]> cvs.zerfleddert.de Git - proxmark3-svn/blob - winsrc/command.cpp
New flash tool, needs to be ported to Windows.
[proxmark3-svn] / winsrc / command.cpp
1 //-----------------------------------------------------------------------------
2 // The actual command interpeter for what the user types at the command line.
3 // Jonathan Westhues, Sept 2005
4 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 //-----------------------------------------------------------------------------
6 #include <windows.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <stdio.h>
10 #include <limits.h>
11 #include <math.h>
12
13 #include "prox.h"
14 #include "../common/iso14443_crc.c"
15 #include "../common/crc16.c"
16
17 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
18 #define BIT(x) GraphBuffer[x * clock]
19 #define BITS (GraphTraceLen / clock)
20
21 int go = 0;
22 static int CmdHisamplest(char *str, int nrlow);
23
24 static void GetFromBigBuf(BYTE *dest, int bytes)
25 {
26 int n = bytes/4;
27
28 if(n % 48 != 0) {
29 PrintToScrollback("bad len in GetFromBigBuf");
30 return;
31 }
32
33 int i;
34 for(i = 0; i < n; i += 12) {
35 UsbCommand c;
36 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
37 c.ext1 = i;
38 SendCommand(&c, FALSE);
39 ReceiveCommand(&c);
40 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
41 PrintToScrollback("bad resp");
42 return;
43 }
44
45 memcpy(dest+(i*4), c.d.asBytes, 48);
46 }
47 }
48
49 static void CmdReset(char *str)
50 {
51 UsbCommand c;
52 c.cmd = CMD_HARDWARE_RESET;
53 SendCommand(&c, FALSE);
54 }
55
56 static void CmdBuffClear(char *str)
57 {
58 UsbCommand c;
59 c.cmd = CMD_BUFF_CLEAR;
60 SendCommand(&c, FALSE);
61 CmdClearGraph(TRUE);
62 }
63
64 static void CmdQuit(char *str)
65 {
66 exit(0);
67 }
68
69 static void CmdHIDdemodFSK(char *str)
70 {
71 UsbCommand c;
72 c.cmd = CMD_HID_DEMOD_FSK;
73 SendCommand(&c, FALSE);
74 }
75
76 static void CmdTune(char *str)
77 {
78 UsbCommand c;
79 c.cmd = CMD_MEASURE_ANTENNA_TUNING;
80 SendCommand(&c, FALSE);
81 }
82
83 static void CmdHi15read(char *str)
84 {
85 UsbCommand c;
86 c.cmd = CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693;
87 SendCommand(&c, FALSE);
88 }
89
90 static void CmdHi14read(char *str)
91 {
92 UsbCommand c;
93 c.cmd = CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443;
94 c.ext1 = atoi(str);
95 SendCommand(&c, FALSE);
96 }
97
98
99 /* New command to read the contents of a SRI512 tag
100 * SRI512 tags are ISO14443-B modulated memory tags,
101 * this command just dumps the contents of the memory/
102 */
103 static void CmdSri512read(char *str)
104 {
105 UsbCommand c;
106 c.cmd = CMD_READ_SRI512_TAG;
107 c.ext1 = atoi(str);
108 SendCommand(&c, FALSE);
109 }
110
111 // ## New command
112 static void CmdHi14areader(char *str)
113 {
114 UsbCommand c;
115 c.cmd = CMD_READER_ISO_14443a;
116 c.ext1 = atoi(str);
117 SendCommand(&c, FALSE);
118 }
119
120 // ## New command
121 static void CmdHi15reader(char *str)
122 {
123 UsbCommand c;
124 c.cmd = CMD_READER_ISO_15693;
125 c.ext1 = atoi(str);
126 SendCommand(&c, FALSE);
127 }
128
129 // ## New command
130 static void CmdHi15tag(char *str)
131 {
132 UsbCommand c;
133 c.cmd = CMD_SIMTAG_ISO_15693;
134 c.ext1 = atoi(str);
135 SendCommand(&c, FALSE);
136 }
137
138 static void CmdHi14read_sim(char *str)
139 {
140 UsbCommand c;
141 c.cmd = CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443_SIM;
142 c.ext1 = atoi(str);
143 SendCommand(&c, FALSE);
144 }
145
146 static void CmdHi14readt(char *str)
147 {
148 UsbCommand c;
149 c.cmd = CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443;
150 c.ext1 = atoi(str);
151 SendCommand(&c, FALSE);
152
153 //CmdHisamplest(str);
154 while(CmdHisamplest(str,atoi(str))==0) {
155 c.cmd = CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443;
156 c.ext1 = atoi(str);
157 SendCommand(&c, FALSE);
158 }
159 RepaintGraphWindow();
160 }
161
162 static void CmdHisimlisten(char *str)
163 {
164 UsbCommand c;
165 c.cmd = CMD_SIMULATE_TAG_HF_LISTEN;
166 SendCommand(&c, FALSE);
167 }
168
169 static void CmdHi14sim(char *str)
170 {
171 UsbCommand c;
172 c.cmd = CMD_SIMULATE_TAG_ISO_14443;
173 SendCommand(&c, FALSE);
174 }
175
176 static void CmdHi14asim(char *str) // ## simulate iso14443a tag
177 { // ## greg - added ability to specify tag UID
178
179 unsigned int hi=0, lo=0;
180 int n=0, i=0;
181 UsbCommand c;
182
183 while (sscanf(&str[i++], "%1x", &n ) == 1) {
184 hi=(hi<<4)|(lo>>28);
185 lo=(lo<<4)|(n&0xf);
186 }
187
188 c.cmd = CMD_SIMULATE_TAG_ISO_14443a;
189 // c.ext should be set to *str or convert *str to the correct format for a uid
190 c.ext1 = hi;
191 c.ext2 = lo;
192 PrintToScrollback("Emulating 14443A TAG with UID %x%16x", hi, lo);
193 SendCommand(&c, FALSE);
194 }
195
196 static void CmdHi14snoop(char *str)
197 {
198 UsbCommand c;
199 c.cmd = CMD_SNOOP_ISO_14443;
200 SendCommand(&c, FALSE);
201 }
202
203 static void CmdHi14asnoop(char *str)
204 {
205 UsbCommand c;
206 c.cmd = CMD_SNOOP_ISO_14443a;
207 SendCommand(&c, FALSE);
208 }
209
210 static void CmdFPGAOff(char *str) // ## FPGA Control
211 {
212 UsbCommand c;
213 c.cmd = CMD_FPGA_MAJOR_MODE_OFF;
214 SendCommand(&c, FALSE);
215 }
216
217 /* clear out our graph window */
218 int CmdClearGraph(int redraw)
219 {
220 int gtl = GraphTraceLen;
221 GraphTraceLen = 0;
222
223 if (redraw)
224 RepaintGraphWindow();
225
226 return gtl;
227 }
228
229 /* write a bit to the graph */
230 static void CmdAppendGraph(int redraw, int clock, int bit)
231 {
232 int i;
233
234 for (i = 0; i < (int)(clock/2); i++)
235 GraphBuffer[GraphTraceLen++] = bit ^ 1;
236
237 for (i = (int)(clock/2); i < clock; i++)
238 GraphBuffer[GraphTraceLen++] = bit;
239
240 if (redraw)
241 RepaintGraphWindow();
242 }
243
244 /* Function is equivalent of loread + losamples + em410xread
245 * looped until an EM410x tag is detected */
246 static void CmdEM410xwatch(char *str)
247 {
248 char *zero = "";
249 char *twok = "2000";
250 go = 1;
251
252 do
253 {
254 CmdLoread(zero);
255 CmdLosamples(twok);
256 CmdEM410xread(zero);
257 } while (go);
258 }
259
260 /* Read the transmitted data of an EM4x50 tag
261 * Format:
262 *
263 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
264 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
265 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
266 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
267 * CCCCCCCC <- column parity bits
268 * 0 <- stop bit
269 * LW <- Listen Window
270 *
271 * This pattern repeats for every block of data being transmitted.
272 * Transmission starts with two Listen Windows (LW - a modulated
273 * pattern of 320 cycles each (32/32/128/64/64)).
274 *
275 * Note that this data may or may not be the UID. It is whatever data
276 * is stored in the blocks defined in the control word First and Last
277 * Word Read values. UID is stored in block 32.
278 */
279 static void CmdEM4x50read(char *str)
280 {
281 int i, j, startblock, clock, skip, block, start, end, low, high;
282 BOOL complete= FALSE;
283 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
284 char tmp[6];
285
286 high= low= 0;
287 clock= 64;
288
289 /* first get high and low values */
290 for (i = 0; i < GraphTraceLen; i++)
291 {
292 if (GraphBuffer[i] > high)
293 high = GraphBuffer[i];
294 else if (GraphBuffer[i] < low)
295 low = GraphBuffer[i];
296 }
297
298 /* populate a buffer with pulse lengths */
299 i= 0;
300 j= 0;
301 while(i < GraphTraceLen)
302 {
303 // measure from low to low
304 while((GraphBuffer[i] > low) && (i<GraphTraceLen))
305 ++i;
306 start= i;
307 while((GraphBuffer[i] < high) && (i<GraphTraceLen))
308 ++i;
309 while((GraphBuffer[i] > low) && (i<GraphTraceLen))
310 ++i;
311 if (j>(MAX_GRAPH_TRACE_LEN/64)) {
312 break;
313 }
314 tmpbuff[j++]= i - start;
315 }
316
317 /* look for data start - should be 2 pairs of LW (pulses of 192,128) */
318 start= -1;
319 skip= 0;
320 for (i= 0; i < j - 4 ; ++i)
321 {
322 skip += tmpbuff[i];
323 if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
324 if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
325 if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194)
326 if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130)
327 {
328 start= i + 3;
329 break;
330 }
331 }
332 startblock= i + 3;
333
334 /* skip over the remainder of the LW */
335 skip += tmpbuff[i+1]+tmpbuff[i+2];
336 while(skip < MAX_GRAPH_TRACE_LEN && GraphBuffer[skip] > low)
337 ++skip;
338 skip += 8;
339
340 /* now do it again to find the end */
341 end= start;
342 for (i += 3; i < j - 4 ; ++i)
343 {
344 end += tmpbuff[i];
345 if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
346 if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
347 if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194)
348 if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130)
349 {
350 complete= TRUE;
351 break;
352 }
353 }
354
355 if (start >= 0)
356 PrintToScrollback("Found data at sample: %i",skip);
357 else
358 {
359 PrintToScrollback("No data found!");
360 PrintToScrollback("Try again with more samples.");
361 return;
362 }
363
364 if (!complete)
365 {
366 PrintToScrollback("*** Warning!");
367 PrintToScrollback("Partial data - no end found!");
368 PrintToScrollback("Try again with more samples.");
369 }
370
371 /* get rid of leading crap */
372 sprintf(tmp,"%i",skip);
373 CmdLtrim(tmp);
374
375 /* now work through remaining buffer printing out data blocks */
376 block= 0;
377 i= startblock;
378 while(block < 6)
379 {
380 PrintToScrollback("Block %i:", block);
381 // mandemod routine needs to be split so we can call it for data
382 // just print for now for debugging
383 Cmdmanchesterdemod("i 64");
384 skip= 0;
385 /* look for LW before start of next block */
386 for ( ; i < j - 4 ; ++i)
387 {
388 skip += tmpbuff[i];
389 if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
390 if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
391 break;
392 }
393 while(GraphBuffer[skip] > low)
394 ++skip;
395 skip += 8;
396 sprintf(tmp,"%i",skip);
397 CmdLtrim(tmp);
398 start += skip;
399 block++;
400 }
401 }
402
403
404 /* Read the ID of an EM410x tag.
405 * Format:
406 * 1111 1111 1 <-- standard non-repeatable header
407 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
408 * ....
