_comb():
1015 * - at each step, P, Q and R are multiples of the base point, the factor
1016 * being less than its order, so none of them is zero;
1017 * - Q is an odd multiple of the base point, P an even multiple,
1018 * due to the choice of precomputed points in the modified comb method.
1019 * So branches for these cases do not leak secret information.
1021 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1023 * Cost: 1A := 8M + 3S
1025 static int ecp_add_mixed( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1026 const mbedtls_ecp_point
*P
, const mbedtls_ecp_point
*Q
)
1029 mbedtls_mpi T1
, T2
, T3
, T4
, X
, Y
, Z
;
1031 #if defined(MBEDTLS_SELF_TEST)
1035 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1036 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1038 return mbedtls_internal_ecp_add_mixed( grp
, R
, P
, Q
);
1040 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1043 * Trivial cases: P == 0 or Q == 0 (case 1)
1045 if( mbedtls_mpi_cmp_int( &P
->Z
, 0 ) == 0 )
1046 return( mbedtls_ecp_copy( R
, Q
) );
1048 if( Q
->Z
.p
!= NULL
&& mbedtls_mpi_cmp_int( &Q
->Z
, 0 ) == 0 )
1049 return( mbedtls_ecp_copy( R
, P
) );
1052 * Make sure Q coordinates are normalized
1054 if( Q
->Z
.p
!= NULL
&& mbedtls_mpi_cmp_int( &Q
->Z
, 1 ) != 0 )
1055 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1057 mbedtls_mpi_init( &T1
); mbedtls_mpi_init( &T2
); mbedtls_mpi_init( &T3
); mbedtls_mpi_init( &T4
);
1058 mbedtls_mpi_init( &X
); mbedtls_mpi_init( &Y
); mbedtls_mpi_init( &Z
);
1060 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1
, &P
->Z
, &P
->Z
) ); MOD_MUL( T1
);
1061 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2
, &T1
, &P
->Z
) ); MOD_MUL( T2
);
1062 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1
, &T1
, &Q
->X
) ); MOD_MUL( T1
);
1063 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2
, &T2
, &Q
->Y
) ); MOD_MUL( T2
);
1064 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1
, &T1
, &P
->X
) ); MOD_SUB( T1
);
1065 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2
, &T2
, &P
->Y
) ); MOD_SUB( T2
);
1067 /* Special cases (2) and (3) */
1068 if( mbedtls_mpi_cmp_int( &T1
, 0 ) == 0 )
1070 if( mbedtls_mpi_cmp_int( &T2
, 0 ) == 0 )
1072 ret
= ecp_double_jac( grp
, R
, P
);
1077 ret
= mbedtls_ecp_set_zero( R
);
1082 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z
, &P
->Z
, &T1
) ); MOD_MUL( Z
);
1083 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3
, &T1
, &T1
) ); MOD_MUL( T3
);
1084 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4
, &T3
, &T1
) ); MOD_MUL( T4
);
1085 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3
, &T3
, &P
->X
) ); MOD_MUL( T3
);
1086 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1
, &T3
, 2 ) ); MOD_ADD( T1
);
1087 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X
, &T2
, &T2
) ); MOD_MUL( X
);
1088 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X
, &X
, &T1
) ); MOD_SUB( X
);
1089 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X
, &X
, &T4
) ); MOD_SUB( X
);
1090 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3
, &T3
, &X
) ); MOD_SUB( T3
);
1091 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3
, &T3
, &T2
) ); MOD_MUL( T3
);
1092 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4
, &T4
, &P
->Y
) ); MOD_MUL( T4
);
1093 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y
, &T3
, &T4
) ); MOD_SUB( Y
);
1095 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->X
, &X
) );
1096 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Y
, &Y
) );
1097 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Z
, &Z
) );
1101 mbedtls_mpi_free( &T1
); mbedtls_mpi_free( &T2
); mbedtls_mpi_free( &T3
); mbedtls_mpi_free( &T4
);
1102 mbedtls_mpi_free( &X
); mbedtls_mpi_free( &Y
); mbedtls_mpi_free( &Z
);
1108 * Randomize jacobian coordinates:
1109 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1110 * This is sort of the reverse operation of ecp_normalize_jac().
1112 * This countermeasure was first suggested in [2].
