1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
18 #include "mifareutil.h"
20 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
21 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
22 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
23 // T0 = TIMER_CLOCK1 / 125000 = 192
26 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
27 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
29 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
31 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
32 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
33 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
34 else if (divisor
== 0)
35 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
37 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
39 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
41 // Connect the A/D to the peak-detected low-frequency path.
42 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
44 // Give it a bit of time for the resonant antenna to settle.
47 // Now set up the SSC to get the ADC samples that are now streaming at us.
51 void AcquireRawAdcSamples125k(int divisor
)
53 LFSetupFPGAForADC(divisor
, true);
57 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
59 LFSetupFPGAForADC(divisor
, false);
60 DoAcquisition125k_threshold(trigger_threshold
);
63 // split into two routines so we can avoid timing issues after sending commands //
64 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
)
66 uint8_t *dest
= get_bigbufptr_recvrespbuf();
68 memset(dest
, 0x00, FREE_BUFFER_SIZE
);
71 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
72 AT91C_BASE_SSC
->SSC_THR
= 0x43;
75 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
76 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
78 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
81 trigger_threshold
= -1;
82 if (++i
>= FREE_BUFFER_SIZE
) break;
86 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
87 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
90 void DoAcquisition125k_threshold(int trigger_threshold
) {
91 DoAcquisition125k_internal(trigger_threshold
, true);
93 void DoAcquisition125k() {
94 DoAcquisition125k_internal(-1, true);
97 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
99 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
101 /* Make sure the tag is reset */
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
105 int divisor
= 95; // 125 KHz
106 // see if 'h' was specified
107 if (command
[strlen((char *) command
) - 1] == 'h')
108 divisor
= 88; // 134.8 KHz
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
111 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
112 // Give it a bit of time for the resonant antenna to settle.
115 // Now set up the SSC to get the ADC samples that are now streaming at us.
118 // now modulate the reader field
119 while(*command
!= '\0' && *command
!= ' ') {
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
122 SpinDelayUs(delay_off
);
123 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
127 if(*(command
++) == '0')
128 SpinDelayUs(period_0
);
130 SpinDelayUs(period_1
);
132 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
134 SpinDelayUs(delay_off
);
135 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
136 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
139 DoAcquisition125k(-1);
142 /* blank r/w tag data stream
143 ...0000000000000000 01111111
144 1010101010101010101010101010101010101010101010101010101010101010
147 101010101010101[0]000...
149 [5555fe852c5555555555555555fe0000]
153 // some hardcoded initial params
154 // when we read a TI tag we sample the zerocross line at 2Mhz
155 // TI tags modulate a 1 as 16 cycles of 123.2Khz
156 // TI tags modulate a 0 as 16 cycles of 134.2Khz
157 #define FSAMPLE 2000000
158 #define FREQLO 123200
159 #define FREQHI 134200
161 signed char *dest
= (signed char *)BigBuf
;
162 int n
= sizeof(BigBuf
);
163 // int *dest = GraphBuffer;
164 // int n = GraphTraceLen;
166 // 128 bit shift register [shift3:shift2:shift1:shift0]
167 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
169 int i
, cycles
=0, samples
=0;
170 // how many sample points fit in 16 cycles of each frequency
171 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
172 // when to tell if we're close enough to one freq or another
173 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
175 // TI tags charge at 134.2Khz
176 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
177 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
179 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
180 // connects to SSP_DIN and the SSP_DOUT logic level controls
181 // whether we're modulating the antenna (high)
182 // or listening to the antenna (low)
183 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
185 // get TI tag data into the buffer
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
190 for (i
=0; i
<n
-1; i
++) {
191 // count cycles by looking for lo to hi zero crossings
192 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
194 // after 16 cycles, measure the frequency
197 samples
=i
-samples
; // number of samples in these 16 cycles
199 // TI bits are coming to us lsb first so shift them
200 // right through our 128 bit right shift register
201 shift0
= (shift0
>>1) | (shift1
<< 31);
202 shift1
= (shift1
>>1) | (shift2
<< 31);
203 shift2
= (shift2
>>1) | (shift3
<< 31);
206 // check if the cycles fall close to the number
207 // expected for either the low or high frequency
208 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
209 // low frequency represents a 1
211 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
212 // high frequency represents a 0
214 // probably detected a gay waveform or noise
215 // use this as gaydar or discard shift register and start again
216 shift3
= shift2
= shift1
= shift0
= 0;
220 // for each bit we receive, test if we've detected a valid tag
222 // if we see 17 zeroes followed by 6 ones, we might have a tag
223 // remember the bits are backwards
224 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
225 // if start and end bytes match, we have a tag so break out of the loop
226 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
227 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
235 // if flag is set we have a tag
237 DbpString("Info: No valid tag detected.");
239 // put 64 bit data into shift1 and shift0
240 shift0
= (shift0
>>24) | (shift1
<< 8);
241 shift1
= (shift1
>>24) | (shift2
<< 8);
243 // align 16 bit crc into lower half of shift2
244 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