409 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
410 * 0 <-- stop bit, end of tag
411 */
412 static void CmdEM410xread(char *str)
413 {
414 int i, j, clock, header, rows, bit, hithigh, hitlow, first, bit2idx, high, low;
415 int parity[4];
416 char id[11];
417 int retested = 0;
418 int BitStream[MAX_GRAPH_TRACE_LEN];
419 high = low = 0;
420
421 /* Detect high and lows and clock */
422 for (i = 0; i < GraphTraceLen; i++)
423 {
424 if (GraphBuffer[i] > high)
425 high = GraphBuffer[i];
426 else if (GraphBuffer[i] < low)
427 low = GraphBuffer[i];
428 }
429
430 /* get clock */
431 clock = GetClock(str, high);
432
433 /* parity for our 4 columns */
434 parity[0] = parity[1] = parity[2] = parity[3] = 0;
435 header = rows = 0;
436
437 /* manchester demodulate */
438 bit = bit2idx = 0;
439 for (i = 0; i < (int)(GraphTraceLen / clock); i++)
440 {
441 hithigh = 0;
442 hitlow = 0;
443 first = 1;
444
445 /* Find out if we hit both high and low peaks */
446 for (j = 0; j < clock; j++)
447 {
448 if (GraphBuffer[(i * clock) + j] == high)
449 hithigh = 1;
450 else if (GraphBuffer[(i * clock) + j] == low)
451 hitlow = 1;
452
453 /* it doesn't count if it's the first part of our read
454 because it's really just trailing from the last sequence */
455 if (first && (hithigh || hitlow))
456 hithigh = hitlow = 0;
457 else
458 first = 0;
459
460 if (hithigh && hitlow)
461 break;
462 }
463
464 /* If we didn't hit both high and low peaks, we had a bit transition */
465 if (!hithigh || !hitlow)
466 bit ^= 1;
467
468 BitStream[bit2idx++] = bit;
469 }
470
471 retest:
472 /* We go till 5 before the graph ends because we'll get that far below */
473 for (i = 1; i < bit2idx - 5; i++)
474 {
475 /* Step 2: We have our header but need our tag ID */
476 if (header == 9 && rows < 10)
477 {
478 /* Confirm parity is correct */
479 if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4])
480 {
481 /* Read another byte! */
482 sprintf(id+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3]));
483 rows++;
484
485 /* Keep parity info */
486 parity[0] ^= BitStream[i];
487 parity[1] ^= BitStream[i+1];
488 parity[2] ^= BitStream[i+2];
489 parity[3] ^= BitStream[i+3];
490
491 /* Move 4 bits ahead */
492 i += 4;
493 }
494
495 /* Damn, something wrong! reset */
496 else
497 {
498 PrintToScrollback("Thought we had a valid tag but failed at word %d (i=%d)", rows + 1, i);
499
500 /* Start back rows * 5 + 9 header bits, -1 to not start at same place */
501 i -= 9 + (5 * rows) - 5;
502
503 rows = header = 0;
504 }
505 }
506
507 /* Step 3: Got our 40 bits! confirm column parity */
508 else if (rows == 10)
509 {
510 /* We need to make sure our 4 bits of parity are correct and we have a stop bit */
511 if (BitStream[i] == parity[0] && BitStream[i+1] == parity[1] &&
512 BitStream[i+2] == parity[2] && BitStream[i+3] == parity[3] &&
513 BitStream[i+4] == 0)
514 {
515 /* Sweet! */
516 PrintToScrollback("EM410x Tag ID: %s", id);
517
518 /* Stop any loops */
519 go = 0;
520 return;
521 }
522
523 /* Crap! Incorrect parity or no stop bit, start all over */
524 else
525 {
526 rows = header = 0;
527
528 /* Go back 59 bits (9 header bits + 10 rows at 4+1 parity) */
529 i -= 59;
530 }
531 }
532
533 /* Step 1: get our header */
534 else if (header < 9)
535 {
536 /* Need 9 consecutive 1's */
537 if (BitStream[i] == 1)
538 header++;
539
540 /* We don't have a header, not enough consecutive 1 bits */
541 else
542 header = 0;
543 }
544 }
545
546 /* if we've already retested after flipping bits, return */
547 if (retested++)
548 return;
549
550 /* if this didn't work, try flipping bits */
551 for (i = 0; i < bit2idx; i++)
552 BitStream[i] ^= 1;
553
554 goto retest;
555 }
556
557 /* emulate an EM410X tag
558 * Format:
559 * 1111 1111 1 <-- standard non-repeatable header
560 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
561 * ....
562 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
563 * 0 <-- stop bit, end of tag
564 */
565 static void CmdEM410xsim(char *str)
566 {
567 int i, n, j, h, binary[4], parity[4];
568 char *s = "0";
569
570 /* clock is 64 in EM410x tags */
571 int clock = 64;
572
573 /* clear our graph */
574 CmdClearGraph(0);
575
576 /* write it out a few times */
577 for (h = 0; h < 4; h++)
578 {
579 /* write 9 start bits */
580 for (i = 0; i < 9; i++)
581 CmdAppendGraph(0, clock, 1);
582
583 /* for each hex char */
584 parity[0] = parity[1] = parity[2] = parity[3] = 0;
585 for (i = 0; i < 10; i++)
586 {
587 /* read each hex char */
588 sscanf(&str[i], "%1x", &n);
589 for (j = 3; j >= 0; j--, n/= 2)
590 binary[j] = n % 2;
591
592 /* append each bit */
593 CmdAppendGraph(0, clock, binary[0]);
594 CmdAppendGraph(0, clock, binary[1]);
595 CmdAppendGraph(0, clock, binary[2]);
596 CmdAppendGraph(0, clock, binary[3]);
597
598 /* append parity bit */
599 CmdAppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
600
601 /* keep track of column parity */
602 parity[0] ^= binary[0];
603 parity[1] ^= binary[1];
604 parity[2] ^= binary[2];
605 parity[3] ^= binary[3];
606 }
607
608 /* parity columns */
609 CmdAppendGraph(0, clock, parity[0]);
610 CmdAppendGraph(0, clock, parity[1]);
611 CmdAppendGraph(0, clock, parity[2]);
612 CmdAppendGraph(0, clock, parity[3]);
613
614 /* stop bit */
615 CmdAppendGraph(0, clock, 0);
616 }
617
618 /* modulate that biatch */
619 Cmdmanchestermod(s);
620
621 /* booyah! */
622 RepaintGraphWindow();
623
624 CmdLosim(s);
625 }
626
627 static void ChkBitstream(char *str)
628 {
629 int i;
630
631 /* convert to bitstream if necessary */
632 for (i = 0; i < (int)(GraphTraceLen / 2); i++)
633 {
634 if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0)
635 {
636 Cmdbitstream(str);
637 break;
638 }
639 }
640 }
641
642 static void CmdLosim(char *str)
643 {
644 int i;
645
646 /* convert to bitstream if necessary */
647 ChkBitstream(str);
648
649 for (i = 0; i < GraphTraceLen; i += 48) {
650 UsbCommand c;
651 int j;
652 for(j = 0; j < 48; j++) {
653 c.d.asBytes[j] = GraphBuffer[i+j];
654 }
655 c.cmd = CMD_DOWNLOADED_SIM_SAMPLES_125K;
656 c.ext1 = i;
657 SendCommand(&c, FALSE);
658 }
659
660 UsbCommand c;
661 c.cmd = CMD_SIMULATE_TAG_125K;
662 c.ext1 = GraphTraceLen;
663 SendCommand(&c, FALSE);
664 }
665
666 static void CmdLosimBidir(char *str)
667 {
668 UsbCommand c;
669 c.cmd = CMD_LF_SIMULATE_BIDIR;
670 c.ext1 = 47; /* Set ADC to twice the carrier for a slight supersampling */
671 c.ext2 = 384;
672 SendCommand(&c, FALSE);
673 }
674
675 static void CmdLoread(char *str)
676 {
677 UsbCommand c;
678 // 'h' means higher-low-frequency, 134 kHz
679 if(*str == 'h') {
680 c.ext1 = 1;
681 } else if (*str == '\0') {
682 c.ext1 = 0;
683 } else {
684 PrintToScrollback("use 'loread' or 'loread h'");
685 return;
686 }
687 c.cmd = CMD_ACQUIRE_RAW_ADC_SAMPLES_125K;
688 SendCommand(&c, FALSE);
689 }
690
691 static void CmdDetectReader(char *str)
692 {
693 UsbCommand c;
694 // 'l' means LF - 125/134 kHz
695 if(*str == 'l') {
696 c.ext1 = 1;
697 } else if (*str == 'h') {
698 c.ext1 = 2;
699 } else if (*str != '\0') {
700 PrintToScrollback("use 'detectreader' or 'detectreader l' or 'detectreader h'");
701 return;
702 }
703 c.cmd = CMD_LISTEN_READER_FIELD;
704 SendCommand(&c, FALSE);
705 }
706
707 /* send a command before reading */
708 static void CmdLoCommandRead(char *str)
709 {
710 static char dummy[3];
711
712 dummy[0]= ' ';
713
714 UsbCommand c;
715 c.cmd = CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K;
716 sscanf(str, "%i %i %i %s %s", &c.ext1, &c.ext2, &c.ext3, (char *) &c.d.asBytes,(char *) &dummy+1);
717 // in case they specified 'h'
718 strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy);
719 SendCommand(&c, FALSE);
720 }
721
722 static void CmdLosamples(char *str)
723 {
724 int cnt = 0;
725 int i;
726 int n;
727
728 n=atoi(str);
729 if (n==0) n=128;
730 if (n>16000) n=16000;
731
732 for(i = 0; i < n; i += 12) {
733 UsbCommand c;
734 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
735 c.ext1 = i;
736 SendCommand(&c, FALSE);
737 ReceiveCommand(&c);
738 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
739 if (!go)
740 PrintToScrollback("bad resp");
741 return;
742 }
743 int j;
744 for(j = 0; j < 48; j++) {
745 GraphBuffer[cnt++] = ((int)c.d.asBytes[j]) - 128;
746 }
747 }
748 GraphTraceLen = n*4;
749 RepaintGraphWindow();
750 }
751
752 static void CmdBitsamples(char *str)
753 {
754 int cnt = 0;
755 int i;
756 int n;
757
758 n = 3072;
759 for(i = 0; i < n; i += 12) {
760 UsbCommand c;
761 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
762 c.ext1 = i;
763 SendCommand(&c, FALSE);
764 ReceiveCommand(&c);
765 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
766 PrintToScrollback("bad resp");
767 return;
768 }
769 int j, k;
770 for(j = 0; j < 48; j++) {
771 for(k = 0; k < 8; k++) {
772 if(c.d.asBytes[j] & (1 << (7 - k))) {
773 GraphBuffer[cnt++] = 1;
774 } else {
775 GraphBuffer[cnt++] = 0;
776 }
777 }
778 }
779 }
780 GraphTraceLen = cnt;
781 RepaintGraphWindow();
782 }
783
784 static void CmdHisamples(char *str)
785 {
786 int cnt = 0;
787 int i;
788 int n;
789 n = 1000;
790 for(i = 0; i < n; i += 12) {
791 UsbCommand c;
792 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
793 c.ext1 = i;
794 SendCommand(&c, FALSE);
795 ReceiveCommand(&c);
796 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
797 PrintToScrollback("bad resp");
798 return;
799 }
800 int j;
801 for(j = 0; j < 48; j++) {
802 GraphBuffer[cnt++] = (int)((BYTE)c.d.asBytes[j]);
803 }
804 }
805 GraphTraceLen = n*4;
806
807 RepaintGraphWindow();
808 }
809
810 static int CmdHisamplest(char *str, int nrlow)
811 {
812 int cnt = 0;
813 int t1, t2;
814 int i;
815 int n;
816 int hasbeennull;
817 int show;
818
819
820 n = 1000;
821 hasbeennull = 0;
822 for(i = 0; i < n; i += 12) {
823 UsbCommand c;
824 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
825 c.ext1 = i;
826 SendCommand(&c, FALSE);
827 ReceiveCommand(&c);
828 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
829 PrintToScrollback("bad resp");
830 return 0;
831 }
832 int j;
833 for(j = 0; j < 48; j++) {
834 t2 = (int)((BYTE)c.d.asBytes[j]);
835 if((t2 ^ 0xC0) & 0xC0) { hasbeennull++; }
836
837 show = 0;
838 switch(show) {
839 case 0:
840 // combined
841 t1 = (t2 & 0x80) ^ (t2 & 0x20);
842 t2 = ((t2 << 1) & 0x80) ^ ((t2 << 1) & 0x20);
843 break;
844
845 case 1:
846 // only reader
847 t1 = (t2 & 0x80);
848 t2 = ((t2 << 1) & 0x80);
849 break;
850
851 case 2:
852 // only tag
853 t1 = (t2 & 0x20);
854 t2 = ((t2 << 1) & 0x20);
855 break;
856
857 case 3:
858 // both, but tag with other algorithm
859 t1 = (t2 & 0x80) ^ (t2 & 0x08);
860 t2 = ((t2 << 1) & 0x80) ^ ((t2 << 1) & 0x08);
861 break;
862 }
863
864 GraphBuffer[cnt++] = t1;
865 GraphBuffer[cnt++] = t2;
866 }
867 }
868 GraphTraceLen = n*4;
869 // 1130
870 if(hasbeennull>nrlow || nrlow==0) {
871 PrintToScrollback("hasbeennull=%d", hasbeennull);
872 return 1;
873 }
874 else {
875 return 0;
876 }
877 }
878
879
880 static void CmdHexsamples(char *str)
881 {
882 int i;
883 int n;
884
885 if(atoi(str) == 0) {
886 n = 12;
887 } else {
888 n = atoi(str)/4;
889 }
890
891 for(i = 0; i < n; i += 12) {
892 UsbCommand c;
893 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
894 c.ext1 = i;
895 SendCommand(&c, FALSE);
896 ReceiveCommand(&c);
897 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
898 PrintToScrollback("bad resp");
899 return;
900 }
901 int j;
902 for(j = 0; j < 48; j += 8) {
903 PrintToScrollback("%02x %02x %02x %02x %02x %02x %02x %02x",
904 c.d.asBytes[j+0],
905 c.d.asBytes[j+1],
906 c.d.asBytes[j+2],
907 c.d.asBytes[j+3],
908 c.d.asBytes[j+4],
909 c.d.asBytes[j+5],
910 c.d.asBytes[j+6],
911 c.d.asBytes[j+7],
912 c.d.asBytes[j+8]
913 );
914 }
915 }
916 }
917
918 static void CmdHisampless(char *str)
919 {
920 int cnt = 0;
921 int i;
922 int n;
923
924 if(atoi(str) == 0) {
925 n = 1000;
926 } else {
927 n = atoi(str)/4;
928 }
929
930 for(i = 0; i < n; i += 12) {
931 UsbCommand c;
932 c.cmd = CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K;
933 c.ext1 = i;
934 SendCommand(&c, FALSE);
935 ReceiveCommand(&c);
936 if(c.cmd != CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K) {
937 PrintToScrollback("bad resp");
938 return;
939 }
940 int j;
941 for(j = 0; j < 48; j++) {
942 GraphBuffer[cnt++] = (int)((signed char)c.d.asBytes[j]);
943 }
944 }
945 GraphTraceLen = cnt;
946
947 RepaintGraphWindow();
948 }
949
950 static WORD Iso15693Crc(BYTE *v, int n)
951 {
952 DWORD reg;
953 int i, j;
954
955 reg = 0xffff;
956 for(i = 0; i < n; i++) {
957 reg = reg ^ ((DWORD)v[i]);
958 for (j = 0; j < 8; j++) {
959 if (reg & 0x0001) {
960 reg = (reg >> 1) ^ 0x8408;
961 } else {
962 reg = (reg >> 1);
963 }
964 }
965 }
966
967 return (WORD)~reg;
968 }
969
970 static void CmdHi14bdemod(char *str)
971 {
972 int i, j, iold;
973 int isum, qsum;
974 int outOfWeakAt;
975 BOOL negateI, negateQ;
976
977 BYTE data[256];
978 int dataLen=0;
979
980 // As received, the samples are pairs, correlations against I and Q
981 // square waves. So estimate angle of initial carrier (or just
982 // quadrant, actually), and then do the demod.