1114 static int ecp_randomize_jac( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
,
1115 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
1122 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1123 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1125 return mbedtls_internal_ecp_randomize_jac( grp
, pt
, f_rng
, p_rng
);
1127 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1129 p_size
= ( grp
->pbits
+ 7 ) / 8;
1130 mbedtls_mpi_init( &l
); mbedtls_mpi_init( &ll
);
1132 /* Generate l such that 1 < l < p */
1135 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l
, p_size
, f_rng
, p_rng
) );
1137 while( mbedtls_mpi_cmp_mpi( &l
, &grp
->P
) >= 0 )
1138 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l
, 1 ) );
1141 return( MBEDTLS_ERR_ECP_RANDOM_FAILED
);
1143 while( mbedtls_mpi_cmp_int( &l
, 1 ) <= 0 );
1146 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Z
, &pt
->Z
, &l
) ); MOD_MUL( pt
->Z
);
1149 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll
, &l
, &l
) ); MOD_MUL( ll
);
1150 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->X
, &pt
->X
, &ll
) ); MOD_MUL( pt
->X
);
1153 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll
, &ll
, &l
) ); MOD_MUL( ll
);
1154 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Y
, &pt
->Y
, &ll
) ); MOD_MUL( pt
->Y
);
1157 mbedtls_mpi_free( &l
); mbedtls_mpi_free( &ll
);
1163 * Check and define parameters used by the comb method (see below for details)
1165 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1166 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1169 /* d = ceil( n / w ) */
1170 #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1172 /* number of precomputed points */
1173 #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1176 * Compute the representation of m that will be used with our comb method.
1178 * The basic comb method is described in GECC 3.44 for example. We use a
1179 * modified version that provides resistance to SPA by avoiding zero
1180 * digits in the representation as in [3]. We modify the method further by
1181 * requiring that all K_i be odd, which has the small cost that our
1182 * representation uses one more K_i, due to carries.
1184 * Also, for the sake of compactness, only the seven low-order bits of x[i]
1185 * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1186 * the paper): it is set if and only if if s_i == -1;
1188 * Calling conventions:
1189 * - x is an array of size d + 1
1190 * - w is the size, ie number of teeth, of the comb, and must be between
1191 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1192 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1193 * (the result will be incorrect if these assumptions are not satisfied)
1195 static void ecp_comb_fixed( unsigned char x
[], size_t d
,
1196 unsigned char w
, const mbedtls_mpi
*m
)
1199 unsigned char c
, cc
, adjust
;
1201 memset( x
, 0, d
+1 );
1203 /* First get the classical comb values (except for x_d = 0) */
1204 for( i
= 0; i
< d
; i
++ )
1205 for( j
= 0; j
< w
; j
++ )
1206 x
[i
] |= mbedtls_mpi_get_bit( m
, i
+ d
* j
) << j
;
1208 /* Now make sure x_1 .. x_d are odd */
1210 for( i
= 1; i
<= d
; i
++ )
1212 /* Add carry and update it */
1217 /* Adjust if needed, avoiding branches */
1218 adjust
= 1 - ( x
[i
] & 0x01 );
1219 c
|= x
[i
] & ( x
[i
-1] * adjust
);
1220 x
[i
] = x
[i
] ^ ( x
[i
-1] * adjust
);
1221 x
[i
-1] |= adjust
<< 7;
1226 * Precompute points for the comb method
1228 * If i = i_{w-1} ... i_1 is the binary representation of i, then
1229 * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
1231 * T must be able to hold 2^{w - 1} elements
1233 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1235 static int ecp_precompute_comb( const mbedtls_ecp_group
*grp
,
1236 mbedtls_ecp_point T
[], const mbedtls_ecp_point
*P
,
1237 unsigned char w
, size_t d
)
1242 mbedtls_ecp_point
*cur
, *TT
[COMB_MAX_PRE
- 1];
1246 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1248 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T
[0], P
) );
1251 for( i
= 1; i
< ( 1U << ( w
- 1 ) ); i
<<= 1 )
1254 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur
, T
+ ( i
>> 1 ) ) );
1255 for( j
= 0; j
< d
; j
++ )
1256 MBEDTLS_MPI_CHK( ecp_double_jac( grp
, cur
, cur
) );
1261 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp
, TT
, k
) );
1264 * Compute the remaining ones using the minimal number of additions
1265 * Be careful to update T[2^l] only after using it!
1268 for( i
= 1; i
< ( 1U << ( w
- 1 ) ); i
<<= 1 )
1273 MBEDTLS_MPI_CHK( ecp_add_mixed( grp
, &T
[i
+ j
], &T
[j
], &T
[i
] ) );
1274 TT
[k
++] = &T
[i
+ j
];
1278 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp
, TT
, k
) );
1286 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1288 static int ecp_select_comb( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1289 const mbedtls_ecp_point T
[], unsigned char t_len
,
1293 unsigned char ii
, j
;
1295 /* Ignore the "sign" bit and scale down */
1296 ii
= ( i
& 0x7Fu
) >> 1;
1298 /* Read the whole table to thwart cache-based timing attacks */
1299 for( j
= 0; j
< t_len
; j
++ )
1301 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R
->X
, &T
[j
].X
, j
== ii
) );
1302 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R
->Y
, &T
[j
].Y
, j
== ii
) );
1305 /* Safely invert result if i is "negative" */
1306 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp
, R
, i
>> 7 ) );
1313 * Core multiplication algorithm for the (modified) comb method.
