1 //-----------------------------------------------------------------------------
2 // Routines to load the FPGA image, and then to configure the FPGA's major
3 // mode once it is configured.
5 // Jonathan Westhues, April 2006
6 //-----------------------------------------------------------------------------
10 //-----------------------------------------------------------------------------
11 // Set up the Serial Peripheral Interface as master
12 // Used to write the FPGA config word
13 // May also be used to write to other SPI attached devices like an LCD
14 //-----------------------------------------------------------------------------
15 void SetupSpi(int mode
)
17 // PA10 -> SPI_NCS2 chip select (LCD)
18 // PA11 -> SPI_NCS0 chip select (FPGA)
19 // PA12 -> SPI_MISO Master-In Slave-Out
20 // PA13 -> SPI_MOSI Master-Out Slave-In
21 // PA14 -> SPI_SPCK Serial Clock
23 // Disable PIO control of the following pins, allows use by the SPI peripheral
24 PIO_DISABLE
= (1 << GPIO_NCS0
) |
30 PIO_PERIPHERAL_A_SEL
= (1 << GPIO_NCS0
) |
35 PIO_PERIPHERAL_B_SEL
= (1 << GPIO_NCS2
);
37 //enable the SPI Peripheral clock
38 PMC_PERIPHERAL_CLK_ENABLE
= (1<<PERIPH_SPI
);
40 SPI_CONTROL
= SPI_CONTROL_ENABLE
;
45 ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
46 (14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
47 ( 0 << 7) | // Local Loopback Disabled
48 ( 1 << 4) | // Mode Fault Detection disabled
49 ( 0 << 2) | // Chip selects connected directly to peripheral
50 ( 0 << 1) | // Fixed Peripheral Select
51 ( 1 << 0); // Master Mode
53 ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
54 ( 1 << 16) | // Delay Before SPCK (1 MCK period)
55 ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
56 ( 8 << 4) | // Bits per Transfer (16 bits)
57 ( 0 << 3) | // Chip Select inactive after transfer
58 ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
59 ( 0 << 0); // Clock Polarity inactive state is logic 0
63 ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
64 (11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
65 ( 0 << 7) | // Local Loopback Disabled
66 ( 1 << 4) | // Mode Fault Detection disabled
67 ( 0 << 2) | // Chip selects connected directly to peripheral
68 ( 0 << 1) | // Fixed Peripheral Select
69 ( 1 << 0); // Master Mode
71 ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
72 ( 1 << 16) | // Delay Before SPCK (1 MCK period)
73 ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
74 ( 1 << 4) | // Bits per Transfer (9 bits)
75 ( 0 << 3) | // Chip Select inactive after transfer
76 ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
77 ( 0 << 0); // Clock Polarity inactive state is logic 0
79 default: // Disable SPI
80 SPI_CONTROL
= SPI_CONTROL_DISABLE
;
85 //-----------------------------------------------------------------------------
86 // Set up the synchronous serial port, with the one set of options that we
87 // always use when we are talking to the FPGA. Both RX and TX are enabled.
88 //-----------------------------------------------------------------------------
89 void FpgaSetupSsc(void)
91 // First configure the GPIOs, and get ourselves a clock.
92 PIO_PERIPHERAL_A_SEL
= (1 << GPIO_SSC_FRAME
) |
94 (1 << GPIO_SSC_DOUT
) |
96 PIO_DISABLE
= (1 << GPIO_SSC_DOUT
);
98 PMC_PERIPHERAL_CLK_ENABLE
= (1 << PERIPH_SSC
);
100 // Now set up the SSC proper, starting from a known state.
101 SSC_CONTROL
= SSC_CONTROL_RESET
;
103 // RX clock comes from TX clock, RX starts when TX starts, data changes
104 // on RX clock rising edge, sampled on falling edge
105 SSC_RECEIVE_CLOCK_MODE
= SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
107 // 8 bits per transfer, no loopback, MSB first, 1 transfer per sync
108 // pulse, no output sync, start on positive-going edge of sync
109 SSC_RECEIVE_FRAME_MODE
= SSC_FRAME_MODE_BITS_IN_WORD(8) |
110 SSC_FRAME_MODE_MSB_FIRST
| SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
112 // clock comes from TK pin, no clock output, outputs change on falling
113 // edge of TK, start on rising edge of TF
114 SSC_TRANSMIT_CLOCK_MODE
= SSC_CLOCK_MODE_SELECT(2) |
115 SSC_CLOCK_MODE_START(5);
117 // tx framing is the same as the rx framing
118 SSC_TRANSMIT_FRAME_MODE
= SSC_RECEIVE_FRAME_MODE
;
120 SSC_CONTROL
= SSC_CONTROL_RX_ENABLE
| SSC_CONTROL_TX_ENABLE
;
123 //-----------------------------------------------------------------------------
124 // Set up DMA to receive samples from the FPGA. We will use the PDC, with
125 // a single buffer as a circular buffer (so that we just chain back to
126 // ourselves, not to another buffer). The stuff to manipulate those buffers
127 // is in apps.h, because it should be inlined, for speed.