246 // if r/w tag, check ident match
247 if ( shift3
&(1<<15) ) {
248 DbpString("Info: TI tag is rewriteable");
249 // only 15 bits compare, last bit of ident is not valid
250 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
251 DbpString("Error: Ident mismatch!");
253 DbpString("Info: TI tag ident is valid");
256 DbpString("Info: TI tag is readonly");
259 // WARNING the order of the bytes in which we calc crc below needs checking
260 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
261 // bytes in reverse or something
265 crc
= update_crc16(crc
, (shift0
)&0xff);
266 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
268 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
269 crc
= update_crc16(crc
, (shift1
)&0xff);
270 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
272 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
274 Dbprintf("Info: Tag data: %x%08x, crc=%x",
275 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
276 if (crc
!= (shift2
&0xffff)) {
277 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
279 DbpString("Info: CRC is good");
284 void WriteTIbyte(uint8_t b
)
288 // modulate 8 bits out to the antenna
292 // stop modulating antenna
299 // stop modulating antenna
309 void AcquireTiType(void)
312 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
313 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
314 #define TIBUFLEN 1250
317 memset(BigBuf
,0,sizeof(BigBuf
));
319 // Set up the synchronous serial port
320 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
321 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
323 // steal this pin from the SSP and use it to control the modulation
324 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
325 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
327 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
328 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
330 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
331 // 48/2 = 24 MHz clock must be divided by 12
332 AT91C_BASE_SSC
->SSC_CMR
= 12;
334 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
335 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
336 AT91C_BASE_SSC
->SSC_TCMR
= 0;
337 AT91C_BASE_SSC
->SSC_TFMR
= 0;
344 // Charge TI tag for 50ms.
347 // stop modulating antenna and listen
354 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
355 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
356 i
++; if(i
>= TIBUFLEN
) break;
361 // return stolen pin to SSP
362 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
363 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
365 char *dest
= (char *)BigBuf
;
368 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
369 for (j
=0; j
<32; j
++) {
370 if(BigBuf
[i
] & (1 << j
)) {
379 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
380 // if crc provided, it will be written with the data verbatim (even if bogus)
381 // if not provided a valid crc will be computed from the data and written.
382 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
384 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
386 crc
= update_crc16(crc
, (idlo
)&0xff);
387 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
389 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
390 crc
= update_crc16(crc
, (idhi
)&0xff);
391 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
393 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
395 Dbprintf("Writing to tag: %x%08x, crc=%x",
396 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
398 // TI tags charge at 134.2Khz
399 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
400 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
401 // connects to SSP_DIN and the SSP_DOUT logic level controls
402 // whether we're modulating the antenna (high)
403 // or listening to the antenna (low)
404 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
407 // steal this pin from the SSP and use it to control the modulation
408 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
409 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
411 // writing algorithm:
412 // a high bit consists of a field off for 1ms and field on for 1ms
413 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
414 // initiate a charge time of 50ms (field on) then immediately start writing bits
415 // start by writing 0xBB (keyword) and 0xEB (password)
416 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
417 // finally end with 0x0300 (write frame)
418 // all data is sent lsb firts
419 // finish with 15ms programming time
423 SpinDelay(50); // charge time
425 WriteTIbyte(0xbb); // keyword
426 WriteTIbyte(0xeb); // password
427 WriteTIbyte( (idlo
)&0xff );
428 WriteTIbyte( (idlo
>>8 )&0xff );
429 WriteTIbyte( (idlo
>>16)&0xff );
430 WriteTIbyte( (idlo
>>24)&0xff );
431 WriteTIbyte( (idhi
)&0xff );
432 WriteTIbyte( (idhi
>>8 )&0xff );
433 WriteTIbyte( (idhi
>>16)&0xff );
434 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
435 WriteTIbyte( (crc
)&0xff ); // crc lo
436 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
437 WriteTIbyte(0x00); // write frame lo
438 WriteTIbyte(0x03); // write frame hi
440 SpinDelay(50); // programming time
444 // get TI tag data into the buffer
447 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
448 DbpString("Now use tiread to check");
453 // PIO_CODR = Clear Output Data Register
454 // PIO_SODR = Set Output Data Register
455 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
456 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
457 void SimulateTagLowFrequency( uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
465 uint8_t *buf
= (uint8_t *)BigBuf
;
467 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
468 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_READER_FIELD
);
469 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
470 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
473 // Configure output pin that is connected to the FPGA (for modulating)
474 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
475 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
479 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
480 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC0
);
482 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
483 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
484 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
486 // Disable timer during configuration
487 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
489 // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
490 // external trigger rising edge, load RA on rising edge of TIOA.