1314 * This part is actually common with the basic comb method (GECC 3.44)
1316 * Cost: d A + d D + 1 R
1318 static int ecp_mul_comb_core( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1319 const mbedtls_ecp_point T
[], unsigned char t_len
,
1320 const unsigned char x
[], size_t d
,
1321 int (*f_rng
)(void *, unsigned char *, size_t),
1325 mbedtls_ecp_point Txi
;
1328 mbedtls_ecp_point_init( &Txi
);
1330 /* Start with a non-zero point and randomize its coordinates */
1332 MBEDTLS_MPI_CHK( ecp_select_comb( grp
, R
, T
, t_len
, x
[i
] ) );
1333 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R
->Z
, 1 ) );
1335 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp
, R
, f_rng
, p_rng
) );
1339 MBEDTLS_MPI_CHK( ecp_double_jac( grp
, R
, R
) );
1340 MBEDTLS_MPI_CHK( ecp_select_comb( grp
, &Txi
, T
, t_len
, x
[i
] ) );
1341 MBEDTLS_MPI_CHK( ecp_add_mixed( grp
, R
, R
, &Txi
) );
1346 mbedtls_ecp_point_free( &Txi
);
1352 * Multiplication using the comb method,
1353 * for curves in short Weierstrass form
1355 static int ecp_mul_comb( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1356 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1357 int (*f_rng
)(void *, unsigned char *, size_t),
1361 unsigned char w
, m_is_odd
, p_eq_g
, pre_len
, i
;
1363 unsigned char k
[COMB_MAX_D
+ 1];
1364 mbedtls_ecp_point
*T
;
1367 mbedtls_mpi_init( &M
);
1368 mbedtls_mpi_init( &mm
);
1370 /* we need N to be odd to trnaform m in an odd number, check now */
1371 if( mbedtls_mpi_get_bit( &grp
->N
, 0 ) != 1 )
1372 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1375 * Minimize the number of multiplications, that is minimize
1376 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1377 * (see costs of the various parts, with 1S = 1M)
1379 w
= grp
->nbits
>= 384 ? 5 : 4;
1382 * If P == G, pre-compute a bit more, since this may be re-used later.
1383 * Just adding one avoids upping the cost of the first mul too much,
1384 * and the memory cost too.
1386 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
1387 p_eq_g
= ( mbedtls_mpi_cmp_mpi( &P
->Y
, &grp
->G
.Y
) == 0 &&
1388 mbedtls_mpi_cmp_mpi( &P
->X
, &grp
->G
.X
) == 0 );
1396 * Make sure w is within bounds.
1397 * (The last test is useful only for very small curves in the test suite.)
1399 if( w
> MBEDTLS_ECP_WINDOW_SIZE
)
1400 w
= MBEDTLS_ECP_WINDOW_SIZE
;
1401 if( w
>= grp
->nbits
)
1404 /* Other sizes that depend on w */
1405 pre_len
= 1U << ( w
- 1 );
1406 d
= ( grp
->nbits
+ w
- 1 ) / w
;
1409 * Prepare precomputed points: if P == G we want to
1410 * use grp->T if already initialized, or initialize it.
1412 T
= p_eq_g
? grp
->T
: NULL
;
1416 T
= mbedtls_calloc( pre_len
, sizeof( mbedtls_ecp_point
) );
1419 ret
= MBEDTLS_ERR_ECP_ALLOC_FAILED
;
1423 MBEDTLS_MPI_CHK( ecp_precompute_comb( grp
, T
, P
, w
, d
) );
1428 grp
->T_size
= pre_len
;
1433 * Make sure M is odd (M = m or M = N - m, since N is odd)
1434 * using the fact that m * P = - (N - m) * P
1436 m_is_odd
= ( mbedtls_mpi_get_bit( m
, 0 ) == 1 );
1437 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M
, m
) );
1438 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm
, &grp
->N
, m
) );
1439 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M
, &mm
, ! m_is_odd
) );
1442 * Go for comb multiplication, R = M * P
1444 ecp_comb_fixed( k
, d
, w
, &M
);
1445 MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp
, R
, T
, pre_len
, k
, d
, f_rng
, p_rng
) );
1448 * Now get m * P from M * P and normalize it
1450 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp
, R
, ! m_is_odd
) );
1451 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp
, R
) );
1455 /* There are two cases where T is not stored in grp:
1457 * - An intermediate operation failed before setting grp->T
1458 * In either case, T must be freed.
