1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
36 #include "iso14443a.h"
39 //=============================================================================
40 // A buffer where we can queue things up to be sent through the FPGA, for
41 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
42 // is the order in which they go out on the wire.
43 //=============================================================================
45 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
46 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
49 struct common_area common_area
__attribute__((section(".commonarea")));
51 void ToSendReset(void)
57 void ToSendStuffBit(int b
)
61 ToSend
[ToSendMax
] = 0;
66 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
71 if(ToSendMax
>= sizeof(ToSend
)) {
73 DbpString("ToSendStuffBit overflowed!");
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
81 void DbpString(char *str
)
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
88 void DbpIntegers(int x1
, int x2
, int x3
)
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
94 void Dbprintf(const char *fmt
, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string
[128];
100 kvsprintf(fmt
, output_string
, 10, ap
);
103 DbpString(output_string
);
106 // prints HEX & ASCII
107 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
120 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
123 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
125 Dbprintf("%*D",l
,d
," ");
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch
)
140 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
141 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
142 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
145 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
147 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
149 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
150 AT91C_BASE_ADC
->ADC_MR
=
151 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
152 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
153 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
155 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
158 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
160 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
163 int AvgAdc(int ch
) // was static - merlok
168 for(i
= 0; i
< 32; i
++) {
172 return (a
+ 15) >> 5;
175 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
177 int i
, adcval
= 0, peak
= 0;
180 * Sweeps the useful LF range of the proxmark from
181 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
182 * read the voltage in the antenna, the result left
183 * in the buffer is a graph which should clearly show
184 * the resonating frequency of your LF antenna
185 * ( hopefully around 95 if it is tuned to 125kHz!)
188 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
192 for (i
=255; i
>=19; i
--) {
194 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
196 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
197 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
198 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
200 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
201 if(LF_Results
[i
] > peak
) {
203 peak
= LF_Results
[i
];
209 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
214 void MeasureAntennaTuningHfOnly(int *vHf
)
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
218 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
219 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
221 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
227 void MeasureAntennaTuning(int mode
)
229 uint8_t LF_Results
[256] = {0};
230 int peakv
= 0, peakf
= 0;
231 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
235 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
236 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
237 MeasureAntennaTuningHfOnly(&vHf
);
238 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
240 if (mode
& FLAG_TUNE_LF
) {
241 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
243 if (mode
& FLAG_TUNE_HF
) {
244 MeasureAntennaTuningHfOnly(&vHf
);
248 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
249 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
254 void MeasureAntennaTuningHf(void)
256 int vHf
= 0; // in mV
258 DbpString("Measuring HF antenna, press button to exit");
260 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
261 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
266 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
268 Dbprintf("%d mV",vHf
);
269 if (BUTTON_PRESS()) break;
271 DbpString("cancelled");
273 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
278 void ReadMem(int addr
)
280 const uint8_t *data
= ((uint8_t *)addr
);
282 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
283 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
286 /* osimage version information is linked in */
287 extern struct version_information version_information
;
288 /* bootrom version information is pointed to from _bootphase1_version_pointer */
289 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
291 void SendVersion(void)
293 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
294 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
296 /* Try to find the bootrom version information. Expect to find a pointer at
297 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
298 * pointer, then use it.
300 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
301 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
302 strcat(VersionString
, "bootrom version information appears invalid\n");
304 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
305 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
308 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
312 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
313 if (i
< fpga_bitstream_num
- 1) {
314 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
318 // Send Chip ID and used flash memory
319 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
320 uint32_t compressed_data_section_size
= common_area
.arg1
;
321 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
324 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
325 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
326 void printUSBSpeed(void)
328 Dbprintf("USB Speed:");
329 Dbprintf(" Sending USB packets to client...");
331 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
332 uint8_t *test_data
= BigBuf_get_addr();
335 uint32_t start_time
= end_time
= GetTickCount();
336 uint32_t bytes_transferred
= 0;
339 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
340 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
341 end_time
= GetTickCount();
342 bytes_transferred
+= USB_CMD_DATA_SIZE
;
346 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
347 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
348 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
349 1000 * bytes_transferred
/ (end_time
- start_time
));
354 * Prints runtime information about the PM3.