491 AT91C_BASE_TC1
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV1_CLOCK
| AT91C_TC_ETRGEDG_RISING
| AT91C_TC_ABETRG
| AT91C_TC_LDRA_RISING
;
493 // Enable and reset counter
494 //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
495 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
497 while(!BUTTON_PRESS()) {
500 // Receive frame, watch for at most T0*EOF periods
501 while (AT91C_BASE_TC1
->TC_CV
< T0
* 55) {
503 // Check if rising edge in modulation is detected
504 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
505 // Retrieve the new timing values
506 //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
507 //Dbprintf("Timing value - %d %d", ra, overflow);
510 // Reset timer every frame, we have to capture the last edge for timing
511 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
519 // Disable timer 1 with external trigger to avoid triggers during our own modulation
520 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
522 // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
523 // not that since the clock counts since the rising edge, but T_Wait1 is
524 // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
525 // periods. The gap time T_Low varies (4..10). All timer values are in
527 while(AT91C_BASE_TC0
->TC_CV
< T0
* 16 );
529 // datat kommer in som 1 bit för varje position i arrayn
530 for(i
= 0; i
< period
; ++i
) {
532 // Reset clock for the next bit
533 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_SWTRG
;
540 while(AT91C_BASE_TC0
->TC_CV
< T0
* 1 );
545 // Enable and reset external trigger in timer for capturing future frames
546 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
552 // Save the timer overflow, will be 0 when frame was received
553 //overflow += (AT91C_BASE_TC1->TC_CV/T0);
555 // Reset the timer to restart while-loop that receives frames
556 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
;
561 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
562 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKDIS
;
563 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
565 DbpString("Sim Stopped");
569 void SimulateTagLowFrequencyA(int len
, int gap
)
571 //Dbprintf("LEN %d || Gap %d",len, gap);
573 uint8_t *buf
= (uint8_t *)BigBuf
;
575 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
576 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
577 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_TOGGLE_MODE
); // new izsh toggle mode!
579 // Connect the A/D to the peak-detected low-frequency path.
580 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
582 // Now set up the SSC to get the ADC samples that are now streaming at us.
586 AT91C_BASE_SSC
->SSC_THR
= 0x00;
589 while(!BUTTON_PRESS()) {
591 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
594 AT91C_BASE_SSC
->SSC_THR
= 0x43;
596 AT91C_BASE_SSC
->SSC_THR
= 0x00;
605 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
606 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
611 DbpString("lf simulate stopped");
612 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
615 #define DEBUG_FRAME_CONTENTS 1
616 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
620 // compose fc/8 fc/10 waveform
621 static void fc(int c
, uint16_t *n
) {
622 uint8_t *dest
= (uint8_t *)BigBuf
;
625 // for when we want an fc8 pattern every 4 logical bits
636 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
638 for (idx
=0; idx
<6; idx
++) {
650 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
652 for (idx
=0; idx
<5; idx
++) {
667 // prepare a waveform pattern in the buffer based on the ID given then
668 // simulate a HID tag until the button is pressed
669 void CmdHIDsimTAG(int hi
, int lo
, uint8_t ledcontrol
)
673 HID tag bitstream format
674 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
675 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
676 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
677 A fc8 is inserted before every 4 bits
678 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
679 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
683 DbpString("Tags can only have 44 bits.");
687 // special start of frame marker containing invalid bit sequences
688 fc(8, &n
); fc(8, &n
); // invalid
689 fc(8, &n
); fc(10, &n
); // logical 0
690 fc(10, &n
); fc(10, &n
); // invalid
691 fc(8, &n
); fc(10, &n
); // logical 0
694 // manchester encode bits 43 to 32
695 for (i
=11; i
>=0; i
--) {
696 if ((i
%4)==3) fc(0,&n
);
698 fc(10, &n
); fc(8, &n
); // low-high transition
700 fc(8, &n
); fc(10, &n
); // high-low transition
705 // manchester encode bits 31 to 0
706 for (i
=31; i
>=0; i
--) {
707 if ((i
%4)==3) fc(0,&n
);
709 fc(10, &n
); fc(8, &n
); // low-high transition
711 fc(8, &n
); fc(10, &n
); // high-low transition
718 SimulateTagLowFrequency(n
, 0, ledcontrol
);
724 size_t fsk_demod(uint8_t * dest
, size_t size
)
726 uint32_t last_transition
= 0;
729 // we don't care about actual value, only if it's more or less than a
730 // threshold essentially we capture zero crossings for later analysis
731 uint8_t threshold_value
= 127;
733 // sync to first lo-hi transition, and threshold
735 //Need to threshold first sample
736 dest
[0] = (dest
[0] < threshold_value
) ? 0 : 1;
739 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
740 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
741 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
742 for(idx
= 1; idx
< size
; idx
++) {
743 // threshold current value
744 dest
[idx
] = (dest
[idx
] < threshold_value
) ? 0 : 1;