1460 if( T
!= NULL
&& T
!= grp
->T
)
1462 for( i
= 0; i
< pre_len
; i
++ )
1463 mbedtls_ecp_point_free( &T
[i
] );
1467 mbedtls_mpi_free( &M
);
1468 mbedtls_mpi_free( &mm
);
1471 mbedtls_ecp_point_free( R
);
1476 #endif /* ECP_SHORTWEIERSTRASS */
1478 #if defined(ECP_MONTGOMERY)
1480 * For Montgomery curves, we do all the internal arithmetic in projective
1481 * coordinates. Import/export of points uses only the x coordinates, which is
1482 * internaly represented as X / Z.
1484 * For scalar multiplication, we'll use a Montgomery ladder.
1488 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
1491 static int ecp_normalize_mxz( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*P
)
1495 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
1496 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1498 return mbedtls_internal_ecp_normalize_mxz( grp
, P
);
1500 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
1502 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P
->Z
, &P
->Z
, &grp
->P
) );
1503 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P
->X
, &P
->X
, &P
->Z
) ); MOD_MUL( P
->X
);
1504 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P
->Z
, 1 ) );
1511 * Randomize projective x/z coordinates:
1512 * (X, Z) -> (l X, l Z) for random l
1513 * This is sort of the reverse operation of ecp_normalize_mxz().
1515 * This countermeasure was first suggested in [2].
1518 static int ecp_randomize_mxz( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*P
,
1519 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
1526 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
1527 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1529 return mbedtls_internal_ecp_randomize_mxz( grp
, P
, f_rng
, p_rng
);
1531 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
1533 p_size
= ( grp
->pbits
+ 7 ) / 8;
1534 mbedtls_mpi_init( &l
);
1536 /* Generate l such that 1 < l < p */
1539 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l
, p_size
, f_rng
, p_rng
) );
1541 while( mbedtls_mpi_cmp_mpi( &l
, &grp
->P
) >= 0 )
1542 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l
, 1 ) );
1545 return( MBEDTLS_ERR_ECP_RANDOM_FAILED
);
1547 while( mbedtls_mpi_cmp_int( &l
, 1 ) <= 0 );
1549 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P
->X
, &P
->X
, &l
) ); MOD_MUL( P
->X
);
1550 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P
->Z
, &P
->Z
, &l
) ); MOD_MUL( P
->Z
);
1553 mbedtls_mpi_free( &l
);
1559 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
1560 * for Montgomery curves in x/z coordinates.
1562 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
1569 * and eliminating temporary variables tO, ..., t4.
1573 static int ecp_double_add_mxz( const mbedtls_ecp_group
*grp
,
1574 mbedtls_ecp_point
*R
, mbedtls_ecp_point
*S
,
1575 const mbedtls_ecp_point
*P
, const mbedtls_ecp_point
*Q
,
1576 const mbedtls_mpi
*d
)
1579 mbedtls_mpi A
, AA
, B
, BB
, E
, C
, D
, DA
, CB
;
1581 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
1582 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1584 return mbedtls_internal_ecp_double_add_mxz( grp
, R
, S
, P
, Q
, d
);
1586 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
1588 mbedtls_mpi_init( &A
); mbedtls_mpi_init( &AA
); mbedtls_mpi_init( &B
);
1589 mbedtls_mpi_init( &BB
); mbedtls_mpi_init( &E
); mbedtls_mpi_init( &C
);
1590 mbedtls_mpi_init( &D
); mbedtls_mpi_init( &DA
); mbedtls_mpi_init( &CB
);
1592 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A
, &P
->X
, &P
->Z
) ); MOD_ADD( A
);
1593 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA
, &A
, &A
) ); MOD_MUL( AA
);
1594 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B
, &P
->X
, &P
->Z
) ); MOD_SUB( B
);
1595 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB
, &B
, &B
) ); MOD_MUL( BB
);
1596 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E
, &AA
, &BB
) ); MOD_SUB( E
);
1597 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C
, &Q
->X
, &Q
->Z
) ); MOD_ADD( C
);
1598 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D
, &Q
->X
, &Q
->Z
) ); MOD_SUB( D
);
1599 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA
, &D
, &A
) ); MOD_MUL( DA
);
1600 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB
, &C
, &B
) ); MOD_MUL( CB
);
1601 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S
->X
, &DA
, &CB
) ); MOD_MUL( S
->X
);