983
984 // First, estimate where the tag starts modulating.
985 for(i = 0; i < GraphTraceLen; i += 2) {
986 if(abs(GraphBuffer[i]) + abs(GraphBuffer[i+1]) > 40) {
987 break;
988 }
989 }
990 if(i >= GraphTraceLen) {
991 PrintToScrollback("too weak to sync");
992 return;
993 }
994 PrintToScrollback("out of weak at %d", i);
995 outOfWeakAt = i;
996
997 // Now, estimate the phase in the initial modulation of the tag
998 isum = 0;
999 qsum = 0;
1000 for(; i < (outOfWeakAt + 16); i += 2) {
1001 isum += GraphBuffer[i+0];
1002 qsum += GraphBuffer[i+1];
1003 }
1004 negateI = (isum < 0);
1005 negateQ = (qsum < 0);
1006
1007 // Turn the correlation pairs into soft decisions on the bit.
1008 j = 0;
1009 for(i = 0; i < GraphTraceLen/2; i++) {
1010 int si = GraphBuffer[j];
1011 int sq = GraphBuffer[j+1];
1012 if(negateI) si = -si;
1013 if(negateQ) sq = -sq;
1014 GraphBuffer[i] = si + sq;
1015 j += 2;
1016 }
1017 GraphTraceLen = i;
1018
1019 i = outOfWeakAt/2;
1020 while(GraphBuffer[i] > 0 && i < GraphTraceLen)
1021 i++;
1022 if(i >= GraphTraceLen) goto demodError;
1023
1024 iold = i;
1025 while(GraphBuffer[i] < 0 && i < GraphTraceLen)
1026 i++;
1027 if(i >= GraphTraceLen) goto demodError;
1028 if((i - iold) > 23) goto demodError;
1029
1030 PrintToScrollback("make it to demod loop");
1031
1032 for(;;) {
1033 iold = i;
1034 while(GraphBuffer[i] >= 0 && i < GraphTraceLen)
1035 i++;
1036 if(i >= GraphTraceLen) goto demodError;
1037 if((i - iold) > 6) goto demodError;
1038
1039 WORD shiftReg = 0;
1040 if(i + 20 >= GraphTraceLen) goto demodError;
1041
1042 for(j = 0; j < 10; j++) {
1043 int soft = GraphBuffer[i] + GraphBuffer[i+1];
1044
1045 if(abs(soft) < ((abs(isum) + abs(qsum))/20)) {
1046 PrintToScrollback("weak bit");
1047 }
1048
1049 shiftReg >>= 1;
1050 if(GraphBuffer[i] + GraphBuffer[i+1] >= 0) {
1051 shiftReg |= 0x200;
1052 }
1053
1054 i+= 2;
1055 }
1056
1057 if( (shiftReg & 0x200) &&
1058 !(shiftReg & 0x001))
1059 {
1060 // valid data byte, start and stop bits okay
1061 PrintToScrollback(" %02x", (shiftReg >> 1) & 0xff);
1062 data[dataLen++] = (shiftReg >> 1) & 0xff;
1063 if(dataLen >= sizeof(data)) {
1064 return;
1065 }
1066 } else if(shiftReg == 0x000) {
1067 // this is EOF
1068 break;
1069 } else {
1070 goto demodError;
1071 }
1072 }
1073
1074 BYTE first, second;
1075 ComputeCrc14443(CRC_14443_B, data, dataLen-2, &first, &second);
1076 PrintToScrollback("CRC: %02x %02x (%s)\n", first, second,
1077 (first == data[dataLen-2] && second == data[dataLen-1]) ?
1078 "ok" : "****FAIL****");
1079
1080 RepaintGraphWindow();
1081 return;
1082
1083 demodError:
1084 PrintToScrollback("demod error");
1085 RepaintGraphWindow();
1086 }
1087
1088 static void CmdHi14list(char *str)
1089 {
1090 BYTE got[960];
1091 GetFromBigBuf(got, sizeof(got));
1092
1093 PrintToScrollback("recorded activity:");
1094 PrintToScrollback(" time :rssi: who bytes");
1095 PrintToScrollback("---------+----+----+-----------");
1096
1097 int i = 0;
1098 int prev = -1;
1099
1100 for(;;) {
1101 if(i >= 900) {
1102 break;
1103 }
1104
1105 BOOL isResponse;
1106 int timestamp = *((DWORD *)(got+i));
1107 if(timestamp & 0x80000000) {
1108 timestamp &= 0x7fffffff;
1109 isResponse = 1;
1110 } else {
1111 isResponse = 0;
1112 }
1113 int metric = *((DWORD *)(got+i+4));
1114
1115 int len = got[i+8];
1116
1117 if(len > 100) {
1118 break;
1119 }
1120 if(i + len >= 900) {
1121 break;
1122 }
1123
1124 BYTE *frame = (got+i+9);
1125
1126 char line[1000] = "";
1127 int j;
1128 for(j = 0; j < len; j++) {
1129 sprintf(line+(j*3), "%02x ", frame[j]);
1130 }
1131
1132 char *crc;
1133 if(len > 2) {
1134 BYTE b1, b2;
1135 ComputeCrc14443(CRC_14443_B, frame, len-2, &b1, &b2);
1136 if(b1 != frame[len-2] || b2 != frame[len-1]) {
1137 crc = "**FAIL CRC**";
1138 } else {
1139 crc = "";
1140 }
1141 } else {
1142 crc = "(SHORT)";
1143 }
1144
1145 char metricString[100];
1146 if(isResponse) {
1147 sprintf(metricString, "%3d", metric);
1148 } else {
1149 strcpy(metricString, " ");
1150 }
1151
1152 PrintToScrollback(" +%7d: %s: %s %s %s",
1153 (prev < 0 ? 0 : timestamp - prev),
1154 metricString,
1155 (isResponse ? "TAG" : " "), line, crc);
1156
1157 prev = timestamp;
1158 i += (len + 9);
1159 }
1160 }
1161
1162 static void CmdHi14alist(char *str)
1163 {
1164 BYTE got[1920];
1165 GetFromBigBuf(got, sizeof(got));
1166
1167 PrintToScrollback("recorded activity:");
1168 PrintToScrollback(" ETU :rssi: who bytes");
1169 PrintToScrollback("---------+----+----+-----------");
1170
1171 int i = 0;
1172 int prev = -1;
1173
1174 for(;;) {
1175 if(i >= 1900) {
1176 break;
1177 }
1178
1179 BOOL isResponse;
1180 int timestamp = *((DWORD *)(got+i));
1181 if(timestamp & 0x80000000) {
1182 timestamp &= 0x7fffffff;
1183 isResponse = 1;
1184 } else {
1185 isResponse = 0;
1186 }
1187
1188 int metric = 0;
1189 int parityBits = *((DWORD *)(got+i+4));
1190 // 4 bytes of additional information...
1191 // maximum of 32 additional parity bit information
1192 //
1193 // TODO:
1194 // at each quarter bit period we can send power level (16 levels)
1195 // or each half bit period in 256 levels.
1196
1197
1198 int len = got[i+8];
1199
1200 if(len > 100) {
1201 break;
1202 }
1203 if(i + len >= 1900) {
1204 break;
1205 }
1206
1207 BYTE *frame = (got+i+9);
1208
1209 // Break and stick with current result if buffer was not completely full
1210 if(frame[0] == 0x44 && frame[1] == 0x44 && frame[3] == 0x44) { break; }
1211
1212 char line[1000] = "";
1213 int j;
1214 for(j = 0; j < len; j++) {
1215 int oddparity = 0x01;
1216 int k;
1217
1218 for(k=0;k<8;k++) {
1219 oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
1220 }
1221
1222 //if((parityBits >> (len - j - 1)) & 0x01) {
1223 if(isResponse && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) {
1224 sprintf(line+(j*4), "%02x! ", frame[j]);
1225 }
1226 else {
1227 sprintf(line+(j*4), "%02x ", frame[j]);
1228 }
1229 }
1230
1231 char *crc;
1232 crc = "";
1233 if(len > 2) {
1234 BYTE b1, b2;
1235 for(j = 0; j < (len - 1); j++) {
1236 // gives problems... search for the reason..