746 // Check for 0->1 transition
747 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
749 dest
[numBits
] = (idx
-last_transition
< 9) ? 1 : 0;
750 last_transition
= idx
;
754 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
758 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits
, uint8_t invert
)
760 uint8_t lastval
=dest
[0];
765 for( idx
=1; idx
< size
; idx
++) {
767 if (dest
[idx
]==lastval
) {
771 //if lastval was 1, we have a 1->0 crossing
772 if ( dest
[idx
-1]==1 ) {
773 n
=(n
+1) / h2l_crossing_value
;
774 } else {// 0->1 crossing
775 n
=(n
+1) / l2h_crossing_value
;
779 if(n
< maxConsequtiveBits
)
782 memset(dest
+numBits
, dest
[idx
-1] , n
);
784 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
795 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
796 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
798 uint8_t *dest
= get_bigbufptr_recvrespbuf();
800 size_t size
=0,idx
=0; //, found=0;
801 uint32_t hi2
=0, hi
=0, lo
=0;
803 // Configure to go in 125Khz listen mode
804 LFSetupFPGAForADC(0, true);
806 while(!BUTTON_PRESS()) {
809 if (ledcontrol
) LED_A_ON();
811 DoAcquisition125k_internal(-1,true);
814 size
= fsk_demod(dest
, FREE_BUFFER_SIZE
);
816 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
817 // 1->0 : fc/8 in sets of 6
818 // 0->1 : fc/10 in sets of 5
820 size
= aggregate_bits(dest
,size
, 6,5,5,0);
822 // final loop, go over previously decoded manchester data and decode into usable tag ID
823 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
824 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
827 while( idx
+ sizeof(frame_marker_mask
) < size
) {
828 // search for a start of frame marker
829 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
830 { // frame marker found
831 idx
+=sizeof(frame_marker_mask
);
833 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
835 // Keep going until next frame marker (or error)
836 // Shift in a bit. Start by shifting high registers
837 hi2
=(hi2
<<1)|(hi
>>31);
839 //Then, shift in a 0 or one into low
840 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
848 //Dbprintf("Num shifts: %d ", numshifts);
849 // Hopefully, we read a tag and hit upon the next frame marker
850 if(idx
+ sizeof(frame_marker_mask
) < size
)
852 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
855 Dbprintf("TAG ID: %x%08x%08x (%d)",
856 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
859 Dbprintf("TAG ID: %x%08x (%d)",
860 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
875 DbpString("Stopped");
876 if (ledcontrol
) LED_A_OFF();
879 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
882 for(int i
= 0 ; i
< numbits
; i
++)
884 num
= (num
<< 1) | (*src
);
891 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
893 uint8_t *dest
= get_bigbufptr_recvrespbuf();
895 size_t size
=0, idx
=0;
896 uint32_t code
=0, code2
=0;
897 uint8_t isFinish
= 0;
899 // Configure to go in 125Khz listen mode
900 LFSetupFPGAForADC(0, true);
902 while(!BUTTON_PRESS() & !isFinish
) {
906 if (ledcontrol
) LED_A_ON();
908 DoAcquisition125k_internal(-1,true);
911 size
= fsk_demod(dest
, FREE_BUFFER_SIZE
);
913 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
914 // 1->0 : fc/8 in sets of 7
915 // 0->1 : fc/10 in sets of 6
916 size
= aggregate_bits(dest
, size
, 7,6,13,1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
919 //0 10 20 30 40 50 60
921 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
922 //-----------------------------------------------------------------------------
923 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
925 //XSF(version)facility:codeone+codetwo
928 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
930 for( idx
=0; idx
< (size
- 64); idx
++) {
931 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
))==0) {
933 if(findone
){ //only print binary if we are doing one
934 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
935 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
936 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
937 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
938 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
939 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
940 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
942 code
= bytebits_to_byte(dest
+idx
,32);
943 code2
= bytebits_to_byte(dest
+idx
+32,32);
944 short version
= bytebits_to_byte(dest
+idx
+28,8); //14,4
945 char facilitycode
= bytebits_to_byte(dest
+idx
+19,8) ;
946 uint16_t number
= (bytebits_to_byte(dest
+idx
+37,8)<<8)|(bytebits_to_byte(dest
+idx
+46,8)); //36,9
948 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
950 // if we're only looking for one tag
952 if (ledcontrol
) LED_A_OFF();
960 DbpString("Stopped");
961 if (ledcontrol
) LED_A_OFF();
964 /*------------------------------
965 * T5555/T5557/T5567 routines
966 *------------------------------
969 /* T55x7 configuration register definitions */
970 #define T55x7_POR_DELAY 0x00000001
971 #define T55x7_ST_TERMINATOR 0x00000008
972 #define T55x7_PWD 0x00000010
973 #define T55x7_MAXBLOCK_SHIFT 5
974 #define T55x7_AOR 0x00000200
975 #define T55x7_PSKCF_RF_2 0
976 #define T55x7_PSKCF_RF_4 0x00000400
977 #define T55x7_PSKCF_RF_8 0x00000800
978 #define T55x7_MODULATION_DIRECT 0
979 #define T55x7_MODULATION_PSK1 0x00001000
980 #define T55x7_MODULATION_PSK2 0x00002000
981 #define T55x7_MODULATION_PSK3 0x00003000
982 #define T55x7_MODULATION_FSK1 0x00004000
983 #define T55x7_MODULATION_FSK2 0x00005000
984 #define T55x7_MODULATION_FSK1a 0x00006000
985 #define T55x7_MODULATION_FSK2a 0x00007000