356 void SendStatus(void)
358 BigBuf_print_status();
360 printConfig(); //LF Sampling config
363 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
364 Dbprintf(" ToSendMax........%d",ToSendMax
);
365 Dbprintf(" ToSendBit........%d",ToSendBit
);
367 cmd_send(CMD_ACK
,1,0,0,0,0);
370 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
374 void StandAloneMode()
376 DbpString("Stand-alone mode! No PC necessary.");
377 // Oooh pretty -- notify user we're in elite samy mode now
379 LED(LED_ORANGE
, 200);
381 LED(LED_ORANGE
, 200);
383 LED(LED_ORANGE
, 200);
385 LED(LED_ORANGE
, 200);
394 #ifdef WITH_ISO14443a_StandAlone
395 void StandAloneMode14a()
398 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
401 bool playing
= false, GotoRecord
= false, GotoClone
= false;
402 bool cardRead
[OPTS
] = {false};
403 uint8_t readUID
[10] = {0};
404 uint32_t uid_1st
[OPTS
]={0};
405 uint32_t uid_2nd
[OPTS
]={0};
406 uint32_t uid_tmp1
= 0;
407 uint32_t uid_tmp2
= 0;
408 iso14a_card_select_t hi14a_card
[OPTS
];
410 LED(selected
+ 1, 0);
418 if (GotoRecord
|| !cardRead
[selected
])
422 LED(selected
+ 1, 0);
426 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
427 /* need this delay to prevent catching some weird data */
429 /* Code for reading from 14a tag */
430 uint8_t uid
[10] ={0};
432 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
437 if (BUTTON_PRESS()) {
438 if (cardRead
[selected
]) {
439 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
442 else if (cardRead
[(selected
+1)%OPTS
]) {
443 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
444 selected
= (selected
+1)%OPTS
;
448 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
452 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
456 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
457 memcpy(readUID
,uid
,10*sizeof(uint8_t));
458 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
459 // Set UID byte order
460 for (int i
=0; i
<4; i
++)
462 dst
= (uint8_t *)&uid_tmp2
;
463 for (int i
=0; i
<4; i
++)
465 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
466 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
470 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
471 uid_1st
[selected
] = (uid_tmp1
)>>8;
472 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
475 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
476 uid_1st
[selected
] = uid_tmp1
;
477 uid_2nd
[selected
] = uid_tmp2
;
483 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
484 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
487 LED(LED_ORANGE
, 200);
489 LED(LED_ORANGE
, 200);
492 LED(selected
+ 1, 0);
494 // Next state is replay:
497 cardRead
[selected
] = true;
499 /* MF Classic UID clone */
504 LED(selected
+ 1, 0);
505 LED(LED_ORANGE
, 250);
509 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
511 // wait for button to be released
512 while(BUTTON_PRESS())
514 // Delay cloning until card is in place
517 Dbprintf("Starting clone. [Bank: %u]", selected
);
518 // need this delay to prevent catching some weird data
520 // Begin clone function here:
521 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
522 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
523 memcpy(c.d.asBytes, data, 16);
