1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "iso14443a.h"
17 #include "proxmark3.h"
21 #include "iso14443crc.h"
22 #include "crapto1/crapto1.h"
23 #include "mifareutil.h"
24 #include "mifaresniff.h"
26 #include "protocols.h"
28 #include "fpgaloader.h"
34 // DEMOD_MOD_FIRST_HALF,
35 // DEMOD_NOMOD_FIRST_HALF,
41 uint16_t collisionPos
;
48 uint32_t startTime
, endTime
;
63 STATE_START_OF_COMMUNICATION
,
79 uint32_t startTime
, endTime
;
84 static uint32_t iso14a_timeout
;
85 #define MAX_ISO14A_TIMEOUT 524288
89 // the block number for the ISO14443-4 PCB
90 static uint8_t iso14_pcb_blocknum
= 0;
95 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
96 #define REQUEST_GUARD_TIME (7000/16 + 1)
97 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
98 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
99 // bool LastCommandWasRequest = false;
102 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
104 // When the PM acts as reader and is receiving tag data, it takes
105 // 3 ticks delay in the AD converter
106 // 16 ticks until the modulation detector completes and sets curbit
107 // 8 ticks until bit_to_arm is assigned from curbit
108 // 8*16 ticks for the transfer from FPGA to ARM
109 // 4*16 ticks until we measure the time
110 // - 8*16 ticks because we measure the time of the previous transfer
111 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
113 // When the PM acts as a reader and is sending, it takes
114 // 4*16 ticks until we can write data to the sending hold register
115 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
116 // 8 ticks until the first transfer starts
117 // 8 ticks later the FPGA samples the data
118 // 1 tick to assign mod_sig_coil
119 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
121 // When the PM acts as tag and is receiving it takes
122 // 2 ticks delay in the RF part (for the first falling edge),
123 // 3 ticks for the A/D conversion,
124 // 8 ticks on average until the start of the SSC transfer,
125 // 8 ticks until the SSC samples the first data
126 // 7*16 ticks to complete the transfer from FPGA to ARM
127 // 8 ticks until the next ssp_clk rising edge
128 // 4*16 ticks until we measure the time
129 // - 8*16 ticks because we measure the time of the previous transfer
130 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
132 // The FPGA will report its internal sending delay in
133 uint16_t FpgaSendQueueDelay
;
134 // the 5 first bits are the number of bits buffered in mod_sig_buf
135 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
136 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
138 // When the PM acts as tag and is sending, it takes
139 // 4*16 + 8 ticks until we can write data to the sending hold register
140 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
141 // 8 ticks later the FPGA samples the first data
142 // + 16 ticks until assigned to mod_sig
143 // + 1 tick to assign mod_sig_coil
144 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
145 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
147 // When the PM acts as sniffer and is receiving tag data, it takes
148 // 3 ticks A/D conversion
149 // 14 ticks to complete the modulation detection
150 // 8 ticks (on average) until the result is stored in to_arm
151 // + the delays in transferring data - which is the same for
152 // sniffing reader and tag data and therefore not relevant
153 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
155 // When the PM acts as sniffer and is receiving reader data, it takes
156 // 2 ticks delay in analogue RF receiver (for the falling edge of the
157 // start bit, which marks the start of the communication)
158 // 3 ticks A/D conversion
159 // 8 ticks on average until the data is stored in to_arm.