1237 /*if(frame[j] == 0xAA) {
1238 switch(frame[j+1]) {
1239 case 0x01:
1240 crc = "[1] Two drops close after each other";
1241 break;
1242 case 0x02:
1243 crc = "[2] Potential SOC with a drop in second half of bitperiod";
1244 break;
1245 case 0x03:
1246 crc = "[3] Segment Z after segment X is not possible";
1247 break;
1248 case 0x04:
1249 crc = "[4] Parity bit of a fully received byte was wrong";
1250 break;
1251 default:
1252 crc = "[?] Unknown error";
1253 break;
1254 }
1255 break;
1256 }*/
1257 }
1258
1259 if(strlen(crc)==0) {
1260 ComputeCrc14443(CRC_14443_A, frame, len-2, &b1, &b2);
1261 if(b1 != frame[len-2] || b2 != frame[len-1]) {
1262 crc = (isResponse & (len < 6)) ? "" : " !crc";
1263 } else {
1264 crc = "";
1265 }
1266 }
1267 } else {
1268 crc = ""; // SHORT
1269 }
1270
1271 char metricString[100];
1272 if(isResponse) {
1273 sprintf(metricString, "%3d", metric);
1274 } else {
1275 strcpy(metricString, " ");
1276 }
1277
1278 PrintToScrollback(" +%7d: %s: %s %s %s",
1279 (prev < 0 ? 0 : (timestamp - prev)),
1280 metricString,
1281 (isResponse ? "TAG" : " "), line, crc);
1282
1283 prev = timestamp;
1284 i += (len + 9);
1285 }
1286 CommandFinished = 1;
1287 }
1288
1289 static void CmdHi15demod(char *str)
1290 {
1291 // The sampling rate is 106.353 ksps/s, for T = 18.8 us
1292
1293 // SOF defined as
1294 // 1) Unmodulated time of 56.64us
1295 // 2) 24 pulses of 423.75khz
1296 // 3) logic '1' (unmodulated for 18.88us followed by 8 pulses of 423.75khz)
1297
1298 static const int FrameSOF[] = {
1299 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1300 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1301 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1302 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1303 -1, -1, -1, -1,
1304 -1, -1, -1, -1,
1305 1, 1, 1, 1,
1306 1, 1, 1, 1
1307 };
1308 static const int Logic0[] = {
1309 1, 1, 1, 1,
1310 1, 1, 1, 1,
1311 -1, -1, -1, -1,
1312 -1, -1, -1, -1
1313 };
1314 static const int Logic1[] = {
1315 -1, -1, -1, -1,
1316 -1, -1, -1, -1,
1317 1, 1, 1, 1,
1318 1, 1, 1, 1
1319 };
1320
1321 // EOF defined as
1322 // 1) logic '0' (8 pulses of 423.75khz followed by unmodulated for 18.88us)
1323 // 2) 24 pulses of 423.75khz
1324 // 3) Unmodulated time of 56.64us
1325
1326 static const int FrameEOF[] = {
1327 1, 1, 1, 1,
1328 1, 1, 1, 1,
1329 -1, -1, -1, -1,
1330 -1, -1, -1, -1,
1331 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1332 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1333 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1334 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
1335 };
1336
1337 int i, j;
1338 int max = 0, maxPos;
1339
1340 int skip = 4;
1341
1342 if(GraphTraceLen < 1000) return;
1343
1344 // First, correlate for SOF
1345 for(i = 0; i < 100; i++) {
1346 int corr = 0;
1347 for(j = 0; j < arraylen(FrameSOF); j += skip) {
1348 corr += FrameSOF[j]*GraphBuffer[i+(j/skip)];
1349 }
1350 if(corr > max) {
1351 max = corr;
1352 maxPos = i;
1353 }
1354 }
1355 PrintToScrollback("SOF at %d, correlation %d", maxPos,
1356 max/(arraylen(FrameSOF)/skip));
1357
1358 i = maxPos + arraylen(FrameSOF)/skip;
1359 int k = 0;
1360 BYTE outBuf[20];
1361 memset(outBuf, 0, sizeof(outBuf));
1362 BYTE mask = 0x01;
1363 for(;;) {
1364 int corr0 = 0, corr1 = 0, corrEOF = 0;
1365 for(j = 0; j < arraylen(Logic0); j += skip) {
1366 corr0 += Logic0[j]*GraphBuffer[i+(j/skip)];
1367 }
1368 for(j = 0; j < arraylen(Logic1); j += skip) {
1369 corr1 += Logic1[j]*GraphBuffer[i+(j/skip)];
1370 }
1371 for(j = 0; j < arraylen(FrameEOF); j += skip) {
1372 corrEOF += FrameEOF[j]*GraphBuffer[i+(j/skip)];
1373 }
1374 // Even things out by the length of the target waveform.
1375 corr0 *= 4;
1376 corr1 *= 4;
1377
1378 if(corrEOF > corr1 && corrEOF > corr0) {
1379 PrintToScrollback("EOF at %d", i);
1380 break;
1381 } else if(corr1 > corr0) {
1382 i += arraylen(Logic1)/skip;
1383 outBuf[k] |= mask;
1384 } else {
1385 i += arraylen(Logic0)/skip;
1386 }
1387 mask <<= 1;
1388 if(mask == 0) {
1389 k++;
1390 mask = 0x01;
1391 }
1392 if((i+(int)arraylen(FrameEOF)) >= GraphTraceLen) {
1393 PrintToScrollback("ran off end!");
1394 break;
1395 }
1396 }
1397 if(mask != 0x01) {
1398 PrintToScrollback("error, uneven octet! (discard extra bits!)");
1399 PrintToScrollback(" mask=%02x", mask);
1400 }
1401 PrintToScrollback("%d octets", k);
1402
1403 for(i = 0; i < k; i++) {
1404 PrintToScrollback("# %2d: %02x ", i, outBuf[i]);
1405 }
1406 PrintToScrollback("CRC=%04x", Iso15693Crc(outBuf, k-2));
1407 }
1408
1409 static void CmdFSKdemod(char *cmdline)
1410 {
1411 static const int LowTone[] = {
1412 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1413 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1414 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1415 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1416 1, 1, 1, 1, 1, -1, -1, -1, -1, -1
1417 };
1418 static const int HighTone[] = {
1419 1, 1, 1, 1, 1, -1, -1, -1, -1,
1420 1, 1, 1, 1, -1, -1, -1, -1,
1421 1, 1, 1, 1, -1, -1, -1, -1,
1422 1, 1, 1, 1, -1, -1, -1, -1,
1423 1, 1, 1, 1, -1, -1, -1, -1,
1424 1, 1, 1, 1, -1, -1, -1, -1, -1,
1425 };
1426
1427 int lowLen = sizeof(LowTone)/sizeof(int);
1428 int highLen = sizeof(HighTone)/sizeof(int);
1429 int convLen = (highLen>lowLen)?highLen:lowLen;
1430 DWORD hi = 0, lo = 0;
1431
1432 int i, j;
1433 int minMark=0, maxMark=0;
1434
1435 for(i = 0; i < GraphTraceLen - convLen; i++) {
1436 int lowSum = 0, highSum = 0;
1437
1438 for(j = 0; j < lowLen; j++) {
1439 lowSum += LowTone[j]*GraphBuffer[i+j];
1440 }
1441 for(j = 0; j < highLen; j++) {
1442 highSum += HighTone[j]*GraphBuffer[i+j];
1443 }
1444 lowSum = abs((100*lowSum) / lowLen);
1445 highSum = abs((100*highSum) / highLen);
1446 GraphBuffer[i] = (highSum << 16) | lowSum;
1447 }
1448
1449 for(i = 0; i < GraphTraceLen - convLen - 16; i++) {
1450 int j;
1451 int lowTot = 0, highTot = 0;
1452 // 10 and 8 are f_s divided by f_l and f_h, rounded
1453 for(j = 0; j < 10; j++) {
1454 lowTot += (GraphBuffer[i+j] & 0xffff);
1455 }
1456 for(j = 0; j < 8; j++) {
1457 highTot += (GraphBuffer[i+j] >> 16);
1458 }
1459 GraphBuffer[i] = lowTot - highTot;
1460 if (GraphBuffer[i]>maxMark) maxMark=GraphBuffer[i];
1461 if (GraphBuffer[i]<minMark) minMark=GraphBuffer[i];
1462 }
1463
1464 GraphTraceLen -= (convLen + 16);
1465
1466 RepaintGraphWindow();
1467
1468 // Find bit-sync (3 lo followed by 3 high)
1469 int max = 0, maxPos = 0;
1470 for(i = 0; i < 6000; i++) {
1471 int dec = 0;
1472 for(j = 0; j < 3*lowLen; j++) {
1473 dec -= GraphBuffer[i+j];
1474 }
1475 for(; j < 3*(lowLen + highLen ); j++) {
1476 dec += GraphBuffer[i+j];
1477 }
1478 if(dec > max) {
1479 max = dec;
1480 maxPos = i;
1481 }
1482 }
1483
1484 // place start of bit sync marker in graph
1485 GraphBuffer[maxPos] = maxMark;
1486 GraphBuffer[maxPos+1] = minMark;
1487
1488 maxPos += j;
1489
1490 // place end of bit sync marker in graph
1491 GraphBuffer[maxPos] = maxMark;
1492 GraphBuffer[maxPos+1] = minMark;
1493
1494 PrintToScrollback("actual data bits start at sample %d", maxPos);
1495 PrintToScrollback("length %d/%d", highLen, lowLen);
1496
1497 BYTE bits[46];
1498 bits[sizeof(bits)-1] = '\0';
1499
1500 // find bit pairs and manchester decode them
1501 for(i = 0; i < arraylen(bits)-1; i++) {
1502 int dec = 0;
1503 for(j = 0; j < lowLen; j++) {
1504 dec -= GraphBuffer[maxPos+j];
1505 }
1506 for(; j < lowLen + highLen; j++) {
1507 dec += GraphBuffer[maxPos+j];
1508 }
1509 maxPos += j;
1510 // place inter bit marker in graph
1511 GraphBuffer[maxPos] = maxMark;
1512 GraphBuffer[maxPos+1] = minMark;
1513
1514 // hi and lo form a 64 bit pair
1515 hi = (hi<<1)|(lo>>31);
1516 lo = (lo<<1);
1517 // store decoded bit as binary (in hi/lo) and text (in bits[])
1518 if(dec<0) {
1519 bits[i] = '1';
1520 lo|=1;
1521 } else {
1522 bits[i] = '0';
1523 }
1524 }
1525 PrintToScrollback("bits: '%s'", bits);
1526 PrintToScrollback("hex: %08x %08x", hi, lo);
1527 }
1528
1529 // read a TI tag and return its ID
1530 static void CmdTIRead(char *str)
1531 {
1532 UsbCommand c;
1533 c.cmd = CMD_READ_TI_TYPE;
1534 SendCommand(&c, FALSE);
1535 }
1536
1537 // write new data to a r/w TI tag
1538 static void CmdTIWrite(char *str)
1539 {
1540 UsbCommand c;
1541 int res=0;
1542
1543 c.cmd = CMD_WRITE_TI_TYPE;
1544 res = sscanf(str, "0x%x 0x%x 0x%x ", &c.ext1, &c.ext2, &c.ext3);
1545 if (res == 2) c.ext3=0;
1546 if (res<2)
1547 PrintToScrollback("Please specify the data as two hex strings, optionally the CRC as a third");
1548 else
1549 SendCommand(&c, FALSE);
1550 }
1551
1552 static void CmdTIDemod(char *cmdline)
1553 {
1554 /* MATLAB as follows:
1555 f_s = 2000000; % sampling frequency
1556 f_l = 123200; % low FSK tone
1557 f_h = 134200; % high FSK tone
1558
1559 T_l = 119e-6; % low bit duration
1560 T_h = 130e-6; % high bit duration
1561
1562 l = 2*pi*ones(1, floor(f_s*T_l))*(f_l/f_s);
1563 h = 2*pi*ones(1, floor(f_s*T_h))*(f_h/f_s);
1564
1565 l = sign(sin(cumsum(l)));
1566 h = sign(sin(cumsum(h)));
1567 */
1568
1569 // 2M*16/134.2k = 238
1570 static const int LowTone[] = {
1571 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1572 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1573 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1574 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1575 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1576 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1577 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1578 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1580 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1581 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1582 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1583 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1584 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1585 1, 1, 1, 1, 1, 1, 1, 1, -1, -1
1586 };
1587 // 2M*16/123.2k = 260
1588 static const int HighTone[] = {
1589 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1590 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1591 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1592 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1593 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1594 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1595 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1596 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1597 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1598 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1599 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1600 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1601 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1602 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1603 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1604 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
1605 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
1606 1, 1, 1, 1, 1, 1, 1, 1
1607 };
1608 int lowLen = sizeof(LowTone)/sizeof(int);
1609 int highLen = sizeof(HighTone)/sizeof(int);
1610 int convLen = (highLen>lowLen)?highLen:lowLen;
1611 WORD crc;
1612 int i, j, TagType;
1613 int lowSum = 0, highSum = 0;;
1614 int lowTot = 0, highTot = 0;
1615
1616 for(i = 0; i < GraphTraceLen - convLen; i++) {
1617 lowSum = 0;
1618 highSum = 0;;
1619
1620 for(j = 0; j < lowLen; j++) {
1621 lowSum += LowTone[j]*GraphBuffer[i+j];
1622 }
1623 for(j = 0; j < highLen; j++) {
1624 highSum += HighTone[j]*GraphBuffer[i+j];
1625 }
1626 lowSum = abs((100*lowSum) / lowLen);
1627 highSum = abs((100*highSum) / highLen);
1628 lowSum = (lowSum<0)?-lowSum:lowSum;
1629 highSum = (highSum<0)?-highSum:highSum;
1630
1631 GraphBuffer[i] = (highSum << 16) | lowSum;
1632 }
1633
1634 for(i = 0; i < GraphTraceLen - convLen - 16; i++) {
1635 lowTot = 0;
1636 highTot = 0;
1637 // 16 and 15 are f_s divided by f_l and f_h, rounded
1638 for(j = 0; j < 16; j++) {
1639 lowTot += (GraphBuffer[i+j] & 0xffff);
1640 }
1641 for(j = 0; j < 15; j++) {
1642 highTot += (GraphBuffer[i+j] >> 16);
1643 }
1644 GraphBuffer[i] = lowTot - highTot;
1645 }
1646
1647 GraphTraceLen -= (convLen + 16);
1648
1649 RepaintGraphWindow();
1650
1651 // TI tag data format is 16 prebits, 8 start bits, 64 data bits,
1652 // 16 crc CCITT bits, 8 stop bits, 15 end bits
1653
1654 // the 16 prebits are always low
1655 // the 8 start and stop bits of a tag must match
1656 // the start/stop prebits of a ro tag are 01111110
1657 // the start/stop prebits of a rw tag are 11111110
1658 // the 15 end bits of a ro tag are all low
1659 // the 15 end bits of a rw tag match bits 15-1 of the data bits
1660
1661 // Okay, so now we have unsliced soft decisions;
1662 // find bit-sync, and then get some bits.