526 Block read is similar:
527 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
528 We need to imitate that call with blockNo 0 to set a uid.
530 The get and set commands are handled in this file:
531 // Work with "magic Chinese" card
532 case CMD_MIFARE_CSETBLOCK:
533 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
535 case CMD_MIFARE_CGETBLOCK:
536 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
539 mfCSetUID provides example logic for UID set workflow:
540 -Read block0 from card in field with MifareCGetBlock()
541 -Configure new values without replacing reserved bytes
542 memcpy(block0, uid, 4); // Copy UID bytes from byte array
544 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
545 Bytes 5-7 are reserved SAK and ATQA for mifare classic
546 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
548 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
549 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
550 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
551 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
552 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
556 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
557 memcpy(newBlock0
,oldBlock0
,16);
558 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
560 newBlock0
[0] = uid_1st
[selected
]>>24;
561 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
562 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
563 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
564 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
565 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
566 MifareCSetBlock(0, 0xFF,0, newBlock0
);
567 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
568 if (memcmp(testBlock0
,newBlock0
,16)==0)
570 DbpString("Cloned successfull!");
571 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
574 selected
= (selected
+1) % OPTS
;
577 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
582 LED(selected
+ 1, 0);
585 // Change where to record (or begin playing)
586 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
589 LED(selected
+ 1, 0);
591 // Begin transmitting
593 DbpString("Playing");
596 int button_action
= BUTTON_HELD(1000);
597 if (button_action
== 0) { // No button action, proceed with sim
598 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
599 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
600 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
601 DbpString("Mifare Classic");
602 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
604 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
605 DbpString("Mifare Ultralight");
606 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
608 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
609 DbpString("Mifare DESFire");
610 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
613 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
614 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
617 else if (button_action
== BUTTON_SINGLE_CLICK
) {
618 selected
= (selected
+ 1) % OPTS
;
619 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
623 else if (button_action
== BUTTON_HOLD
) {
624 Dbprintf("Playtime over. Begin cloning...");
631 /* We pressed a button so ignore it here with a delay */
634 LED(selected
+ 1, 0);
638 #elif WITH_LF_StandAlone
639 // samy's sniff and repeat routine
643 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
645 int high
[OPTS
], low
[OPTS
];
650 // Turn on selected LED
651 LED(selected
+ 1, 0);
658 // Was our button held down or pressed?
659 int button_pressed
= BUTTON_HELD(1000);
662 // Button was held for a second, begin recording
663 if (button_pressed
> 0 && cardRead
== 0)
666 LED(selected
+ 1, 0);
670 DbpString("Starting recording");
672 // wait for button to be released
673 while(BUTTON_PRESS())
676 /* need this delay to prevent catching some weird data */
679 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
680 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
683 LED(selected
+ 1, 0);
684 // Finished recording
686 // If we were previously playing, set playing off
687 // so next button push begins playing what we recorded
694 else if (button_pressed
> 0 && cardRead
== 1)
697 LED(selected
+ 1, 0);
701 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
703 // wait for button to be released
704 while(BUTTON_PRESS())
707 /* need this delay to prevent catching some weird data */
710 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
711 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
714 LED(selected
+ 1, 0);
715 // Finished recording
717 // If we were previously playing, set playing off
718 // so next button push begins playing what we recorded
725 // Change where to record (or begin playing)
726 else if (button_pressed
)
728 // Next option if we were previously playing
730 selected
= (selected
+ 1) % OPTS
;
734 LED(selected
+ 1, 0);
736 // Begin transmitting
740 DbpString("Playing");
741 // wait for button to be released
742 while(BUTTON_PRESS())
744 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
745 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
746 DbpString("Done playing");
747 if (BUTTON_HELD(1000) > 0)
749 DbpString("Exiting");
754 /* We pressed a button so ignore it here with a delay */
757 // when done, we're done playing, move to next option
758 selected
= (selected
+ 1) % OPTS
;
761 LED(selected
+ 1, 0);
764 while(BUTTON_PRESS())