1602 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
->X
, &S
->X
, &S
->X
) ); MOD_MUL( S
->X
);
1603 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S
->Z
, &DA
, &CB
) ); MOD_SUB( S
->Z
);
1604 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
->Z
, &S
->Z
, &S
->Z
) ); MOD_MUL( S
->Z
);
1605 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
->Z
, d
, &S
->Z
) ); MOD_MUL( S
->Z
);
1606 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R
->X
, &AA
, &BB
) ); MOD_MUL( R
->X
);
1607 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R
->Z
, &grp
->A
, &E
) ); MOD_MUL( R
->Z
);
1608 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R
->Z
, &BB
, &R
->Z
) ); MOD_ADD( R
->Z
);
1609 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R
->Z
, &E
, &R
->Z
) ); MOD_MUL( R
->Z
);
1612 mbedtls_mpi_free( &A
); mbedtls_mpi_free( &AA
); mbedtls_mpi_free( &B
);
1613 mbedtls_mpi_free( &BB
); mbedtls_mpi_free( &E
); mbedtls_mpi_free( &C
);
1614 mbedtls_mpi_free( &D
); mbedtls_mpi_free( &DA
); mbedtls_mpi_free( &CB
);
1620 * Multiplication with Montgomery ladder in x/z coordinates,
1621 * for curves in Montgomery form
1623 static int ecp_mul_mxz( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1624 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1625 int (*f_rng
)(void *, unsigned char *, size_t),
1631 mbedtls_ecp_point RP
;
1634 mbedtls_ecp_point_init( &RP
); mbedtls_mpi_init( &PX
);
1636 /* Save PX and read from P before writing to R, in case P == R */
1637 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX
, &P
->X
) );
1638 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP
, P
) );
1640 /* Set R to zero in modified x/z coordinates */
1641 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R
->X
, 1 ) );
1642 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R
->Z
, 0 ) );
1643 mbedtls_mpi_free( &R
->Y
);
1645 /* RP.X might be sligtly larger than P, so reduce it */
1648 /* Randomize coordinates of the starting point */
1650 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp
, &RP
, f_rng
, p_rng
) );
1652 /* Loop invariant: R = result so far, RP = R + P */
1653 i
= mbedtls_mpi_bitlen( m
); /* one past the (zero-based) most significant bit */
1656 b
= mbedtls_mpi_get_bit( m
, i
);
1658 * if (b) R = 2R + P else R = 2R,
1660 * if (b) double_add( RP, R, RP, R )
1661 * else double_add( R, RP, R, RP )
1662 * but using safe conditional swaps to avoid leaks
1664 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->X
, &RP
.X
, b
) );
1665 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->Z
, &RP
.Z
, b
) );
1666 MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp
, R
, &RP
, R
, &RP
, &PX
) );
1667 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->X
, &RP
.X
, b
) );
1668 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->Z
, &RP
.Z
, b
) );
1671 MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp
, R
) );
1674 mbedtls_ecp_point_free( &RP
); mbedtls_mpi_free( &PX
);
1679 #endif /* ECP_MONTGOMERY */
1682 * Multiplication R = m * P
1684 int mbedtls_ecp_mul( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1685 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1686 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
1688 int ret
= MBEDTLS_ERR_ECP_BAD_INPUT_DATA
;
1689 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1690 char is_grp_capable
= 0;
1693 /* Common sanity checks */
1694 if( mbedtls_mpi_cmp_int( &P
->Z
, 1 ) != 0 )
1695 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1697 if( ( ret
= mbedtls_ecp_check_privkey( grp
, m
) ) != 0 ||
1698 ( ret
= mbedtls_ecp_check_pubkey( grp
, P
) ) != 0 )
1701 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1702 if ( is_grp_capable
= mbedtls_internal_ecp_grp_capable( grp
) )
1704 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp
) );
1707 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1708 #if defined(ECP_MONTGOMERY)
1709 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1710 ret
= ecp_mul_mxz( grp
, R
, m
, P
, f_rng
, p_rng
);
1713 #if defined(ECP_SHORTWEIERSTRASS)
1714 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1715 ret
= ecp_mul_comb( grp
, R
, m
, P
, f_rng
, p_rng
);
1718 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1721 if ( is_grp_capable
)
1723 mbedtls_internal_ecp_free( grp
);
1726 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1730 #if defined(ECP_SHORTWEIERSTRASS)