1663 // look for 17 low bits followed by 6 highs (common pattern for ro and rw tags)
1664 int max = 0, maxPos = 0;
1665 for(i = 0; i < 6000; i++) {
1666 int j;
1667 int dec = 0;
1668 // searching 17 consecutive lows
1669 for(j = 0; j < 17*lowLen; j++) {
1670 dec -= GraphBuffer[i+j];
1671 }
1672 // searching 7 consecutive highs
1673 for(; j < 17*lowLen + 6*highLen; j++) {
1674 dec += GraphBuffer[i+j];
1675 }
1676 if(dec > max) {
1677 max = dec;
1678 maxPos = i;
1679 }
1680 }
1681
1682 // place a marker in the buffer to visually aid location
1683 // of the start of sync
1684 GraphBuffer[maxPos] = 800;
1685 GraphBuffer[maxPos+1] = -800;
1686
1687 // advance pointer to start of actual data stream (after 16 pre and 8 start bits)
1688 maxPos += 17*lowLen;
1689 maxPos += 6*highLen;
1690
1691 // place a marker in the buffer to visually aid location
1692 // of the end of sync
1693 GraphBuffer[maxPos] = 800;
1694 GraphBuffer[maxPos+1] = -800;
1695
1696 PrintToScrollback("actual data bits start at sample %d", maxPos);
1697
1698 PrintToScrollback("length %d/%d", highLen, lowLen);
1699
1700 BYTE bits[1+64+16+8+16];
1701 bits[sizeof(bits)-1] = '\0';
1702
1703 DWORD shift3 = 0x7e000000, shift2 = 0, shift1 = 0, shift0 = 0;
1704
1705 for(i = 0; i < arraylen(bits)-1; i++) {
1706 int high = 0;
1707 int low = 0;
1708 int j;
1709 for(j = 0; j < lowLen; j++) {
1710 low -= GraphBuffer[maxPos+j];
1711 }
1712 for(j = 0; j < highLen; j++) {
1713 high += GraphBuffer[maxPos+j];
1714 }
1715
1716 if(high > low) {
1717 bits[i] = '1';
1718 maxPos += highLen;
1719 // bitstream arrives lsb first so shift right
1720 shift3 |= (1<<31);
1721 } else {
1722 bits[i] = '.';
1723 maxPos += lowLen;
1724 }
1725
1726 // 128 bit right shift register
1727 shift0 = (shift0>>1) | (shift1 << 31);
1728 shift1 = (shift1>>1) | (shift2 << 31);
1729 shift2 = (shift2>>1) | (shift3 << 31);
1730 shift3 >>= 1;
1731
1732 // place a marker in the buffer between bits to visually aid location
1733 GraphBuffer[maxPos] = 800;
1734 GraphBuffer[maxPos+1] = -800;
1735 }
1736 PrintToScrollback("Info: raw tag bits = %s", bits);
1737
1738 TagType = (shift3>>8)&0xff;
1739 if ( TagType != ((shift0>>16)&0xff) ) {
1740 PrintToScrollback("Error: start and stop bits do not match!");
1741 return;
1742 }
1743 else if (TagType == 0x7e) {
1744 PrintToScrollback("Info: Readonly TI tag detected.");
1745 return;
1746 }
1747 else if (TagType == 0xfe) {
1748 PrintToScrollback("Info: Rewriteable TI tag detected.");
1749
1750 // put 64 bit data into shift1 and shift0
1751 shift0 = (shift0>>24) | (shift1 << 8);
1752 shift1 = (shift1>>24) | (shift2 << 8);
1753
1754 // align 16 bit crc into lower half of shift2
1755 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
1756
1757 // align 16 bit "end bits" or "ident" into lower half of shift3
1758 shift3 >>= 16;
1759
1760 // only 15 bits compare, last bit of ident is not valid
1761 if ( (shift3^shift0)&0x7fff ) {
1762 PrintToScrollback("Error: Ident mismatch!");
1763 }
1764 // WARNING the order of the bytes in which we calc crc below needs checking
1765 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
1766 // bytes in reverse or something
1767 // calculate CRC
1768 crc=0;
1769 crc = update_crc16(crc, (shift0)&0xff);
1770 crc = update_crc16(crc, (shift0>>8)&0xff);
1771 crc = update_crc16(crc, (shift0>>16)&0xff);
1772 crc = update_crc16(crc, (shift0>>24)&0xff);
1773 crc = update_crc16(crc, (shift1)&0xff);
1774 crc = update_crc16(crc, (shift1>>8)&0xff);
1775 crc = update_crc16(crc, (shift1>>16)&0xff);
1776 crc = update_crc16(crc, (shift1>>24)&0xff);
1777 PrintToScrollback("Info: Tag data = %08X%08X", shift1, shift0);
1778 if (crc != (shift2&0xffff)) {
1779 PrintToScrollback("Error: CRC mismatch, calculated %04X, got ^04X", crc, shift2&0xffff);
1780 } else {
1781 PrintToScrollback("Info: CRC %04X is good", crc);
1782 }
1783 }
1784 else {
1785 PrintToScrollback("Unknown tag type.");
1786 return;
1787 }
1788 }
1789
1790 static void CmdNorm(char *str)
1791 {
1792 int i;
1793 int max = INT_MIN, min = INT_MAX;
1794 for(i = 10; i < GraphTraceLen; i++) {
1795 if(GraphBuffer[i] > max) {
1796 max = GraphBuffer[i];
1797 }
1798 if(GraphBuffer[i] < min) {
1799 min = GraphBuffer[i];
1800 }
1801 }
1802 if(max != min) {
1803 for(i = 0; i < GraphTraceLen; i++) {
1804 GraphBuffer[i] = (GraphBuffer[i] - ((max + min)/2))*1000/
1805 (max - min);
1806 }
1807 }
1808 RepaintGraphWindow();
1809 }
1810
1811 static void CmdDec(char *str)
1812 {
1813 int i;
1814 for(i = 0; i < (GraphTraceLen/2); i++) {
1815 GraphBuffer[i] = GraphBuffer[i*2];
1816 }
1817 GraphTraceLen /= 2;
1818 PrintToScrollback("decimated by 2");
1819 RepaintGraphWindow();
1820 }
1821
1822 static void CmdHpf(char *str)
1823 {
1824 int i;
1825 int accum = 0;
1826 for(i = 10; i < GraphTraceLen; i++) {
1827 accum += GraphBuffer[i];
1828 }
1829 accum /= (GraphTraceLen - 10);
1830 for(i = 0; i < GraphTraceLen; i++) {
1831 GraphBuffer[i] -= accum;
1832 }
1833
1834 RepaintGraphWindow();
1835 }
1836
1837 static void CmdZerocrossings(char *str)
1838 {
1839 int i;
1840 // Zero-crossings aren't meaningful unless the signal is zero-mean.
1841 CmdHpf("");
1842
1843 int sign = 1;
1844 int zc = 0;
1845 int lastZc = 0;
1846 for(i = 0; i < GraphTraceLen; i++) {
1847 if(GraphBuffer[i]*sign >= 0) {
1848 // No change in sign, reproduce the previous sample count.
1849 zc++;
1850 GraphBuffer[i] = lastZc;
1851 } else {
1852 // Change in sign, reset the sample count.
1853 sign = -sign;
1854 GraphBuffer[i] = lastZc;
1855 if(sign > 0) {
1856 lastZc = zc;
1857 zc = 0;
1858 }
1859 }
1860 }
1861
1862 RepaintGraphWindow();
1863 }
1864
1865 static void CmdThreshold(char *str)
1866 {
1867 int i;
1868 int threshold = atoi(str);
1869
1870 for(i = 0; i < GraphTraceLen; i++) {
1871 if(GraphBuffer[i]>= threshold)
1872 GraphBuffer[i]=1;
1873 else
1874 GraphBuffer[i]=-1;
1875 }
1876 RepaintGraphWindow();
1877 }
1878
1879 static void CmdLtrim(char *str)
1880 {
1881 int i;
1882 int ds = atoi(str);
1883
1884 for(i = ds; i < GraphTraceLen; i++) {
1885 GraphBuffer[i-ds] = GraphBuffer[i];
1886 }
1887 GraphTraceLen -= ds;
1888
1889 RepaintGraphWindow();
1890 }
1891
1892 static void CmdAutoCorr(char *str)
1893 {
1894 static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
1895
1896 int window = atoi(str);
1897
1898 if(window == 0) {
1899 PrintToScrollback("needs a window");
1900 return;
1901 }
1902
1903 if(window >= GraphTraceLen) {
1904 PrintToScrollback("window must be smaller than trace (%d samples)",
1905 GraphTraceLen);
1906 return;
1907 }
1908
1909 PrintToScrollback("performing %d correlations", GraphTraceLen - window);
1910
1911 int i;
1912 for(i = 0; i < GraphTraceLen - window; i++) {
1913 int sum = 0;
1914 int j;
1915 for(j = 0; j < window; j++) {
1916 sum += (GraphBuffer[j]*GraphBuffer[i+j]) / 256;
1917 }
1918 CorrelBuffer[i] = sum;
1919 }
1920 GraphTraceLen = GraphTraceLen - window;
1921 memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen*sizeof(int));
1922
1923 RepaintGraphWindow();
1924 }
1925
1926 static void CmdVchdemod(char *str)
1927 {
1928 // Is this the entire sync pattern, or does this also include some
1929 // data bits that happen to be the same everywhere? That would be
1930 // lovely to know.
1931 static const int SyncPattern[] = {
1932 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1933 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1934 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1935 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1936 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1937 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1938 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1939 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1940 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1941 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1942 };
1943
1944 // So first, we correlate for the sync pattern, and mark that.
1945 int bestCorrel = 0, bestPos = 0;
1946 int i;
1947 // It does us no good to find the sync pattern, with fewer than
1948 // 2048 samples after it...