773 Listen and detect an external reader. Determine the best location
777 Inside the ListenReaderField() function, there is two mode.
778 By default, when you call the function, you will enter mode 1.
779 If you press the PM3 button one time, you will enter mode 2.
780 If you press the PM3 button a second time, you will exit the function.
782 DESCRIPTION OF MODE 1:
783 This mode just listens for an external reader field and lights up green
784 for HF and/or red for LF. This is the original mode of the detectreader
787 DESCRIPTION OF MODE 2:
788 This mode will visually represent, using the LEDs, the actual strength of the
789 current compared to the maximum current detected. Basically, once you know
790 what kind of external reader is present, it will help you spot the best location to place
791 your antenna. You will probably not get some good results if there is a LF and a HF reader
792 at the same place! :-)
796 static const char LIGHT_SCHEME
[] = {
797 0x0, /* ---- | No field detected */
798 0x1, /* X--- | 14% of maximum current detected */
799 0x2, /* -X-- | 29% of maximum current detected */
800 0x4, /* --X- | 43% of maximum current detected */
801 0x8, /* ---X | 57% of maximum current detected */
802 0xC, /* --XX | 71% of maximum current detected */
803 0xE, /* -XXX | 86% of maximum current detected */
804 0xF, /* XXXX | 100% of maximum current detected */
806 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
808 void ListenReaderField(int limit
)
810 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
811 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
812 int mode
=1, display_val
, display_max
, i
;
816 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
819 // switch off FPGA - we don't want to measure our own signal
820 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
821 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
825 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
827 if(limit
!= HF_ONLY
) {
828 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
832 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
834 if (limit
!= LF_ONLY
) {
835 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
840 if (BUTTON_PRESS()) {
845 DbpString("Signal Strength Mode");
849 DbpString("Stopped");
857 if (limit
!= HF_ONLY
) {
859 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
865 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
866 // see if there's a significant change
867 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
868 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
875 if (limit
!= LF_ONLY
) {
877 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
883 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
884 // see if there's a significant change
885 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
886 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
894 if (limit
== LF_ONLY
) {
896 display_max
= lf_max
;
897 } else if (limit
== HF_ONLY
) {
899 display_max
= hf_max
;
900 } else { /* Pick one at random */
901 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
903 display_max
= hf_max
;
906 display_max
= lf_max
;
909 for (i
=0; i
<LIGHT_LEN
; i
++) {
910 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
911 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
912 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
913 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
914 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
922 void UsbPacketReceived(uint8_t *packet
, int len
)
924 UsbCommand
*c
= (UsbCommand
*)packet
;
926 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
930 case CMD_SET_LF_SAMPLING_CONFIG
:
931 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
933 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
934 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
936 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
937 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
939 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
940 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
942 case CMD_HID_DEMOD_FSK
:
943 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
945 case CMD_HID_SIM_TAG
:
946 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
948 case CMD_FSK_SIM_TAG
:
949 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
951 case CMD_ASK_SIM_TAG
:
952 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
954 case CMD_PSK_SIM_TAG
:
955 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
957 case CMD_HID_CLONE_TAG
:
958 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
960 case CMD_IO_DEMOD_FSK
:
961 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
963 case CMD_IO_CLONE_TAG
:
964 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
966 case CMD_EM410X_DEMOD
:
967 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
969 case CMD_EM410X_WRITE_TAG
:
970 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
972 case CMD_READ_TI_TYPE
:
975 case CMD_WRITE_TI_TYPE
:
976 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
978 case CMD_SIMULATE_TAG_125K
:
980 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
983 case CMD_LF_SIMULATE_BIDIR
:
984 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