1732 * Check that an affine point is valid as a public key,
1733 * short weierstrass curves (SEC1 3.2.3.1)
1735 static int ecp_check_pubkey_sw( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
)
1738 mbedtls_mpi YY
, RHS
;
1740 /* pt coordinates must be normalized for our checks */
1741 if( mbedtls_mpi_cmp_int( &pt
->X
, 0 ) < 0 ||
1742 mbedtls_mpi_cmp_int( &pt
->Y
, 0 ) < 0 ||
1743 mbedtls_mpi_cmp_mpi( &pt
->X
, &grp
->P
) >= 0 ||
1744 mbedtls_mpi_cmp_mpi( &pt
->Y
, &grp
->P
) >= 0 )
1745 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1747 mbedtls_mpi_init( &YY
); mbedtls_mpi_init( &RHS
);
1751 * RHS = X (X^2 + A) + B = X^3 + A X + B
1753 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY
, &pt
->Y
, &pt
->Y
) ); MOD_MUL( YY
);
1754 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS
, &pt
->X
, &pt
->X
) ); MOD_MUL( RHS
);
1756 /* Special case for A = -3 */
1757 if( grp
->A
.p
== NULL
)
1759 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS
, &RHS
, 3 ) ); MOD_SUB( RHS
);
1763 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS
, &RHS
, &grp
->A
) ); MOD_ADD( RHS
);
1766 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS
, &RHS
, &pt
->X
) ); MOD_MUL( RHS
);
1767 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS
, &RHS
, &grp
->B
) ); MOD_ADD( RHS
);
1769 if( mbedtls_mpi_cmp_mpi( &YY
, &RHS
) != 0 )
1770 ret
= MBEDTLS_ERR_ECP_INVALID_KEY
;
1774 mbedtls_mpi_free( &YY
); mbedtls_mpi_free( &RHS
);
1778 #endif /* ECP_SHORTWEIERSTRASS */
1781 * R = m * P with shortcuts for m == 1 and m == -1
1782 * NOT constant-time - ONLY for short Weierstrass!
1784 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group
*grp
,
1785 mbedtls_ecp_point
*R
,
1786 const mbedtls_mpi
*m
,
1787 const mbedtls_ecp_point
*P
)
1791 if( mbedtls_mpi_cmp_int( m
, 1 ) == 0 )
1793 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R
, P
) );
1795 else if( mbedtls_mpi_cmp_int( m
, -1 ) == 0 )
1797 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R
, P
) );
1798 if( mbedtls_mpi_cmp_int( &R
->Y
, 0 ) != 0 )
1799 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R
->Y
, &grp
->P
, &R
->Y
) );
1803 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp
, R
, m
, P
, NULL
, NULL
) );
1811 * Linear combination
1814 int mbedtls_ecp_muladd( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1815 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1816 const mbedtls_mpi
*n
, const mbedtls_ecp_point
*Q
)
1819 mbedtls_ecp_point mP
;
1820 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1821 char is_grp_capable
= 0;
1824 if( ecp_get_type( grp
) != ECP_TYPE_SHORT_WEIERSTRASS
)
1825 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE
);
1827 mbedtls_ecp_point_init( &mP
);
1829 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp
, &mP
, m
, P
) );
1830 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp
, R
, n
, Q
) );
1832 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1833 if ( is_grp_capable
= mbedtls_internal_ecp_grp_capable( grp
) )
1835 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp
) );
1838 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1839 MBEDTLS_MPI_CHK( ecp_add_mixed( grp
, R
, &mP
, R
) );
1840 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp
, R
) );
1844 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1845 if ( is_grp_capable
)
1847 mbedtls_internal_ecp_free( grp
);
1850 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1851 mbedtls_ecp_point_free( &mP
);
1857 #if defined(ECP_MONTGOMERY)
1859 * Check validity of a public key for Montgomery curves with x-only schemes
1861 static int ecp_check_pubkey_mx( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
)
1863 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
1864 /* Allow any public value, if it's too big then we'll just reduce it mod p
1865 * (RFC 7748 sec. 5 para. 3). */
1866 if( mbedtls_mpi_size( &pt
->X
) > ( grp
->nbits
+ 7 ) / 8 )
1867 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1871 #endif /* ECP_MONTGOMERY */
1874 * Check that a point is valid as a public key
1876 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
)
1878 /* Must use affine coordinates */
1879 if( mbedtls_mpi_cmp_int( &pt
->Z
, 1 ) != 0 )
1880 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1882 #if defined(ECP_MONTGOMERY)
1883 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1884 return( ecp_check_pubkey_mx( grp
, pt
) );