128 //-----------------------------------------------------------------------------
129 void FpgaSetupSscDma(BYTE
*buf
, int len
)
131 PDC_RX_POINTER(SSC_BASE
) = (DWORD
)buf
;
132 PDC_RX_COUNTER(SSC_BASE
) = len
;
133 PDC_RX_NEXT_POINTER(SSC_BASE
) = (DWORD
)buf
;
134 PDC_RX_NEXT_COUNTER(SSC_BASE
) = len
;
135 PDC_CONTROL(SSC_BASE
) = PDC_RX_ENABLE
;
138 // Download the fpga image starting at FpgaImage and with length FpgaImageLen DWORDs (e.g. 4 bytes)
139 // If bytereversal is set: reverse the byte order in each 4-byte word
140 static void DownloadFPGA(const DWORD
*FpgaImage
, DWORD FpgaImageLen
, int bytereversal
)
144 PIO_OUTPUT_ENABLE
= (1 << GPIO_FPGA_ON
);
145 PIO_ENABLE
= (1 << GPIO_FPGA_ON
);
146 PIO_OUTPUT_DATA_SET
= (1 << GPIO_FPGA_ON
);
152 HIGH(GPIO_FPGA_NPROGRAM
);
155 PIO_OUTPUT_ENABLE
= (1 << GPIO_FPGA_NPROGRAM
) |
156 (1 << GPIO_FPGA_CCLK
) |
157 (1 << GPIO_FPGA_DIN
);
160 LOW(GPIO_FPGA_NPROGRAM
);
162 HIGH(GPIO_FPGA_NPROGRAM
);
164 for(i
= 0; i
< FpgaImageLen
; i
++) {
165 DWORD v
= FpgaImage
[i
];
167 for(j
= 0; j
< 4; j
++) {
172 #define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
187 static char *bitparse_headers_start
;
188 static char *bitparse_bitstream_end
;
189 static int bitparse_initialized
;
190 /* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
191 * 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
192 * After that the format is 1 byte section type (ASCII character), 2 byte length
193 * (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
196 static const char _bitparse_fixed_header
[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};
197 static int bitparse_init(void * start_address
, void *end_address
)
199 bitparse_initialized
= 0;
201 if(memcmp(_bitparse_fixed_header
, start_address
, sizeof(_bitparse_fixed_header
)) != 0) {
202 return 0; /* Not matched */
204 bitparse_headers_start
= ((char*)start_address
) + sizeof(_bitparse_fixed_header
);
205 bitparse_bitstream_end
= (char*)end_address
;
206 bitparse_initialized
= 1;
211 int bitparse_find_section(char section_name
, void **section_start
, unsigned int *section_length
)
213 char *pos
= bitparse_headers_start
;
216 if(!bitparse_initialized
) return 0;
218 while(pos
< bitparse_bitstream_end
) {
219 char current_name
= *pos
++;
220 unsigned int current_length
= 0;
221 if(current_name
< 'a' || current_name
> 'e') {
222 /* Strange section name, abort */
226 switch(current_name
) {
228 /* Four byte length field */
229 current_length
+= (*pos
++) << 24;
230 current_length
+= (*pos
++) << 16;
231 default: /* Fall through, two byte length field */
232 current_length
+= (*pos
++) << 8;
233 current_length
+= (*pos
++) << 0;
236 if(current_name
!= 'e' && current_length
> 255) {
237 /* Maybe a parse error */
241 if(current_name
== section_name
) {
243 *section_start
= pos
;
244 *section_length
= current_length
;
249 pos
+= current_length
; /* Skip section */
255 //-----------------------------------------------------------------------------
256 // Find out which FPGA image format is stored in flash, then call DownloadFPGA
257 // with the right parameters to download the image
258 //-----------------------------------------------------------------------------
259 extern char _binary_fpga_bit_start
, _binary_fpga_bit_end
;
260 void FpgaDownloadAndGo(void)
262 /* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start
264 if(bitparse_init(&_binary_fpga_bit_start
, &_binary_fpga_bit_end
)) {
265 /* Successfully initialized the .bit parser. Find the 'e' section and
266 * send its contents to the FPGA.