160 // + the delays in transferring data - which is the same for
161 // sniffing reader and tag data and therefore not relevant
162 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
164 //variables used for timing purposes:
165 //these are in ssp_clk cycles:
166 static uint32_t NextTransferTime
;
167 static uint32_t LastTimeProxToAirStart
;
168 static uint32_t LastProxToAirDuration
;
172 // CARD TO READER - manchester
173 // Sequence D: 11110000 modulation with subcarrier during first half
174 // Sequence E: 00001111 modulation with subcarrier during second half
175 // Sequence F: 00000000 no modulation with subcarrier
176 // READER TO CARD - miller
177 // Sequence X: 00001100 drop after half a period
178 // Sequence Y: 00000000 no drop
179 // Sequence Z: 11000000 drop at start
187 void iso14a_set_trigger(bool enable
) {
192 void iso14a_set_timeout(uint32_t timeout
) {
193 // adjust timeout by FPGA delays and 2 additional ssp_frames to detect SOF
194 iso14a_timeout
= timeout
+ (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/(16*8) + 2;
195 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", timeout
, timeout
/ 106);
199 uint32_t iso14a_get_timeout(void) {
200 return iso14a_timeout
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/(16*8) - 2;
203 //-----------------------------------------------------------------------------
204 // Generate the parity value for a byte sequence
206 //-----------------------------------------------------------------------------
207 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
209 uint16_t paritybit_cnt
= 0;
210 uint16_t paritybyte_cnt
= 0;
211 uint8_t parityBits
= 0;
213 for (uint16_t i
= 0; i
< iLen
; i
++) {
214 // Generate the parity bits
215 parityBits
|= ((oddparity8(pbtCmd
[i
])) << (7-paritybit_cnt
));
216 if (paritybit_cnt
== 7) {
217 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
218 parityBits
= 0; // and advance to next Parity Byte
226 // save remaining parity bits
227 par
[paritybyte_cnt
] = parityBits
;
231 void AppendCrc14443a(uint8_t* data
, int len
)
233 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
236 static void AppendCrc14443b(uint8_t* data
, int len
)
238 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
242 //=============================================================================
243 // ISO 14443 Type A - Miller decoder
244 //=============================================================================
246 // This decoder is used when the PM3 acts as a tag.
247 // The reader will generate "pauses" by temporarily switching of the field.
248 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
249 // The FPGA does a comparison with a threshold and would deliver e.g.:
250 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
251 // The Miller decoder needs to identify the following sequences:
252 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
253 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
254 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
255 // Note 1: the bitstream may start at any time. We therefore need to sync.
256 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
257 //-----------------------------------------------------------------------------
260 // Lookup-Table to decide if 4 raw bits are a modulation.
261 // We accept the following:
262 // 0001 - a 3 tick wide pause
263 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
264 // 0111 - a 2 tick wide pause shifted left
265 // 1001 - a 2 tick wide pause shifted right
266 const bool Mod_Miller_LUT
[] = {
267 false, true, false, true, false, false, false, true,
268 false, true, false, false, false, false, false, false
270 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
271 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
273 static void UartReset() {
274 Uart
.state
= STATE_UNSYNCD
;
276 Uart
.len
= 0; // number of decoded data bytes
277 Uart
.parityLen
= 0; // number of decoded parity bytes
278 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
279 Uart
.parityBits
= 0; // holds 8 parity bits
282 static void UartInit(uint8_t *data
, uint8_t *parity
) {
284 Uart
.parity
= parity
;
285 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
291 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
292 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
) {
294 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
296 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
298 Uart
.syncBit
= 9999; // not set
299 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
300 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
301 // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
302 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
303 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
304 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
305 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
306 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
307 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
308 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
309 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
310 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
311 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
312 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
314 if (Uart
.syncBit
!= 9999) { // found a sync bit
315 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
316 Uart
.startTime
-= Uart
.syncBit
;
317 Uart
.endTime
= Uart
.startTime
;
318 Uart
.state
= STATE_START_OF_COMMUNICATION
;
324 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
325 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
328 } else { // Modulation in first half = Sequence Z = logic "0"
329 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
334 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
335 Uart
.state
= STATE_MILLER_Z
;
336 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
337 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
338 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
339 Uart
.parityBits
<<= 1; // make room for the parity bit
340 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
343 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
344 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
351 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
353 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
354 Uart
.state
= STATE_MILLER_X
;
355 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
356 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
357 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
358 Uart
.parityBits
<<= 1; // make room for the new parity bit
359 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
362 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
363 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
367 } else { // no modulation in both halves - Sequence Y
368 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
370 Uart
.state
= STATE_UNSYNCD
;
371 Uart
.bitCount
--; // last "0" was part of EOC sequence
372 Uart
.shiftReg
<<= 1; // drop it
373 if(Uart
.bitCount
> 0) { // if we decoded some bits
374 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
375 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
376 Uart
.parityBits
<<= 1; // add a (void) parity bit
377 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
378 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
380 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
381 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
382 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
385 return true; // we are finished with decoding the raw data sequence
387 UartReset(); // Nothing received - start over
390 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
393 } else { // a logic "0"
395 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
396 Uart
.state
= STATE_MILLER_Y
;
397 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
398 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
399 Uart
.parityBits
<<= 1; // make room for the parity bit
400 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
403 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
404 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
414 return false; // not finished yet, need more data
419 //=============================================================================
420 // ISO 14443 Type A - Manchester decoder
421 //=============================================================================
423 // This decoder is used when the PM3 acts as a reader.