1886 #if defined(ECP_SHORTWEIERSTRASS)
1887 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1888 return( ecp_check_pubkey_sw( grp
, pt
) );
1890 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1894 * Check that an mbedtls_mpi is valid as a private key
1896 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group
*grp
, const mbedtls_mpi
*d
)
1898 #if defined(ECP_MONTGOMERY)
1899 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1901 /* see RFC 7748 sec. 5 para. 5 */
1902 if( mbedtls_mpi_get_bit( d
, 0 ) != 0 ||
1903 mbedtls_mpi_get_bit( d
, 1 ) != 0 ||
1904 mbedtls_mpi_bitlen( d
) - 1 != grp
->nbits
) /* mbedtls_mpi_bitlen is one-based! */
1905 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1907 /* see [Curve25519] page 5 */
1908 if( grp
->nbits
== 254 && mbedtls_mpi_get_bit( d
, 2 ) != 0 )
1909 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1913 #endif /* ECP_MONTGOMERY */
1914 #if defined(ECP_SHORTWEIERSTRASS)
1915 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1918 if( mbedtls_mpi_cmp_int( d
, 1 ) < 0 ||
1919 mbedtls_mpi_cmp_mpi( d
, &grp
->N
) >= 0 )
1920 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1924 #endif /* ECP_SHORTWEIERSTRASS */
1926 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1930 * Generate a keypair with configurable base point
1932 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group
*grp
,
1933 const mbedtls_ecp_point
*G
,
1934 mbedtls_mpi
*d
, mbedtls_ecp_point
*Q
,
1935 int (*f_rng
)(void *, unsigned char *, size_t),
1939 size_t n_size
= ( grp
->nbits
+ 7 ) / 8;
1941 #if defined(ECP_MONTGOMERY)
1942 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1948 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d
, n_size
, f_rng
, p_rng
) );
1949 } while( mbedtls_mpi_bitlen( d
) == 0);
1951 /* Make sure the most significant bit is nbits */
1952 b
= mbedtls_mpi_bitlen( d
) - 1; /* mbedtls_mpi_bitlen is one-based */
1953 if( b
> grp
->nbits
)
1954 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d
, b
- grp
->nbits
) );
1956 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, grp
->nbits
, 1 ) );
1958 /* Make sure the last two bits are unset for Curve448, three bits for
1960 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, 0, 0 ) );
1961 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, 1, 0 ) );
1962 if( grp
->nbits
== 254 )
1964 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, 2, 0 ) );
1968 #endif /* ECP_MONTGOMERY */
1969 #if defined(ECP_SHORTWEIERSTRASS)
1970 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1972 /* SEC1 3.2.1: Generate d such that 1 <= n < N */
1976 * Match the procedure given in RFC 6979 (deterministic ECDSA):
1977 * - use the same byte ordering;
1978 * - keep the leftmost nbits bits of the generated octet string;
1979 * - try until result is in the desired range.
1980 * This also avoids any biais, which is especially important for ECDSA.
1984 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d
, n_size
, f_rng
, p_rng
) );
1985 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d
, 8 * n_size
- grp
->nbits
) );
1988 * Each try has at worst a probability 1/2 of failing (the msb has
1989 * a probability 1/2 of being 0, and then the result will be < N),
1990 * so after 30 tries failure probability is a most 2**(-30).
1992 * For most curves, 1 try is enough with overwhelming probability,
1993 * since N starts with a lot of 1s in binary, but some curves
1994 * such as secp224k1 are actually very close to the worst case.
1997 return( MBEDTLS_ERR_ECP_RANDOM_FAILED
);
1999 while( mbedtls_mpi_cmp_int( d
, 1 ) < 0 ||
2000 mbedtls_mpi_cmp_mpi( d
, &grp
->N
) >= 0 );
2003 #endif /* ECP_SHORTWEIERSTRASS */
2004 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
2010 return( mbedtls_ecp_mul( grp
, Q
, d
, G
, f_rng
, p_rng
) );
2014 * Generate key pair, wrapper for conventional base point
2016 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group
*grp
,
2017 mbedtls_mpi
*d
, mbedtls_ecp_point
*Q
,
2018 int (*f_rng
)(void *, unsigned char *, size_t),
2021 return( mbedtls_ecp_gen_keypair_base( grp
, &grp
->G
, d
, Q
, f_rng
, p_rng
) );
2025 * Generate a keypair, prettier wrapper
2027 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id
, mbedtls_ecp_keypair
*key
,
2028 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
2032 if( ( ret
= mbedtls_ecp_group_load( &key
->grp
, grp_id
) ) != 0 )