986 #define T55x7_MODULATION_MANCHESTER 0x00008000
987 #define T55x7_MODULATION_BIPHASE 0x00010000
988 #define T55x7_BITRATE_RF_8 0
989 #define T55x7_BITRATE_RF_16 0x00040000
990 #define T55x7_BITRATE_RF_32 0x00080000
991 #define T55x7_BITRATE_RF_40 0x000C0000
992 #define T55x7_BITRATE_RF_50 0x00100000
993 #define T55x7_BITRATE_RF_64 0x00140000
994 #define T55x7_BITRATE_RF_100 0x00180000
995 #define T55x7_BITRATE_RF_128 0x001C0000
997 /* T5555 (Q5) configuration register definitions */
998 #define T5555_ST_TERMINATOR 0x00000001
999 #define T5555_MAXBLOCK_SHIFT 0x00000001
1000 #define T5555_MODULATION_MANCHESTER 0
1001 #define T5555_MODULATION_PSK1 0x00000010
1002 #define T5555_MODULATION_PSK2 0x00000020
1003 #define T5555_MODULATION_PSK3 0x00000030
1004 #define T5555_MODULATION_FSK1 0x00000040
1005 #define T5555_MODULATION_FSK2 0x00000050
1006 #define T5555_MODULATION_BIPHASE 0x00000060
1007 #define T5555_MODULATION_DIRECT 0x00000070
1008 #define T5555_INVERT_OUTPUT 0x00000080
1009 #define T5555_PSK_RF_2 0
1010 #define T5555_PSK_RF_4 0x00000100
1011 #define T5555_PSK_RF_8 0x00000200
1012 #define T5555_USE_PWD 0x00000400
1013 #define T5555_USE_AOR 0x00000800
1014 #define T5555_BITRATE_SHIFT 12
1015 #define T5555_FAST_WRITE 0x00004000
1016 #define T5555_PAGE_SELECT 0x00008000
1019 * Relevant times in microsecond
1020 * To compensate antenna falling times shorten the write times
1021 * and enlarge the gap ones.
1023 #define START_GAP 30*8 // 10 - 50fc 250
1024 #define WRITE_GAP 20*8 // 8 - 30fc
1025 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1026 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1028 // VALUES TAKEN FROM EM4x function: SendForward
1029 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1030 // WRITE_GAP = 128; (16*8)
1031 // WRITE_1 = 256 32*8; (32*8)
1033 // These timings work for 4469/4269/4305 (with the 55*8 above)
1034 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1036 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1038 // Write one bit to card
1039 void T55xxWriteBit(int bit
)
1041 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1042 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1043 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1045 SpinDelayUs(WRITE_0
);
1047 SpinDelayUs(WRITE_1
);
1048 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1049 SpinDelayUs(WRITE_GAP
);
1052 // Write one card block in page 0, no lock
1053 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1057 // Set up FPGA, 125kHz
1058 // Wait for config.. (192+8190xPOW)x8 == 67ms
1059 LFSetupFPGAForADC(0, true);
1061 // Now start writting
1062 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1063 SpinDelayUs(START_GAP
);
1067 T55xxWriteBit(0); //Page 0
1070 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1071 T55xxWriteBit(Pwd
& i
);
1077 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1078 T55xxWriteBit(Data
& i
);
1081 for (i
= 0x04; i
!= 0; i
>>= 1)
1082 T55xxWriteBit(Block
& i
);
1084 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1085 // so wait a little more)
1086 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1087 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1089 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1092 // Read one card block in page 0
1093 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1095 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1096 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1099 // Clear destination buffer before sending the command 0x80 = average.
1100 memset(dest
, 0x80, bufferlength
);
1102 // Set up FPGA, 125kHz
1103 // Wait for config.. (192+8190xPOW)x8 == 67ms
1104 LFSetupFPGAForADC(0, true);
1106 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1107 SpinDelayUs(START_GAP
);
1111 T55xxWriteBit(0); //Page 0
1114 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1115 T55xxWriteBit(Pwd
& i
);
1120 for (i
= 0x04; i
!= 0; i
>>= 1)
1121 T55xxWriteBit(Block
& i
);
1123 // Turn field on to read the response
1126 // Now do the acquisition
1129 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1130 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1131 //AT91C_BASE_SSC->SSC_THR = 0xff;
1134 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1135 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1138 if (i
> bufferlength
) break;
1142 cmd_send(CMD_ACK
,0,0,0,0,0);
1143 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1147 // Read card traceability data (page 1)
1148 void T55xxReadTrace(void){
1149 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1150 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1153 // Clear destination buffer before sending the command 0x80 = average
1154 memset(dest
, 0x80, bufferlength
);
1156 LFSetupFPGAForADC(0, true);
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1159 SpinDelayUs(START_GAP
);
1163 T55xxWriteBit(1); //Page 1
1165 // Turn field on to read the response
1168 // Now do the acquisition
1170 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1171 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1174 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1175 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1179 if (i
>= bufferlength
) break;
1183 cmd_send(CMD_ACK
,0,0,0,0,0);
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1188 void TurnReadLFOn(){
1189 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1190 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1191 // Give it a bit of time for the resonant antenna to settle.