424 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
425 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
426 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
427 // The Manchester decoder needs to identify the following sequences:
428 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
429 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
430 // 8 ticks unmodulated: Sequence F = end of communication
431 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
432 // Note 1: the bitstream may start at any time. We therefore need to sync.
433 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
436 // Lookup-Table to decide if 4 raw bits are a modulation.
437 // We accept three or four "1" in any position
438 const bool Mod_Manchester_LUT
[] = {
439 false, false, false, false, false, false, false, true,
440 false, false, false, true, false, true, true, true
443 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
444 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
447 static void DemodReset() {
448 Demod
.state
= DEMOD_UNSYNCD
;
449 Demod
.len
= 0; // number of decoded data bytes
451 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
452 Demod
.parityBits
= 0; //
453 Demod
.collisionPos
= 0; // Position of collision bit
454 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
460 static void DemodInit(uint8_t *data
, uint8_t *parity
) {
462 Demod
.parity
= parity
;
466 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
467 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
) {
469 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
471 if (Demod
.state
== DEMOD_UNSYNCD
) {
473 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
474 if (Demod
.twoBits
== 0x0000) {
480 Demod
.syncBit
= 0xFFFF; // not set
481 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
482 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
483 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
484 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
485 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
486 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
487 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
488 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
489 if (Demod
.syncBit
!= 0xFFFF) {
490 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
491 Demod
.startTime
-= Demod
.syncBit
;
492 Demod
.bitCount
= offset
; // number of decoded data bits
493 Demod
.state
= DEMOD_MANCHESTER_DATA
;
500 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
501 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
502 if (!Demod
.collisionPos
) {
503 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
505 } // modulation in first half only - Sequence D = 1
507 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
508 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
509 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
510 Demod
.parityBits
<<= 1; // make room for the parity bit
511 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
514 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
515 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
516 Demod
.parityBits
= 0;
519 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
520 } else { // no modulation in first half
521 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
523 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
524 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
525 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
526 Demod
.parityBits
<<= 1; // make room for the new parity bit
527 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
530 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
531 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
532 Demod
.parityBits
= 0;
535 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
536 } else { // no modulation in both halves - End of communication
538 if(Demod
.bitCount
> 0) { // there are some remaining data bits
539 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
540 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
541 Demod
.parityBits
<<= 1; // add a (void) parity bit
542 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
543 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
545 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
546 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
547 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
550 return true; // we are finished with decoding the raw data sequence
551 } else { // nothing received. Start over
559 return false; // not finished yet, need more data
562 //=============================================================================
563 // Finally, a `sniffer' for ISO 14443 Type A
564 // Both sides of communication!
565 //=============================================================================
567 //-----------------------------------------------------------------------------
568 // Record the sequence of commands sent by the reader to the tag, with
569 // triggering so that we start recording at the point that the tag is moved
571 //-----------------------------------------------------------------------------
572 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
574 // bit 0 - trigger from first card answer
575 // bit 1 - trigger from first reader 7-bit request
580 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
582 // Allocate memory from BigBuf for some buffers
583 // free all previous allocations first
586 // The command (reader -> tag) that we're receiving.
587 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
588 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
590 // The response (tag -> reader) that we're receiving.