2035 return( mbedtls_ecp_gen_keypair( &key
->grp
, &key
->d
, &key
->Q
, f_rng
, p_rng
) );
2039 * Check a public-private key pair
2041 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair
*pub
, const mbedtls_ecp_keypair
*prv
)
2044 mbedtls_ecp_point Q
;
2045 mbedtls_ecp_group grp
;
2047 if( pub
->grp
.id
== MBEDTLS_ECP_DP_NONE
||
2048 pub
->grp
.id
!= prv
->grp
.id
||
2049 mbedtls_mpi_cmp_mpi( &pub
->Q
.X
, &prv
->Q
.X
) ||
2050 mbedtls_mpi_cmp_mpi( &pub
->Q
.Y
, &prv
->Q
.Y
) ||
2051 mbedtls_mpi_cmp_mpi( &pub
->Q
.Z
, &prv
->Q
.Z
) )
2053 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
2056 mbedtls_ecp_point_init( &Q
);
2057 mbedtls_ecp_group_init( &grp
);
2059 /* mbedtls_ecp_mul() needs a non-const group... */
2060 mbedtls_ecp_group_copy( &grp
, &prv
->grp
);
2062 /* Also checks d is valid */
2063 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &Q
, &prv
->d
, &prv
->grp
.G
, NULL
, NULL
) );
2065 if( mbedtls_mpi_cmp_mpi( &Q
.X
, &prv
->Q
.X
) ||
2066 mbedtls_mpi_cmp_mpi( &Q
.Y
, &prv
->Q
.Y
) ||
2067 mbedtls_mpi_cmp_mpi( &Q
.Z
, &prv
->Q
.Z
) )
2069 ret
= MBEDTLS_ERR_ECP_BAD_INPUT_DATA
;
2074 mbedtls_ecp_point_free( &Q
);
2075 mbedtls_ecp_group_free( &grp
);
2080 #if defined(MBEDTLS_SELF_TEST)
2085 int mbedtls_ecp_self_test( int verbose
)
2089 mbedtls_ecp_group grp
;
2090 mbedtls_ecp_point R
, P
;
2092 unsigned long add_c_prev
, dbl_c_prev
, mul_c_prev
;
2093 /* exponents especially adapted for secp192r1 */
2094 const char *exponents
[] =
2096 "000000000000000000000000000000000000000000000001", /* one */
2097 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2098 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2099 "400000000000000000000000000000000000000000000000", /* one and zeros */
2100 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2101 "555555555555555555555555555555555555555555555555", /* 101010... */
2104 mbedtls_ecp_group_init( &grp
);
2105 mbedtls_ecp_point_init( &R
);
2106 mbedtls_ecp_point_init( &P
);
2107 mbedtls_mpi_init( &m
);
2109 /* Use secp192r1 if available, or any available curve */
2110 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2111 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp
, MBEDTLS_ECP_DP_SECP192R1
) );
2113 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp
, mbedtls_ecp_curve_list()->grp_id
) );
2117 mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
2119 /* Do a dummy multiplication first to trigger precomputation */
2120 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m
, 2 ) );
2121 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &P
, &m
, &grp
.G
, NULL
, NULL
) );
2126 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[0] ) );
2127 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &grp
.G
, NULL
, NULL
) );
2129 for( i
= 1; i
< sizeof( exponents
) / sizeof( exponents
[0] ); i
++ )
2131 add_c_prev
= add_count
;
2132 dbl_c_prev
= dbl_count
;
2133 mul_c_prev
= mul_count
;
2138 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[i
] ) );
2139 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &grp
.G
, NULL
, NULL
) );
2141 if( add_count
!= add_c_prev
||
2142 dbl_count
!= dbl_c_prev
||
2143 mul_count
!= mul_c_prev
)
2146 mbedtls_printf( "failed (%u)\n", (unsigned int) i
);
2154 mbedtls_printf( "passed\n" );
2157 mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
2158 /* We computed P = 2G last time, use it */
2163 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[0] ) );
2164 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &P
, NULL
, NULL
) );
2166 for( i
= 1; i
< sizeof( exponents
) / sizeof( exponents
[0] ); i
++ )
2168 add_c_prev
= add_count
;
2169 dbl_c_prev
= dbl_count
;
2170 mul_c_prev
= mul_count
;
2175 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[i
] ) );
2176 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &P
, NULL
, NULL
) );
2178 if( add_count
!= add_c_prev
||
2179 dbl_count
!= dbl_c_prev
||
2180 mul_count
!= mul_c_prev
)
2183 mbedtls_printf( "failed (%u)\n", (unsigned int) i
);
2191 mbedtls_printf( "passed\n" );
2195 if( ret
< 0 && verbose
!= 0 )
2196 mbedtls_printf( "Unexpected error, return code = %08X\n", ret
);
2198 mbedtls_ecp_group_free( &grp
);
2199 mbedtls_ecp_point_free( &R
);
2200 mbedtls_ecp_point_free( &P
);
2201 mbedtls_mpi_free( &m
);
2204 mbedtls_printf( "\n" );
2209 #endif /* MBEDTLS_SELF_TEST */
2211 #endif /* !MBEDTLS_ECP_ALT */
2213 #endif /* MBEDTLS_ECP_C */