986 case CMD_INDALA_CLONE_TAG
:
987 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
989 case CMD_INDALA_CLONE_TAG_L
:
990 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
992 case CMD_T55XX_READ_BLOCK
:
993 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
995 case CMD_T55XX_WRITE_BLOCK
:
996 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
998 case CMD_T55XX_WAKEUP
:
999 T55xxWakeUp(c
->arg
[0]);
1001 case CMD_T55XX_RESET_READ
:
1004 case CMD_PCF7931_READ
:
1007 case CMD_PCF7931_WRITE
:
1008 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1010 case CMD_EM4X_READ_WORD
:
1011 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1013 case CMD_EM4X_WRITE_WORD
:
1014 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1016 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1017 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1019 case CMD_VIKING_CLONE_TAG
:
1020 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1028 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1029 SnoopHitag(c
->arg
[0]);
1031 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1032 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1034 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1035 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1037 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1038 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1040 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1041 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1043 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1044 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1046 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1047 if ((hitag_function
)c
->arg
[0] < 10) {
1048 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1050 else if ((hitag_function
)c
->arg
[0] >= 10) {
1051 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1056 #ifdef WITH_ISO15693
1057 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1058 AcquireRawAdcSamplesIso15693();
1060 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1061 RecordRawAdcSamplesIso15693();
1064 case CMD_ISO_15693_COMMAND
:
1065 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1068 case CMD_ISO_15693_FIND_AFI
:
1069 BruteforceIso15693Afi(c
->arg
[0]);
1072 case CMD_ISO_15693_DEBUG
:
1073 SetDebugIso15693(c
->arg
[0]);
1076 case CMD_READER_ISO_15693
:
1077 ReaderIso15693(c
->arg
[0]);
1079 case CMD_SIMTAG_ISO_15693
:
1080 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1085 case CMD_SIMULATE_TAG_LEGIC_RF
:
1086 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1089 case CMD_WRITER_LEGIC_RF
:
1090 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1093 case CMD_READER_LEGIC_RF
:
1094 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1098 #ifdef WITH_ISO14443b
1099 case CMD_READ_SRI512_TAG
:
1100 ReadSTMemoryIso14443b(0x0F);
1102 case CMD_READ_SRIX4K_TAG
:
1103 ReadSTMemoryIso14443b(0x7F);
1105 case CMD_SNOOP_ISO_14443B
:
1108 case CMD_SIMULATE_TAG_ISO_14443B
:
1109 SimulateIso14443bTag();
1111 case CMD_ISO_14443B_COMMAND
:
1112 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1116 #ifdef WITH_ISO14443a
1117 case CMD_SNOOP_ISO_14443a
:
1118 SnoopIso14443a(c
->arg
[0]);
1120 case CMD_READER_ISO_14443a
:
1123 case CMD_SIMULATE_TAG_ISO_14443a
:
1124 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1127 case CMD_EPA_PACE_COLLECT_NONCE
:
1128 EPA_PACE_Collect_Nonce(c
);
1130 case CMD_EPA_PACE_REPLAY
:
1134 case CMD_READER_MIFARE
:
1135 ReaderMifare(c
->arg
[0]);
1137 case CMD_MIFARE_READBL
:
1138 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 case CMD_MIFAREU_READBL
:
1141 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1143 case CMD_MIFAREUC_AUTH
:
1144 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1146 case CMD_MIFAREU_READCARD
:
1147 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1149 case CMD_MIFAREUC_SETPWD
:
1150 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1152 case CMD_MIFARE_READSC
:
1153 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1155 case CMD_MIFARE_WRITEBL
:
1156 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1158 //case CMD_MIFAREU_WRITEBL_COMPAT:
1159 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1161 case CMD_MIFAREU_WRITEBL
:
1162 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1164 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1165 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1167 case CMD_MIFARE_NESTED
:
1168 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1170 case CMD_MIFARE_CHKKEYS
:
1171 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1173 case CMD_SIMULATE_MIFARE_CARD
:
1174 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1178 case CMD_MIFARE_SET_DBGMODE
:
1179 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1181 case CMD_MIFARE_EML_MEMCLR
:
1182 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1184 case CMD_MIFARE_EML_MEMSET
:
1185 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1187 case CMD_MIFARE_EML_MEMGET
:
1188 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1190 case CMD_MIFARE_EML_CARDLOAD
:
1191 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1194 // Work with "magic Chinese" card