1949 for(i = 0; i < (GraphTraceLen-2048); i++) {
1950 int sum = 0;
1951 int j;
1952 for(j = 0; j < arraylen(SyncPattern); j++) {
1953 sum += GraphBuffer[i+j]*SyncPattern[j];
1954 }
1955 if(sum > bestCorrel) {
1956 bestCorrel = sum;
1957 bestPos = i;
1958 }
1959 }
1960 PrintToScrollback("best sync at %d [metric %d]", bestPos, bestCorrel);
1961
1962 char bits[257];
1963 bits[256] = '\0';
1964
1965 int worst = INT_MAX;
1966 int worstPos;
1967
1968 for(i = 0; i < 2048; i += 8) {
1969 int sum = 0;
1970 int j;
1971 for(j = 0; j < 8; j++) {
1972 sum += GraphBuffer[bestPos+i+j];
1973 }
1974 if(sum < 0) {
1975 bits[i/8] = '.';
1976 } else {
1977 bits[i/8] = '1';
1978 }
1979 if(abs(sum) < worst) {
1980 worst = abs(sum);
1981 worstPos = i;
1982 }
1983 }
1984 PrintToScrollback("bits:");
1985 PrintToScrollback("%s", bits);
1986 PrintToScrollback("worst metric: %d at pos %d", worst, worstPos);
1987
1988 if(strcmp(str, "clone")==0) {
1989 GraphTraceLen = 0;
1990 char *s;
1991 for(s = bits; *s; s++) {
1992 int j;
1993 for(j = 0; j < 16; j++) {
1994 GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
1995 }
1996 }
1997 RepaintGraphWindow();
1998 }
1999 }
2000
2001 static void CmdIndalademod(char *str)
2002 {
2003 // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
2004
2005 int state = -1;
2006 int count = 0;
2007 int i, j;
2008 // worst case with GraphTraceLen=64000 is < 4096
2009 // under normal conditions it's < 2048
2010 BYTE rawbits[4096];
2011 int rawbit = 0;
2012 int worst = 0, worstPos = 0;
2013 PrintToScrollback("Expecting a bit less than %d raw bits", GraphTraceLen/32);
2014 for(i = 0; i < GraphTraceLen-1; i += 2) {
2015 count+=1;
2016 if((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
2017 if (state == 0) {
2018 for(j = 0; j < count - 8; j += 16) {
2019 rawbits[rawbit++] = 0;
2020 }
2021 if ((abs(count - j)) > worst) {
2022 worst = abs(count - j);
2023 worstPos = i;
2024 }
2025 }
2026 state = 1;
2027 count=0;
2028 } else if((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
2029 if (state == 1) {
2030 for(j = 0; j < count - 8; j += 16) {
2031 rawbits[rawbit++] = 1;
2032 }
2033 if ((abs(count - j)) > worst) {
2034 worst = abs(count - j);
2035 worstPos = i;
2036 }
2037 }
2038 state = 0;
2039 count=0;
2040 }
2041 }
2042 PrintToScrollback("Recovered %d raw bits", rawbit);
2043 PrintToScrollback("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
2044
2045 // Finding the start of a UID
2046 int uidlen, long_wait;
2047 if(strcmp(str, "224") == 0) {
2048 uidlen=224;
2049 long_wait=30;
2050 } else {
2051 uidlen=64;
2052 long_wait=29;
2053 }
2054 int start;
2055 int first = 0;
2056 for(start = 0; start <= rawbit - uidlen; start++) {
2057 first = rawbits[start];
2058 for(i = start; i < start + long_wait; i++) {
2059 if(rawbits[i] != first) {
2060 break;
2061 }
2062 }
2063 if(i == (start + long_wait)) {
2064 break;
2065 }
2066 }
2067 if(start == rawbit - uidlen + 1) {
2068 PrintToScrollback("nothing to wait for");
2069 return;
2070 }
2071
2072 // Inverting signal if needed
2073 if(first == 1) {
2074 for(i = start; i < rawbit; i++) {
2075 rawbits[i] = !rawbits[i];
2076 }
2077 }
2078
2079 // Dumping UID
2080 BYTE bits[224];
2081 char showbits[225];
2082 showbits[uidlen]='\0';
2083 int bit;
2084 i = start;
2085 int times = 0;
2086 if(uidlen > rawbit) {
2087 PrintToScrollback("Warning: not enough raw bits to get a full UID");
2088 for(bit = 0; bit < rawbit; bit++) {
2089 bits[bit] = rawbits[i++];
2090 // As we cannot know the parity, let's use "." and "/"
2091 showbits[bit] = '.' + bits[bit];
2092 }
2093 showbits[bit+1]='\0';
2094 PrintToScrollback("Partial UID=%s", showbits);
2095 return;
2096 } else {
2097 for(bit = 0; bit < uidlen; bit++) {
2098 bits[bit] = rawbits[i++];
2099 showbits[bit] = '0' + bits[bit];
2100 }
2101 times = 1;
2102 }
2103 PrintToScrollback("UID=%s", showbits);
2104
2105 // Checking UID against next occurences
2106 for(; i + uidlen <= rawbit;) {
2107 int failed = 0;
2108 for(bit = 0; bit < uidlen; bit++) {
2109 if(bits[bit] != rawbits[i++]) {
2110 failed = 1;
2111 break;
2112 }
2113 }
2114 if (failed == 1) {
2115 break;
2116 }
2117 times += 1;
2118 }
2119 PrintToScrollback("Occurences: %d (expected %d)", times, (rawbit - start) / uidlen);
2120
2121 // Remodulating for tag cloning
2122 GraphTraceLen = 32*uidlen;
2123 i = 0;
2124 int phase = 0;
2125 for(bit = 0; bit < uidlen; bit++) {
2126 if(bits[bit] == 0) {
2127 phase = 0;
2128 } else {
2129 phase = 1;
2130 }
2131 int j;
2132 for(j = 0; j < 32; j++) {
2133 GraphBuffer[i++] = phase;
2134 phase = !phase;
2135 }
2136 }
2137
2138 RepaintGraphWindow();
2139 }
2140
2141 static void CmdFlexdemod(char *str)
2142 {
2143 int i;
2144 for(i = 0; i < GraphTraceLen; i++) {
2145 if(GraphBuffer[i] < 0) {
2146 GraphBuffer[i] = -1;
2147 } else {
2148 GraphBuffer[i] = 1;
2149 }
2150 }
2151
2152 #define LONG_WAIT 100
2153 int start;
2154 for(start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
2155 int first = GraphBuffer[start];
2156 for(i = start; i < start + LONG_WAIT; i++) {
2157 if(GraphBuffer[i] != first) {
2158 break;
2159 }
2160 }
2161 if(i == (start + LONG_WAIT)) {
2162 break;
2163 }
2164 }
2165 if(start == GraphTraceLen - LONG_WAIT) {
2166 PrintToScrollback("nothing to wait for");
2167 return;
2168 }
2169
2170 GraphBuffer[start] = 2;
2171 GraphBuffer[start+1] = -2;
2172
2173 BYTE bits[64];
2174
2175 int bit;
2176 i = start;
2177 for(bit = 0; bit < 64; bit++) {
2178 int j;
2179 int sum = 0;
2180 for(j = 0; j < 16; j++) {
2181 sum += GraphBuffer[i++];
2182 }
2183 if(sum > 0) {
2184 bits[bit] = 1;
2185 } else {
2186 bits[bit] = 0;
2187 }
2188 PrintToScrollback("bit %d sum %d", bit, sum);
2189 }
2190
2191 for(bit = 0; bit < 64; bit++) {
2192 int j;
2193 int sum = 0;
2194 for(j = 0; j < 16; j++) {
2195 sum += GraphBuffer[i++];
2196 }
2197 if(sum > 0 && bits[bit] != 1) {
2198 PrintToScrollback("oops1 at %d", bit);
2199 }
2200 if(sum < 0 && bits[bit] != 0) {
2201 PrintToScrollback("oops2 at %d", bit);
2202 }
2203 }
2204
2205 GraphTraceLen = 32*64;
2206 i = 0;
2207 int phase = 0;
2208 for(bit = 0; bit < 64; bit++) {
2209 if(bits[bit] == 0) {
2210 phase = 0;
2211 } else {
2212 phase = 1;
2213 }
2214 int j;
2215 for(j = 0; j < 32; j++) {
2216 GraphBuffer[i++] = phase;
2217 phase = !phase;
2218 }
2219 }
2220
2221 RepaintGraphWindow();
2222 }
2223
2224 /*
2225 * Generic command to demodulate ASK.
2226 *
2227 * Argument is convention: positive or negative (High mod means zero
2228 * or high mod means one)
2229 *
2230 * Updates the Graph trace with 0/1 values
2231 *
2232 * Arguments:
2233 * c : 0 or 1
2234 */
2235
2236 static void Cmdaskdemod(char *str) {
2237 int i;
2238 int c, high = 0, low = 0;
2239
2240 // TODO: complain if we do not give 2 arguments here !
2241 sscanf(str, "%i", &c);
2242
2243 /* Detect high and lows and clock */
2244 for (i = 0; i < GraphTraceLen; i++)
2245 {
2246 if (GraphBuffer[i] > high)
2247 high = GraphBuffer[i];
2248 else if (GraphBuffer[i] < low)
2249 low = GraphBuffer[i];
2250 }
2251
2252 if (GraphBuffer[0] > 0) {
2253 GraphBuffer[0] = 1-c;
2254 } else {
2255 GraphBuffer[0] = c;
2256 }
2257 for(i=1;i<GraphTraceLen;i++) {
2258 /* Transitions are detected at each peak
2259 * Transitions are either:
2260 * - we're low: transition if we hit a high
2261 * - we're high: transition if we hit a low
2262 * (we need to do it this way because some tags keep high or
2263 * low for long periods, others just reach the peak and go
2264 * down)
2265 */
2266 if ((GraphBuffer[i]==high) && (GraphBuffer[i-1] == c)) {
2267 GraphBuffer[i]=1-c;
2268 } else if ((GraphBuffer[i]==low) && (GraphBuffer[i-1] == (1-c))){
2269 GraphBuffer[i] = c;
2270 } else {
2271 /* No transition */
2272 GraphBuffer[i] = GraphBuffer[i-1];
2273 }
2274 }
2275 RepaintGraphWindow();
2276 }
2277
2278 /* Print our clock rate */
2279 static void Cmddetectclockrate(char *str)
2280 {
2281 int clock = detectclock(0);
2282 PrintToScrollback("Auto-detected clock rate: %d", clock);
2283 }
2284
2285 /*
2286 * Detect clock rate
2287 */
2288 int detectclock(int peak)
2289 {
2290 int i;
2291 int clock = 0xFFFF;
2292 int lastpeak = 0;
2293
2294 /* Detect peak if we don't have one */
2295 if (!peak)
2296 for (i = 0; i < GraphTraceLen; i++)
2297 if (GraphBuffer[i] > peak)
2298 peak = GraphBuffer[i];
2299
2300 for (i = 1; i < GraphTraceLen; i++)
2301 {
2302 /* If this is the beginning of a peak */
2303 if (GraphBuffer[i-1] != GraphBuffer[i] && GraphBuffer[i] == peak)
2304 {
2305 /* Find lowest difference between peaks */
2306 if (lastpeak && i - lastpeak < clock)
2307 {
2308 clock = i - lastpeak;
2309 }
2310 lastpeak = i;
2311 }
2312 }
2313
2314 return clock;
2315 }
2316
2317 /* Get or auto-detect clock rate */
2318 int GetClock(char *str, int peak)
2319 {
2320 int clock;
2321
2322 sscanf(str, "%i", &clock);
2323 if (!strcmp(str, ""))
2324 clock = 0;
2325
2326 /* Auto-detect clock */
2327 if (!clock)
2328 {
2329 clock = detectclock(peak);
2330
2331 /* Only print this message if we're not looping something */
2332 if (!go)
2333 PrintToScrollback("Auto-detected clock rate: %d", clock);
2334 }
2335
2336 return clock;
2337 }
2338
2339 /*
2340 * Convert to a bitstream
2341 */
2342 static void Cmdbitstream(char *str) {
2343 int i, j;
2344 int bit;
2345 int gtl;
2346 int clock;
2347 int low = 0;
2348 int high = 0;
2349 int hithigh, hitlow, first;
2350
2351 /* Detect high and lows and clock */
2352 for (i = 0; i < GraphTraceLen; i++)
2353 {
2354 if (GraphBuffer[i] > high)
2355 high = GraphBuffer[i];
2356 else if (GraphBuffer[i] < low)
2357 low = GraphBuffer[i];
2358 }
2359
2360 /* Get our clock */
2361 clock = GetClock(str, high);
2362
2363 gtl = CmdClearGraph(0);
2364
2365 bit = 0;
2366 for (i = 0; i < (int)(gtl / clock); i++)
2367 {
2368 hithigh = 0;
2369 hitlow = 0;
2370 first = 1;
2371
2372 /* Find out if we hit both high and low peaks */
2373 for (j = 0; j < clock; j++)
2374 {
2375 if (GraphBuffer[(i * clock) + j] == high)
2376 hithigh = 1;
2377 else if (GraphBuffer[(i * clock) + j] == low)
2378 hitlow = 1;
2379
2380 /* it doesn't count if it's the first part of our read
2381 because it's really just trailing from the last sequence */
2382 if (first && (hithigh || hitlow))
2383 hithigh = hitlow = 0;
2384 else
2385 first = 0;
2386
2387 if (hithigh && hitlow)
2388 break;
2389 }
2390
2391 /* If we didn't hit both high and low peaks, we had a bit transition */
2392 if (!hithigh || !hitlow)
2393 bit ^= 1;
2394
2395 CmdAppendGraph(0, clock, bit);
2396 // for (j = 0; j < (int)(clock/2); j++)
2397 // GraphBuffer[(i * clock) + j] = bit ^ 1;
2398 // for (j = (int)(clock/2); j < clock; j++)
2399 // GraphBuffer[(i * clock) + j] = bit;
2400 }
2401
2402 RepaintGraphWindow();
2403 }
2404
2405 /* Modulate our data into manchester */
2406 static void Cmdmanchestermod(char *str)
2407 {
2408 int i, j;
2409 int clock;
2410 int bit, lastbit, wave;
2411
2412 /* Get our clock */
2413 clock = GetClock(str, 0);
2414
2415 wave = 0;
2416 lastbit = 1;
2417 for (i = 0; i < (int)(GraphTraceLen / clock); i++)
2418 {
2419 bit = GraphBuffer[i * clock] ^ 1;
2420
2421 for (j = 0; j < (int)(clock/2); j++)
2422 GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave;
2423 for (j = (int)(clock/2); j < clock; j++)
2424 GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1;
2425
2426 /* Keep track of how we start our wave and if we changed or not this time */
2427 wave ^= bit ^ lastbit;
2428 lastbit = bit;
2429 }
2430
2431 RepaintGraphWindow();
2432 }
2433
2434 /*
2435 * Manchester demodulate a bitstream. The bitstream needs to be already in
2436 * the GraphBuffer as 0 and 1 values
2437 *
2438 * Give the clock rate as argument in order to help the sync - the algorithm
2439 * resyncs at each pulse anyway.