1196 /*-------------- Cloning routines -----------*/
1197 // Copy HID id to card and setup block 0 config
1198 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1200 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1204 // Ensure no more than 84 bits supplied
1206 DbpString("Tags can only have 84 bits.");
1209 // Build the 6 data blocks for supplied 84bit ID
1211 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1212 for (int i
=0;i
<4;i
++) {
1213 if (hi2
& (1<<(19-i
)))
1214 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1216 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1220 for (int i
=0;i
<16;i
++) {
1221 if (hi2
& (1<<(15-i
)))
1222 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1224 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1228 for (int i
=0;i
<16;i
++) {
1229 if (hi
& (1<<(31-i
)))
1230 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1232 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1236 for (int i
=0;i
<16;i
++) {
1237 if (hi
& (1<<(15-i
)))
1238 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1240 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1244 for (int i
=0;i
<16;i
++) {
1245 if (lo
& (1<<(31-i
)))
1246 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1248 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1252 for (int i
=0;i
<16;i
++) {
1253 if (lo
& (1<<(15-i
)))
1254 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1256 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1260 // Ensure no more than 44 bits supplied
1262 DbpString("Tags can only have 44 bits.");
1266 // Build the 3 data blocks for supplied 44bit ID
1269 data1
= 0x1D000000; // load preamble
1271 for (int i
=0;i
<12;i
++) {
1272 if (hi
& (1<<(11-i
)))
1273 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1275 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1279 for (int i
=0;i
<16;i
++) {
1280 if (lo
& (1<<(31-i
)))
1281 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1283 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1287 for (int i
=0;i
<16;i
++) {
1288 if (lo
& (1<<(15-i
)))
1289 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1291 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1296 // Program the data blocks for supplied ID
1297 // and the block 0 for HID format
1298 T55xxWriteBlock(data1
,1,0,0);
1299 T55xxWriteBlock(data2
,2,0,0);
1300 T55xxWriteBlock(data3
,3,0,0);
1302 if (longFMT
) { // if long format there are 6 blocks
1303 T55xxWriteBlock(data4
,4,0,0);
1304 T55xxWriteBlock(data5
,5,0,0);
1305 T55xxWriteBlock(data6
,6,0,0);
1308 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1309 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1310 T55x7_MODULATION_FSK2a
|
1311 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1319 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1321 int data1
=0, data2
=0; //up to six blocks for long format
1323 data1
= hi
; // load preamble
1327 // Program the data blocks for supplied ID
1328 // and the block 0 for HID format
1329 T55xxWriteBlock(data1
,1,0,0);
1330 T55xxWriteBlock(data2
,2,0,0);
1333 T55xxWriteBlock(0x00147040,0,0,0);
1339 // Define 9bit header for EM410x tags
1340 #define EM410X_HEADER 0x1FF
1341 #define EM410X_ID_LENGTH 40
1343 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1346 uint64_t id
= EM410X_HEADER
;
1347 uint64_t rev_id
= 0; // reversed ID
1348 int c_parity
[4]; // column parity
1349 int r_parity
= 0; // row parity
1352 // Reverse ID bits given as parameter (for simpler operations)
1353 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1355 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1358 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1363 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1364 id_bit
= rev_id
& 1;
1367 // Don't write row parity bit at start of parsing
1369 id
= (id
<< 1) | r_parity
;
1370 // Start counting parity for new row
1377 // First elements in column?
1379 // Fill out first elements
1380 c_parity
[i
] = id_bit
;
1382 // Count column parity
1383 c_parity
[i
% 4] ^= id_bit
;
1386 id
= (id
<< 1) | id_bit
;
1390 // Insert parity bit of last row
1391 id
= (id
<< 1) | r_parity
;
1393 // Fill out column parity at the end of tag
1394 for (i
= 0; i
< 4; ++i
)
1395 id
= (id
<< 1) | c_parity
[i
];
1400 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1404 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1405 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1407 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1409 // Clock rate is stored in bits 8-15 of the card value
1410 clock
= (card
& 0xFF00) >> 8;
1411 Dbprintf("Clock rate: %d", clock
);
1415 clock
= T55x7_BITRATE_RF_32
;
1418 clock
= T55x7_BITRATE_RF_16
;
1421 // A value of 0 is assumed to be 64 for backwards-compatibility
1424 clock
= T55x7_BITRATE_RF_64
;
1427 Dbprintf("Invalid clock rate: %d", clock
);
1431 // Writing configuration for T55x7 tag
1432 T55xxWriteBlock(clock
|
1433 T55x7_MODULATION_MANCHESTER
|
1434 2 << T55x7_MAXBLOCK_SHIFT
,
1438 // Writing configuration for T5555(Q5) tag
1439 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1440 T5555_MODULATION_MANCHESTER
|
1441 2 << T5555_MAXBLOCK_SHIFT
,
1445 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1446 (uint32_t)(id
>> 32), (uint32_t)id
);
1449 // Clone Indala 64-bit tag by UID to T55x7
1450 void CopyIndala64toT55x7(int hi
, int lo
)
1452 //Program the 2 data blocks for supplied 64bit UID
1453 // and the block 0 for Indala64 format
1454 T55xxWriteBlock(hi
,1,0,0);
1455 T55xxWriteBlock(lo
,2,0,0);
1456 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1457 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1458 T55x7_MODULATION_PSK1
|
1459 2 << T55x7_MAXBLOCK_SHIFT
,
1461 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1462 // T5567WriteBlock(0x603E1042,0);
1467 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1469 //Program the 7 data blocks for supplied 224bit UID