268 void *bitstream_start
;
269 unsigned int bitstream_length
;
270 if(bitparse_find_section('e', &bitstream_start
, &bitstream_length
)) {
271 DownloadFPGA((DWORD
*)bitstream_start
, bitstream_length
/4, 0);
273 return; /* All done */
277 /* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF
278 * 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits
279 * = 10,524 DWORDs, stored as DWORDS e.g. little-endian in memory, but each DWORD
280 * is still to be transmitted in MSBit first order. Set the invert flag to indicate
281 * that the DownloadFPGA function should invert every 4 byte sequence when doing
282 * the bytewise download.
284 if( *(DWORD
*)0x102000 == 0xFFFFFFFF && *(DWORD
*)0x102004 == 0xAA995566 )
285 DownloadFPGA((DWORD
*)0x102000, 10524, 1);
288 void FpgaGatherVersion(char *dst
, int len
)
291 unsigned int fpga_info_len
;
293 if(!bitparse_find_section('e', (void**)&fpga_info
, &fpga_info_len
)) {
294 strncat(dst
, "FPGA image: legacy image without version information", len
-1);
296 strncat(dst
, "FPGA image built", len
-1);
297 /* USB packets only have 48 bytes data payload, so be terse */
299 if(bitparse_find_section('a', (void**)&fpga_info
, &fpga_info_len
) && fpga_info
[fpga_info_len
-1] == 0 ) {
300 strncat(dst
, " from ", len
-1);
301 strncat(dst
, fpga_info
, len
-1);
303 if(bitparse_find_section('b', (void**)&fpga_info
, &fpga_info_len
) && fpga_info
[fpga_info_len
-1] == 0 ) {
304 strncat(dst
, " for ", len
-1);
305 strncat(dst
, fpga_info
, len
-1);
308 if(bitparse_find_section('c', (void**)&fpga_info
, &fpga_info_len
) && fpga_info
[fpga_info_len
-1] == 0 ) {
309 strncat(dst
, " on ", len
-1);
310 strncat(dst
, fpga_info
, len
-1);
312 if(bitparse_find_section('d', (void**)&fpga_info
, &fpga_info_len
) && fpga_info
[fpga_info_len
-1] == 0 ) {
313 strncat(dst
, " at ", len
-1);
314 strncat(dst
, fpga_info
, len
-1);
319 //-----------------------------------------------------------------------------
320 // Send a 16 bit command/data pair to the FPGA.
321 // The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
322 // where C is the 4 bit command and D is the 12 bit data
323 //-----------------------------------------------------------------------------
324 void FpgaSendCommand(WORD cmd
, WORD v
)
326 SetupSpi(SPI_FPGA_MODE
);
327 while ((SPI_STATUS
& SPI_STATUS_TX_EMPTY
) == 0); // wait for the transfer to complete
328 SPI_TX_DATA
= SPI_CONTROL_LAST_TRANSFER
| cmd
| v
; // send the data
330 //-----------------------------------------------------------------------------
331 // Write the FPGA setup word (that determines what mode the logic is in, read
332 // vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
333 // avoid changing this function's occurence everywhere in the source code.
334 //-----------------------------------------------------------------------------
335 void FpgaWriteConfWord(BYTE v
)
337 FpgaSendCommand(FPGA_CMD_SET_CONFREG
, v
);
340 //-----------------------------------------------------------------------------
341 // Set up the CMOS switches that mux the ADC: four switches, independently
342 // closable, but should only close one at a time. Not an FPGA thing, but
343 // the samples from the ADC always flow through the FPGA.
344 //-----------------------------------------------------------------------------
345 void SetAdcMuxFor(int whichGpio
)
347 PIO_OUTPUT_ENABLE
= (1 << GPIO_MUXSEL_HIPKD
) |
348 (1 << GPIO_MUXSEL_LOPKD
) |
349 (1 << GPIO_MUXSEL_LORAW
) |
350 (1 << GPIO_MUXSEL_HIRAW
);
352 PIO_ENABLE
= (1 << GPIO_MUXSEL_HIPKD
) |
353 (1 << GPIO_MUXSEL_LOPKD
) |
354 (1 << GPIO_MUXSEL_LORAW
) |
355 (1 << GPIO_MUXSEL_HIRAW
);
357 LOW(GPIO_MUXSEL_HIPKD
);
358 LOW(GPIO_MUXSEL_HIRAW
);
359 LOW(GPIO_MUXSEL_LORAW
);
360 LOW(GPIO_MUXSEL_LOPKD
);