2440 *
2441 * Not optimized by any means, this is the 1st time I'm writing this type of
2442 * routine, feel free to improve...
2443 *
2444 * 1st argument: clock rate (as number of samples per clock rate)
2445 * Typical values can be 64, 32, 128...
2446 */
2447 static void Cmdmanchesterdemod(char *str) {
2448 int i, j, invert= 0;
2449 int bit;
2450 int clock;
2451 int lastval;
2452 int low = 0;
2453 int high = 0;
2454 int hithigh, hitlow, first;
2455 int lc = 0;
2456 int bitidx = 0;
2457 int bit2idx = 0;
2458 int warnings = 0;
2459
2460 /* check if we're inverting output */
2461 if(*str == 'i')
2462 {
2463 PrintToScrollback("Inverting output");
2464 invert= 1;
2465 do
2466 ++str;
2467 while(*str == ' '); // in case a 2nd argument was given
2468 }
2469
2470 /* Holds the decoded bitstream: each clock period contains 2 bits */
2471 /* later simplified to 1 bit after manchester decoding. */
2472 /* Add 10 bits to allow for noisy / uncertain traces without aborting */
2473 /* int BitStream[GraphTraceLen*2/clock+10]; */
2474
2475 /* But it does not work if compiling on WIndows: therefore we just allocate a */
2476 /* large array */
2477 int BitStream[MAX_GRAPH_TRACE_LEN];
2478
2479 /* Detect high and lows */
2480 for (i = 0; i < GraphTraceLen; i++)
2481 {
2482 if (GraphBuffer[i] > high)
2483 high = GraphBuffer[i];
2484 else if (GraphBuffer[i] < low)
2485 low = GraphBuffer[i];
2486 }
2487
2488 /* Get our clock */
2489 clock = GetClock(str, high);
2490
2491 int tolerance = clock/4;
2492
2493 /* Detect first transition */
2494 /* Lo-Hi (arbitrary) */
2495 for (i = 0; i < GraphTraceLen; i++)
2496 {
2497 if (GraphBuffer[i] == low)
2498 {
2499 lastval = i;
2500 break;
2501 }
2502 }
2503
2504 /* If we're not working with 1/0s, demod based off clock */
2505 if (high != 1)
2506 {
2507 bit = 0; /* We assume the 1st bit is zero, it may not be
2508 * the case: this routine (I think) has an init problem.
2509 * Ed.
2510 */
2511 for (; i < (int)(GraphTraceLen / clock); i++)
2512 {
2513 hithigh = 0;
2514 hitlow = 0;
2515 first = 1;
2516
2517 /* Find out if we hit both high and low peaks */
2518 for (j = 0; j < clock; j++)
2519 {
2520 if (GraphBuffer[(i * clock) + j] == high)
2521 hithigh = 1;
2522 else if (GraphBuffer[(i * clock) + j] == low)
2523 hitlow = 1;
2524
2525 /* it doesn't count if it's the first part of our read
2526 because it's really just trailing from the last sequence */
2527 if (first && (hithigh || hitlow))
2528 hithigh = hitlow = 0;
2529 else
2530 first = 0;
2531
2532 if (hithigh && hitlow)
2533 break;
2534 }
2535
2536 /* If we didn't hit both high and low peaks, we had a bit transition */
2537 if (!hithigh || !hitlow)
2538 bit ^= 1;
2539
2540 BitStream[bit2idx++] = bit ^ invert;
2541 }
2542 }
2543
2544 /* standard 1/0 bitstream */
2545 else
2546 {
2547
2548 /* Then detect duration between 2 successive transitions */
2549 for (bitidx = 1; i < GraphTraceLen; i++)
2550 {
2551 if (GraphBuffer[i-1] != GraphBuffer[i])
2552 {
2553 lc = i-lastval;
2554 lastval = i;
2555
2556 // Error check: if bitidx becomes too large, we do not
2557 // have a Manchester encoded bitstream or the clock is really
2558 // wrong!
2559 if (bitidx > (GraphTraceLen*2/clock+8) ) {
2560 PrintToScrollback("Error: the clock you gave is probably wrong, aborting.");
2561 return;
2562 }
2563 // Then switch depending on lc length:
2564 // Tolerance is 1/4 of clock rate (arbitrary)
2565 if (abs(lc-clock/2) < tolerance) {
2566 // Short pulse : either "1" or "0"
2567 BitStream[bitidx++]=GraphBuffer[i-1];
2568 } else if (abs(lc-clock) < tolerance) {
2569 // Long pulse: either "11" or "00"
2570 BitStream[bitidx++]=GraphBuffer[i-1];
2571 BitStream[bitidx++]=GraphBuffer[i-1];
2572 } else {
2573 // Error
2574 warnings++;
2575 PrintToScrollback("Warning: Manchester decode error for pulse width detection.");
2576 PrintToScrollback("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
2577
2578 if (warnings > 100)
2579 {
2580 PrintToScrollback("Error: too many detection errors, aborting.");
2581 return;
2582 }
2583 }
2584 }
2585 }
2586
2587 // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
2588 // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
2589 // to stop output at the final bitidx2 value, not bitidx
2590 for (i = 0; i < bitidx; i += 2) {
2591 if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
2592 BitStream[bit2idx++] = 1 ^ invert;
2593 } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
2594 BitStream[bit2idx++] = 0 ^ invert;
2595 } else {
2596 // We cannot end up in this state, this means we are unsynchronized,
2597 // move up 1 bit:
2598 i++;
2599 warnings++;
2600 PrintToScrollback("Unsynchronized, resync...");
2601 PrintToScrollback("(too many of those messages mean the stream is not Manchester encoded)");
2602
2603 if (warnings > 100)
2604 {
2605 PrintToScrollback("Error: too many decode errors, aborting.");
2606 return;
2607 }
2608 }
2609 }
2610 }
2611
2612 PrintToScrollback("Manchester decoded bitstream");
2613 // Now output the bitstream to the scrollback by line of 16 bits
2614 for (i = 0; i < (bit2idx-16); i+=16) {
2615 PrintToScrollback("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i",
2616 BitStream[i],
2617 BitStream[i+1],
2618 BitStream[i+2],
2619 BitStream[i+3],
2620 BitStream[i+4],
2621 BitStream[i+5],
2622 BitStream[i+6],
2623 BitStream[i+7],
2624 BitStream[i+8],
2625 BitStream[i+9],
2626 BitStream[i+10],
2627 BitStream[i+11],
2628 BitStream[i+12],
2629 BitStream[i+13],
2630 BitStream[i+14],
2631 BitStream[i+15]);
2632 }
2633 }
2634
2635 /*
2636 * Usage ???
2637 */
2638 static void CmdHiddemod(char *str)
2639 {
2640 if(GraphTraceLen < 4800) {
2641 PrintToScrollback("too short; need at least 4800 samples");
2642 return;
2643 }
2644
2645 GraphTraceLen = 4800;
2646 int i;
2647 for(i = 0; i < GraphTraceLen; i++) {
2648 if(GraphBuffer[i] < 0) {
2649 GraphBuffer[i] = 0;
2650 } else {
2651 GraphBuffer[i] = 1;
2652 }
2653 }
2654 RepaintGraphWindow();
2655 }
2656
2657 static void CmdPlot(char *str)
2658 {
2659 ShowGraphWindow();
2660 }
2661
2662 static void CmdGrid(char *str)
2663 {
2664 sscanf(str, "%i %i", &PlotGridX, &PlotGridY);
2665 RepaintGraphWindow();
2666 }
2667
2668 static void CmdHide(char *str)
2669 {
2670 HideGraphWindow();
2671 }
2672
2673 static void CmdScale(char *str)
2674 {
2675 CursorScaleFactor = atoi(str);
2676 if(CursorScaleFactor == 0) {
2677 PrintToScrollback("bad, can't have zero scale");
2678 CursorScaleFactor = 1;
2679 }
2680 RepaintGraphWindow();
2681 }
2682
2683 static void CmdSave(char *str)
2684 {
2685 FILE *f = fopen(str, "w");
2686 if(!f) {
2687 PrintToScrollback("couldn't open '%s'", str);
2688 return;
2689 }
2690 int i;
2691 for(i = 0; i < GraphTraceLen; i++) {
2692 fprintf(f, "%d\n", GraphBuffer[i]);
2693 }
2694 fclose(f);
2695 PrintToScrollback("saved to '%s'", str);
2696 }
2697
2698 static void CmdLoad(char *str)
2699 {
2700 FILE *f = fopen(str, "r");
2701 if(!f) {
2702 PrintToScrollback("couldn't open '%s'", str);
2703 return;
2704 }
2705
2706 GraphTraceLen = 0;
2707 char line[80];
2708 while(fgets(line, sizeof(line), f)) {
2709 GraphBuffer[GraphTraceLen] = atoi(line);
2710 GraphTraceLen++;
2711 }
2712 fclose(f);
2713 PrintToScrollback("loaded %d samples", GraphTraceLen);
2714 RepaintGraphWindow();
2715 }
2716
2717 static void CmdHIDsimTAG(char *str)
2718 {
2719 unsigned int hi=0, lo=0;
2720 int n=0, i=0;
2721 UsbCommand c;
2722
2723 while (sscanf(&str[i++], "%1x", &n ) == 1) {
2724 hi=(hi<<4)|(lo>>28);
2725 lo=(lo<<4)|(n&0xf);
2726 }
2727
2728 PrintToScrollback("Emulating tag with ID %x%16x", hi, lo);
2729
2730 c.cmd = CMD_HID_SIM_TAG;
2731 c.ext1 = hi;
2732 c.ext2 = lo;
2733 SendCommand(&c, FALSE);
2734 }
2735
2736 static void CmdReadmem(char *str)
2737 {
2738 UsbCommand c;
2739 c.cmd = CMD_READ_MEM;
2740 c.ext1 = atoi(str);
2741 SendCommand(&c, FALSE);
2742 }
2743
2744 static void CmdVersion(char *str)
2745 {
2746 UsbCommand c;
2747 c.cmd = CMD_VERSION;
2748 SendCommand(&c, FALSE);
2749 }
2750
2751 static void CmdLcdReset(char *str)
2752 {
2753 UsbCommand c;
2754 c.cmd = CMD_LCD_RESET;
2755 c.ext1 = atoi(str);
2756 SendCommand(&c, FALSE);
2757 }
2758
2759 static void CmdLcd(char *str)
2760 {
2761 int i, j;
2762 UsbCommand c;
2763 c.cmd = CMD_LCD;
2764 sscanf(str, "%x %d", &i, &j);
2765 while (j--) {
2766 c.ext1 = i&0x1ff;
2767 SendCommand(&c, FALSE);
2768 }
2769 }
2770
2771 /*
2772 * Sets the divisor for LF frequency clock: lets the user choose any LF frequency below
2773 * 600kHz.