1195 case CMD_MIFARE_CWIPE
:
1196 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_MIFARE_CSETBLOCK
:
1199 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1201 case CMD_MIFARE_CGETBLOCK
:
1202 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1204 case CMD_MIFARE_CIDENT
:
1209 case CMD_MIFARE_SNIFFER
:
1210 SniffMifare(c
->arg
[0]);
1216 // Makes use of ISO14443a FPGA Firmware
1217 case CMD_SNOOP_ICLASS
:
1220 case CMD_SIMULATE_TAG_ICLASS
:
1221 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1223 case CMD_READER_ICLASS
:
1224 ReaderIClass(c
->arg
[0]);
1226 case CMD_READER_ICLASS_REPLAY
:
1227 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1229 case CMD_ICLASS_EML_MEMSET
:
1230 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1232 case CMD_ICLASS_WRITEBLOCK
:
1233 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1235 case CMD_ICLASS_READCHECK
: // auth step 1
1236 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1238 case CMD_ICLASS_READBLOCK
:
1239 iClass_ReadBlk(c
->arg
[0]);
1241 case CMD_ICLASS_AUTHENTICATION
: //check
1242 iClass_Authentication(c
->d
.asBytes
);
1244 case CMD_ICLASS_DUMP
:
1245 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1247 case CMD_ICLASS_CLONE
:
1248 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1252 case CMD_HF_SNIFFER
:
1253 HfSnoop(c
->arg
[0], c
->arg
[1]);
1257 case CMD_BUFF_CLEAR
:
1261 case CMD_MEASURE_ANTENNA_TUNING
:
1262 MeasureAntennaTuning(c
->arg
[0]);
1265 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1266 MeasureAntennaTuningHf();
1269 case CMD_LISTEN_READER_FIELD
:
1270 ListenReaderField(c
->arg
[0]);
1273 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1274 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1276 LED_D_OFF(); // LED D indicates field ON or OFF
1279 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1282 uint8_t *BigBuf
= BigBuf_get_addr();
1283 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1284 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1285 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1287 // Trigger a finish downloading signal with an ACK frame
1288 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1292 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1293 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1294 // to be able to use this one for uploading data to device
1295 // arg1 = 0 upload for LF usage
1296 // 1 upload for HF usage
1298 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1300 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1302 uint8_t *b
= BigBuf_get_addr();
1303 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1304 cmd_send(CMD_ACK
,0,0,0,0,0);
1311 case CMD_SET_LF_DIVISOR
:
1312 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1313 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1316 case CMD_SET_ADC_MUX
:
1318 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1319 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1320 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1321 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1332 cmd_send(CMD_ACK
,0,0,0,0,0);
1342 case CMD_SETUP_WRITE
:
1343 case CMD_FINISH_WRITE
:
1344 case CMD_HARDWARE_RESET
:
1348 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1350 // We're going to reset, and the bootrom will take control.
1354 case CMD_START_FLASH
:
1355 if(common_area
.flags
.bootrom_present
) {
1356 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1359 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1363 case CMD_DEVICE_INFO
: {
1364 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1365 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1366 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1370 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1375 void __attribute__((noreturn
)) AppMain(void)
1379 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1380 /* Initialize common area */
1381 memset(&common_area
, 0, sizeof(common_area
));
1382 common_area
.magic
= COMMON_AREA_MAGIC
;
1383 common_area
.version
= 1;
1385 common_area
.flags
.osimage_present
= 1;
1395 // The FPGA gets its clock from us from PCK0 output, so set that up.
1396 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1397 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1398 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1399 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1400 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1401 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1402 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1405 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1407 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1409 // Load the FPGA image, which we have stored in our flash.
1410 // (the HF version by default)
1411 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1419 byte_t rx
[sizeof(UsbCommand
)];
1424 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1426 UsbPacketReceived(rx
,rx_len
);
1431 #ifdef WITH_LF_StandAlone
1432 #ifndef WITH_ISO14443a_StandAlone
1433 if (BUTTON_HELD(1000) > 0)
1437 #ifdef WITH_ISO14443a
1438 #ifdef WITH_ISO14443a_StandAlone
1439 if (BUTTON_HELD(1000) > 0)
1440 StandAloneMode14a();