1470 // and the block 0 for Indala224 format
1471 T55xxWriteBlock(uid1
,1,0,0);
1472 T55xxWriteBlock(uid2
,2,0,0);
1473 T55xxWriteBlock(uid3
,3,0,0);
1474 T55xxWriteBlock(uid4
,4,0,0);
1475 T55xxWriteBlock(uid5
,5,0,0);
1476 T55xxWriteBlock(uid6
,6,0,0);
1477 T55xxWriteBlock(uid7
,7,0,0);
1478 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1479 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1480 T55x7_MODULATION_PSK1
|
1481 7 << T55x7_MAXBLOCK_SHIFT
,
1483 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1484 // T5567WriteBlock(0x603E10E2,0);
1490 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1491 #define max(x,y) ( x<y ? y:x)
1493 int DemodPCF7931(uint8_t **outBlocks
) {
1494 uint8_t BitStream
[256];
1495 uint8_t Blocks
[8][16];
1496 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1497 int GraphTraceLen
= sizeof(BigBuf
);
1498 int i
, j
, lastval
, bitidx
, half_switch
;
1500 int tolerance
= clock
/ 8;
1501 int pmc
, block_done
;
1502 int lc
, warnings
= 0;
1504 int lmin
=128, lmax
=128;
1507 AcquireRawAdcSamples125k(0);
1514 /* Find first local max/min */
1515 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1516 while(i
< GraphTraceLen
) {
1517 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1524 while(i
< GraphTraceLen
) {
1525 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1537 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1539 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1544 // Switch depending on lc length:
1545 // Tolerance is 1/8 of clock rate (arbitrary)
1546 if (abs(lc
-clock
/4) < tolerance
) {
1548 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1550 i
+= (128+127+16+32+33+16)-1;
1558 } else if (abs(lc
-clock
/2) < tolerance
) {
1560 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1562 i
+= (128+127+16+32+33)-1;
1567 else if(half_switch
== 1) {
1568 BitStream
[bitidx
++] = 0;
1573 } else if (abs(lc
-clock
) < tolerance
) {
1575 BitStream
[bitidx
++] = 1;
1581 Dbprintf("Error: too many detection errors, aborting.");
1586 if(block_done
== 1) {
1588 for(j
=0; j
<16; j
++) {
1589 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1590 64*BitStream
[j
*8+6]+
1591 32*BitStream
[j
*8+5]+
1592 16*BitStream
[j
*8+4]+
1604 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1610 if(num_blocks
== 4) break;
1612 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1616 int IsBlock0PCF7931(uint8_t *Block
) {
1617 // Assume RFU means 0 :)
1618 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1620 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1625 int IsBlock1PCF7931(uint8_t *Block
) {
1626 // Assume RFU means 0 :)
1627 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1628 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1635 void ReadPCF7931() {
1636 uint8_t Blocks
[8][17];
1637 uint8_t tmpBlocks
[4][16];
1638 int i
, j
, ind
, ind2
, n
;
1645 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1648 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1649 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1652 if(error
==10 && num_blocks
== 0) {
1653 Dbprintf("Error, no tag or bad tag");
1656 else if (tries
==20 || error
==10) {
1657 Dbprintf("Error reading the tag");
1658 Dbprintf("Here is the partial content");
1663 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1664 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1665 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1667 for(i
=0; i
<n
; i
++) {
1668 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1670 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1674 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1675 Blocks
[0][ALLOC
] = 1;
1676 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1677 Blocks
[1][ALLOC
] = 1;
1678 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1680 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1682 // Handle following blocks
1683 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1686 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1687 Blocks
[ind2
][ALLOC
] = 1;
1695 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1696 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1697 for(j
=0; j
<max_blocks
; j
++) {
1698 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1699 // Found an identical block
1700 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1703 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1704 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1705 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1706 Blocks
[ind2
][ALLOC
] = 1;
1708 if(num_blocks
== max_blocks
) goto end
;
1711 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1712 if(ind2
> max_blocks
)
1714 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1715 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1716 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1717 Blocks
[ind2
][ALLOC
] = 1;
1719 if(num_blocks
== max_blocks
) goto end
;
1728 if (BUTTON_PRESS()) return;
1729 } while (num_blocks
!= max_blocks
);
1731 Dbprintf("-----------------------------------------");
1732 Dbprintf("Memory content:");
1733 Dbprintf("-----------------------------------------");
1734 for(i
=0; i
<max_blocks
; i
++) {
1735 if(Blocks
[i
][ALLOC
]==1)
1736 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1737 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1738 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1740 Dbprintf("<missing block %d>", i
);
1742 Dbprintf("-----------------------------------------");
1748 //-----------------------------------
1749 // EM4469 / EM4305 routines
1750 //-----------------------------------
1751 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1752 #define FWD_CMD_WRITE 0xA
1753 #define FWD_CMD_READ 0x9
1754 #define FWD_CMD_DISABLE 0x5
1757 uint8_t forwardLink_data