591 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
592 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
594 // The DMA buffer, used to stream samples from the FPGA
595 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
601 uint8_t *data
= dmaBuf
;
602 uint8_t previous_data
= 0;
605 bool TagIsActive
= false;
606 bool ReaderIsActive
= false;
608 // Set up the demodulator for tag -> reader responses.
609 DemodInit(receivedResponse
, receivedResponsePar
);
611 // Set up the demodulator for the reader -> tag commands
612 UartInit(receivedCmd
, receivedCmdPar
);
614 // Setup and start DMA.
615 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
617 // We won't start recording the frames that we acquire until we trigger;
618 // a good trigger condition to get started is probably when we see a
619 // response from the tag.
620 // triggered == false -- to wait first for card
621 bool triggered
= !(param
& 0x03);
623 // And now we loop, receiving samples.
624 for (uint32_t rsamples
= 0; true; ) {
626 if (BUTTON_PRESS()) {
627 DbpString("cancelled by button");
633 int register readBufDataP
= data
- dmaBuf
;
634 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
635 if (readBufDataP
<= dmaBufDataP
){
636 dataLen
= dmaBufDataP
- readBufDataP
;
638 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
640 // test for length of buffer
641 if(dataLen
> maxDataLen
) {
642 maxDataLen
= dataLen
;
643 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
644 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
648 if(dataLen
< 1) continue;
650 // primary buffer was stopped( <-- we lost data!
651 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
652 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
653 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
654 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
656 // secondary buffer sets as primary, secondary buffer was stopped
657 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
658 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
659 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
662 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
664 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
665 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
666 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
667 // check - if there is a short 7bit request from reader
668 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) {
672 if (!LogTrace(receivedCmd
,
674 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
675 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
679 /* And ready to receive another command. */
681 /* And also reset the demod code, which might have been */
682 /* false-triggered by the commands from the reader. */
685 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
688 if (!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
689 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
690 if (ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
691 if (!LogTrace(receivedResponse
,
693 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
694 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
697 if ((!triggered
) && (param
& 0x01)) triggered
= true;
698 // And ready to receive another response.
700 // And reset the Miller decoder including itS (now outdated) input buffer
701 UartInit(receivedCmd
, receivedCmdPar
);
703 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
707 previous_data
= *data
;
710 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
718 DbpString("COMMAND FINISHED");
719 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
720 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
723 //-----------------------------------------------------------------------------
724 // Prepare tag messages
725 //-----------------------------------------------------------------------------
726 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
) {
729 // Correction bit, might be removed when not needed
734 ToSendStuffBit(1); // 1
740 ToSend
[++ToSendMax
] = SEC_D
;
741 LastProxToAirDuration
= 8 * ToSendMax
- 4;
743 for (uint16_t i
= 0; i
< len
; i
++) {
747 for (uint16_t j
= 0; j
< 8; j
++) {
749 ToSend
[++ToSendMax
] = SEC_D
;
751 ToSend
[++ToSendMax
] = SEC_E
;
756 // Get the parity bit
757 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
758 ToSend
[++ToSendMax
] = SEC_D
;
759 LastProxToAirDuration
= 8 * ToSendMax
- 4;
761 ToSend
[++ToSendMax
] = SEC_E
;
762 LastProxToAirDuration
= 8 * ToSendMax
;
767 ToSend
[++ToSendMax
] = SEC_F
;
769 // Convert from last byte pos to length
774 static void Code4bitAnswerAsTag(uint8_t cmd
) {
779 // Correction bit, might be removed when not needed
784 ToSendStuffBit(1); // 1
790 ToSend
[++ToSendMax
] = SEC_D
;
793 for (i
= 0; i
< 4; i
++) {
795 ToSend
[++ToSendMax
] = SEC_D
;
796 LastProxToAirDuration
= 8 * ToSendMax
- 4;
798 ToSend
[++ToSendMax
] = SEC_E
;
799 LastProxToAirDuration
= 8 * ToSendMax
;
805 ToSend
[++ToSendMax
] = SEC_F
;
807 // Convert from last byte pos to length