2774 */
2775 static void CmdSetDivisor(char *str)
2776 {
2777 UsbCommand c;
2778 c.cmd = CMD_SET_LF_DIVISOR;
2779 c.ext1 = atoi(str);
2780 if (( c.ext1<0) || (c.ext1>255)) {
2781 PrintToScrollback("divisor must be between 19 and 255");
2782 } else {
2783 SendCommand(&c, FALSE);
2784 PrintToScrollback("Divisor set, expected freq=%dHz", 12000000/(c.ext1+1));
2785 }
2786 }
2787
2788 typedef void HandlerFunction(char *cmdline);
2789
2790 /* in alphabetic order */
2791 static struct {
2792 char *name;
2793 HandlerFunction *handler;
2794 int offline; // 1 if the command can be used when in offline mode
2795 char *docString;
2796 } CommandTable[] = {
2797 {"askdemod", Cmdaskdemod, 1, "<samples per bit> <0|1> -- Attempt to demodulate simple ASK tags"},
2798 {"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
2799 {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
2800 {"bitstream", Cmdbitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
2801 {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
2802 {"dec", CmdDec, 1, "Decimate samples"},
2803 {"detectclock", Cmddetectclockrate, 1, "Detect clock rate"},
2804 {"detectreader", CmdDetectReader, 0, "['l'|'h'] -- Detect external reader field (option 'l' or 'h' to limit to LF or HF)"},
2805 {"em410xsim", CmdEM410xsim, 1, "<UID> -- Simulate EM410x tag"},
2806 {"em410xread", CmdEM410xread, 1, "[clock rate] -- Extract ID from EM410x tag"},
2807 {"em410xwatch", CmdEM410xwatch, 0, "Watches for EM410x tags"},
2808 {"em4x50read", CmdEM4x50read, 1, "Extract data from EM4x50 tag"},
2809 {"exit", CmdQuit, 1, "Exit program"},
2810 {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
2811 {"fpgaoff", CmdFPGAOff, 0, "Set FPGA off"},
2812 {"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
2813 {"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
2814 {"hexsamples", CmdHexsamples, 0, "<blocks> -- Dump big buffer as hex bytes"},
2815 {"hi14alist", CmdHi14alist, 0, "List ISO 14443a history"},
2816 {"hi14areader", CmdHi14areader, 0, "Act like an ISO14443 Type A reader"},
2817 {"hi14asim", CmdHi14asim, 0, "<UID> -- Fake ISO 14443a tag"},
2818 {"hi14asnoop", CmdHi14asnoop, 0, "Eavesdrop ISO 14443 Type A"},
2819 {"hi14bdemod", CmdHi14bdemod, 1, "Demodulate ISO14443 Type B from tag"},
2820 {"hi14list", CmdHi14list, 0, "List ISO 14443 history"},
2821 {"hi14read", CmdHi14read, 0, "Read HF tag (ISO 14443)"},
2822 {"hi14sim", CmdHi14sim, 0, "Fake ISO 14443 tag"},
2823 {"hi14snoop", CmdHi14snoop, 0, "Eavesdrop ISO 14443"},
2824 {"hi15demod", CmdHi15demod, 1, "Demodulate ISO15693 from tag"},
2825 {"hi15read", CmdHi15read, 0, "Read HF tag (ISO 15693)"},
2826 {"hi15reader", CmdHi15reader, 0, "Act like an ISO15693 reader"},
2827 {"hi15sim", CmdHi15tag, 0, "Fake an ISO15693 tag"},
2828 {"hiddemod", CmdHiddemod, 1, "Demodulate HID Prox Card II (not optimal)"},
2829 {"hide", CmdHide, 1, "Hide graph window"},
2830 {"hidfskdemod", CmdHIDdemodFSK, 0, "Realtime HID FSK demodulator"},
2831 {"hidsimtag", CmdHIDsimTAG, 0, "<ID> -- HID tag simulator"},
2832 {"higet", CmdHi14read_sim, 0, "<samples> -- Get samples HF, 'analog'"},
2833 {"hisamples", CmdHisamples, 0, "Get raw samples for HF tag"},
2834 {"hisampless", CmdHisampless, 0, "<samples> -- Get signed raw samples, HF tag"},
2835 {"hisamplest", CmdHi14readt, 0, "Get samples HF, for testing"},
2836 {"hisimlisten", CmdHisimlisten, 0, "Get HF samples as fake tag"},
2837 {"hpf", CmdHpf, 1, "Remove DC offset from trace"},
2838 {"indalademod", CmdIndalademod, 0, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
2839 {"lcd", CmdLcd, 0, "<HEX command> <count> -- Send command/data to LCD"},
2840 {"lcdreset", CmdLcdReset, 0, "Hardware reset LCD"},
2841 {"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
2842 {"locomread", CmdLoCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'h' for 134)"},
2843 {"loread", CmdLoread, 0, "['h'] -- Read 125/134 kHz LF ID-only tag (option 'h' for 134)"},
2844 {"losamples", CmdLosamples, 0, "[128 - 16000] -- Get raw samples for LF tag"},
2845 {"losim", CmdLosim, 0, "Simulate LF tag"},
2846 {"losimbidir", CmdLosimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
2847 {"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
2848 {"mandemod", Cmdmanchesterdemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
2849 {"manmod", Cmdmanchestermod, 1, "[clock rate] -- Manchester modulate a binary stream"},
2850 {"norm", CmdNorm, 1, "Normalize max/min to +/-500"},
2851 {"plot", CmdPlot, 1, "Show graph window"},
2852 {"quit", CmdQuit, 1, "Quit program"},
2853 {"readmem", CmdReadmem, 0, "[address] -- Read memory at decimal address from flash"},
2854 {"reset", CmdReset, 0, "Reset the Proxmark3"},
2855 {"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
2856 {"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
2857 {"setlfdivisor", CmdSetDivisor, 0, "<19 - 255> -- Drive LF antenna at 12Mhz/(divisor+1)"},
2858 {"sri512read", CmdSri512read, 0, "<int> -- Read contents of a SRI512 tag"},
2859 {"tidemod", CmdTIDemod, 1, "Demodulate raw bits for TI-type LF tag"},
2860 {"tiread", CmdTIRead, 0, "Read and decode a TI 134 kHz tag"},
2861 {"tiwrite", CmdTIWrite, 0, "Write new data to a r/w TI 134 kHz tag"},
2862 {"threshold", CmdThreshold, 1, "Maximize/minimize every value in the graph window depending on threshold"},
2863 {"tune", CmdTune, 0, "Measure antenna tuning"},
2864 {"vchdemod", CmdVchdemod, 0, "['clone'] -- Demodulate samples for VeriChip"},
2865 {"version", CmdVersion, 0, "Show version inforation about the connected Proxmark"},
2866 {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
2867 };
2868
2869 static struct {
2870 char *name;
2871 char *args;
2872 char *argshelp;
2873 char *description;
2874 } CommandExtendedHelp[]= {
2875 {"detectreader","'l'|'h'","'l' specifies LF antenna scan only, 'h' specifies HF antenna scan only.","Monitor antenna for changes in voltage. Output is in three fields: CHANGED, CURRENT, PERIOD,\nwhere CHANGED is the value just changed from, CURRENT is the current value and PERIOD is the\nnumber of program loops since the last change.\n\nThe RED LED indicates LF field detected, and the GREEN LED indicates HF field detected."},
2876 {"tune","","","Drive LF antenna at all divisor range values (19 - 255) and store the results in the output\nbuffer. Issuing 'losamples' and then 'plot' commands will display the resulting peak. 12MHz\ndivided by the peak's position plus one gives the antenna's resonant frequency. For convenience,\nthis value is also printed out by the command."},
2877 };
2878
2879 //-----------------------------------------------------------------------------
2880 // Entry point into our code: called whenever the user types a command and
2881 // then presses Enter, which the full command line that they typed.
2882 //-----------------------------------------------------------------------------
2883 void CommandReceived(char *cmd)
2884 {
2885 int i;
2886 char line[256];
2887
2888 PrintToScrollback("> %s", cmd);
2889
2890 if(strcmp(cmd, "help") == 0 || strncmp(cmd,"help ",strlen("help ")) == 0) {
2891 // check if we're doing extended help
2892 if(strlen(cmd) > strlen("help ")) {
2893 cmd += strlen("help ");
2894 for(i = 0; i < sizeof(CommandExtendedHelp) / sizeof(CommandExtendedHelp[0]); i++) {
2895 if(strcmp(CommandExtendedHelp[i].name,cmd) == 0) {
2896 PrintToScrollback("\nExtended help for '%s':\n", cmd);
2897 PrintToScrollback("Args: %s\t- %s\n",CommandExtendedHelp[i].args,CommandExtendedHelp[i].argshelp);
2898 PrintToScrollback(CommandExtendedHelp[i].description);
2899 PrintToScrollback("");
2900 return;
2901 }
2902 }
2903 PrintToScrollback("No extended help available for '%s'", cmd);
2904 return;
2905 }
2906 if (offline) PrintToScrollback("Operating in OFFLINE mode (no device connected)");
2907 PrintToScrollback("\r\nAvailable commands:");
2908 for(i = 0; i < sizeof(CommandTable) / sizeof(CommandTable[0]); i++) {
2909 if (offline && (CommandTable[i].offline==0)) continue;
2910 memset(line, ' ', sizeof(line));
2911 strcpy(line+2, CommandTable[i].name);
2912 line[strlen(line)] = ' ';
2913 sprintf(line+15, " -- %s", CommandTable[i].docString);
2914 PrintToScrollback("%s", line);
2915 }
2916 PrintToScrollback("");
2917 PrintToScrollback("'help <command>' for extended help on that command\n");
2918 return;
2919 }
2920
2921 for(i = 0; i < sizeof(CommandTable) / sizeof(CommandTable[0]); i++) {
2922 char *name = CommandTable[i].name;
2923 if(memcmp(cmd, name, strlen(name))==0 &&
2924 (cmd[strlen(name)] == ' ' || cmd[strlen(name)] == '\0'))
2925 {
2926 cmd += strlen(name);
2927 while(*cmd == ' ') {
2928 cmd++;
2929 }
2930 if (offline && (CommandTable[i].offline==0)) {
2931 PrintToScrollback("Offline mode, cannot use this command.");
2932 return;
2933 }
2934 (CommandTable[i].handler)(cmd);
2935 return;
2936 }
2937 }
2938 PrintToScrollback(">> bad command '%s'", cmd);
2939 }
2940
2941 //-----------------------------------------------------------------------------
2942 // Entry point into our code: called whenever we received a packet over USB
2943 // that we weren't necessarily expecting, for example a debug print.
2944 //-----------------------------------------------------------------------------
2945 void UsbCommandReceived(UsbCommand *c)
2946 {
2947 switch(c->cmd) {
2948 case CMD_DEBUG_PRINT_STRING: {
2949 char s[100];
2950 if(c->ext1 > 70 || c->ext1 < 0) {
2951 c->ext1 = 0;
2952 }
2953 memcpy(s, c->d.asBytes, c->ext1);
2954 s[c->ext1] = '\0';
2955 PrintToScrollback("#db# %s", s);
2956 break;
2957 }
2958
2959 case CMD_DEBUG_PRINT_INTEGERS:
2960 PrintToScrollback("#db# %08x, %08x, %08x\r\n", c->ext1, c->ext2, c->ext3);
2961 break;
2962
2963 case CMD_MEASURED_ANTENNA_TUNING: {
2964 int peakv, peakf;
2965 int vLf125, vLf134, vHf;
2966 vLf125 = c->ext1 & 0xffff;
2967 vLf134 = c->ext1 >> 16;
2968 vHf = c->ext2 & 0xffff;;
2969 peakf = c->ext3 & 0xffff;
2970 peakv = c->ext3 >> 16;
2971 PrintToScrollback("");
2972 PrintToScrollback("");
2973 PrintToScrollback("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
2974 PrintToScrollback("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
2975 PrintToScrollback("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
2976 PrintToScrollback("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
2977 if (peakv<2000)
2978 PrintToScrollback("# Your LF antenna is unusable.");
2979 else if (peakv<10000)
2980 PrintToScrollback("# Your LF antenna is marginal.");
2981 if (vHf<2000)
2982 PrintToScrollback("# Your HF antenna is unusable.");
2983 else if (vHf<5000)
2984 PrintToScrollback("# Your HF antenna is marginal.");
2985 break;
2986 }
2987 default:
2988 PrintToScrollback("unrecognized command %08x\n", c->cmd);
2989 break;
2990 }
2991 }
Impressum, Datenschutz