[64]; //array of forwarded bits
1758 uint8_t * forward_ptr
; //ptr for forward message preparation
1759 uint8_t fwd_bit_sz
; //forwardlink bit counter
1760 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1762 //====================================================================
1763 // prepares command bits
1765 //====================================================================
1766 //--------------------------------------------------------------------
1767 uint8_t Prepare_Cmd( uint8_t cmd
) {
1768 //--------------------------------------------------------------------
1770 *forward_ptr
++ = 0; //start bit
1771 *forward_ptr
++ = 0; //second pause for 4050 code
1773 *forward_ptr
++ = cmd
;
1775 *forward_ptr
++ = cmd
;
1777 *forward_ptr
++ = cmd
;
1779 *forward_ptr
++ = cmd
;
1781 return 6; //return number of emited bits
1784 //====================================================================
1785 // prepares address bits
1787 //====================================================================
1789 //--------------------------------------------------------------------
1790 uint8_t Prepare_Addr( uint8_t addr
) {
1791 //--------------------------------------------------------------------
1793 register uint8_t line_parity
;
1798 *forward_ptr
++ = addr
;
1799 line_parity
^= addr
;
1803 *forward_ptr
++ = (line_parity
& 1);
1805 return 7; //return number of emited bits
1808 //====================================================================
1809 // prepares data bits intreleaved with parity bits
1811 //====================================================================
1813 //--------------------------------------------------------------------
1814 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1815 //--------------------------------------------------------------------
1817 register uint8_t line_parity
;
1818 register uint8_t column_parity
;
1819 register uint8_t i
, j
;
1820 register uint16_t data
;
1825 for(i
=0; i
<4; i
++) {
1827 for(j
=0; j
<8; j
++) {
1828 line_parity
^= data
;
1829 column_parity
^= (data
& 1) << j
;
1830 *forward_ptr
++ = data
;
1833 *forward_ptr
++ = line_parity
;
1838 for(j
=0; j
<8; j
++) {
1839 *forward_ptr
++ = column_parity
;
1840 column_parity
>>= 1;
1844 return 45; //return number of emited bits
1847 //====================================================================
1848 // Forward Link send function
1849 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1850 // fwd_bit_count set with number of bits to be sent
1851 //====================================================================
1852 void SendForward(uint8_t fwd_bit_count
) {
1854 fwd_write_ptr
= forwardLink_data
;
1855 fwd_bit_sz
= fwd_bit_count
;
1860 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1861 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1862 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1864 // Give it a bit of time for the resonant antenna to settle.
1865 // And for the tag to fully power up
1868 // force 1st mod pulse (start gap must be longer for 4305)
1869 fwd_bit_sz
--; //prepare next bit modulation
1871 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1872 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1873 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1874 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1875 SpinDelayUs(16*8); //16 cycles on (8us each)
1877 // now start writting
1878 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1879 if(((*fwd_write_ptr
++) & 1) == 1)
1880 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1882 //These timings work for 4469/4269/4305 (with the 55*8 above)
1883 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1884 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1885 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1886 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1887 SpinDelayUs(9*8); //16 cycles on (8us each)
1893 void EM4xLogin(uint32_t Password
) {
1895 uint8_t fwd_bit_count
;
1897 forward_ptr
= forwardLink_data
;
1898 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1899 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1901 SendForward(fwd_bit_count
);
1903 //Wait for command to complete
1908 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1910 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1911 uint16_t bufferlength
= 12000;
1914 // Clear destination buffer before sending the command 0x80 = average.
1915 memset(dest
, 0x80, bufferlength
);
1917 uint8_t fwd_bit_count
;
1919 //If password mode do login
1920 if (PwdMode
== 1) EM4xLogin(Pwd
);
1922 forward_ptr
= forwardLink_data
;
1923 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1924 fwd_bit_count
+= Prepare_Addr( Address
);
1926 // Connect the A/D to the peak-detected low-frequency path.
1927 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1928 // Now set up the SSC to get the ADC samples that are now streaming at us.
1931 SendForward(fwd_bit_count
);
1933 // // Turn field on to read the response
1936 // Now do the acquisition
1939 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1940 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1942 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1943 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1945 if (i
>= bufferlength
) break;
1949 cmd_send(CMD_ACK
,0,0,0,0,0);
1950 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1954 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1956 uint8_t fwd_bit_count
;
1958 //If password mode do login
1959 if (PwdMode
== 1) EM4xLogin(Pwd
);
1961 forward_ptr
= forwardLink_data
;
1962 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1963 fwd_bit_count
+= Prepare_Addr( Address
);
1964 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1966 SendForward(fwd_bit_count
);
1968 //Wait for write to complete
1970 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off