812 static uint8_t *LastReaderTraceTime
= NULL
;
814 static void EmLogTraceReader(void) {
815 // remember last reader trace start to fix timing info later
816 LastReaderTraceTime
= BigBuf_get_addr() + BigBuf_get_traceLen();
817 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, true);
821 static void FixLastReaderTraceTime(uint32_t tag_StartTime
) {
822 uint32_t reader_EndTime
= Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
;
823 uint32_t reader_StartTime
= Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
;
824 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
825 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
826 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
827 reader_StartTime
= tag_StartTime
- exact_fdt
- reader_modlen
;
828 LastReaderTraceTime
[0] = (reader_StartTime
>> 0) & 0xff;
829 LastReaderTraceTime
[1] = (reader_StartTime
>> 8) & 0xff;
830 LastReaderTraceTime
[2] = (reader_StartTime
>> 16) & 0xff;
831 LastReaderTraceTime
[3] = (reader_StartTime
>> 24) & 0xff;
835 static void EmLogTraceTag(uint8_t *tag_data
, uint16_t tag_len
, uint8_t *tag_Parity
, uint32_t ProxToAirDuration
) {
836 uint32_t tag_StartTime
= LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
;
837 uint32_t tag_EndTime
= (LastTimeProxToAirStart
+ ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
;
838 LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, false);
839 FixLastReaderTraceTime(tag_StartTime
);
843 //-----------------------------------------------------------------------------
844 // Wait for commands from reader
845 // Stop when button is pressed
846 // Or return true when command is captured
847 //-----------------------------------------------------------------------------
848 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
) {
849 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
850 // only, since we are receiving, not transmitting).
851 // Signal field is off with the appropriate LED
853 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
855 // Now run a `software UART' on the stream of incoming samples.
856 UartInit(received
, parity
);
859 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
864 if(BUTTON_PRESS()) return false;
866 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
867 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
868 if(MillerDecoding(b
, 0)) {
878 int EmSend4bit(uint8_t resp
);
879 static int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
880 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
881 int EmSendPrecompiledCmd(tag_response_info_t
*response_info
);
884 static bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
885 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
886 // This will need the following byte array for a modulation sequence
887 // 144 data bits (18 * 8)
890 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
891 // 1 just for the case
893 // 166 bytes, since every bit that needs to be send costs us a byte
897 // Prepare the tag modulation bits from the message
898 GetParity(response_info
->response
, response_info
->response_n
, &(response_info
->par
));
899 CodeIso14443aAsTagPar(response_info
->response
,response_info
->response_n
, &(response_info
->par
));
901 // Make sure we do not exceed the free buffer space
902 if (ToSendMax
> max_buffer_size
) {
903 Dbprintf("Out of memory, when modulating bits for tag answer:");
904 Dbhexdump(response_info
->response_n
, response_info
->response
, false);
908 // Copy the byte array, used for this modulation to the buffer position
909 memcpy(response_info
->modulation
, ToSend
, ToSendMax
);
911 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
912 response_info
->modulation_n
= ToSendMax
;
913 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
919 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
920 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
921 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
922 // -> need 273 bytes buffer
923 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
925 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
, uint8_t **buffer
, size_t *max_buffer_size
) {
927 // Retrieve and store the current buffer index
928 response_info
->modulation
= *buffer
;
930 // Forward the prepare tag modulation function to the inner function
931 if (prepare_tag_modulation(response_info
, *max_buffer_size
)) {
932 // Update the free buffer offset and the remaining buffer size
933 *buffer
+= ToSendMax
;
934 *max_buffer_size
-= ToSendMax
;
941 //-----------------------------------------------------------------------------
942 // Main loop of simulated tag: receive commands from reader, decide what
943 // response to send, and send it.
944 //-----------------------------------------------------------------------------
945 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
) {
949 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
950 uint8_t response1
[2];
953 case 1: { // MIFARE Classic
954 // Says: I am Mifare 1k - original line
959 case 2: { // MIFARE Ultralight
960 // Says: I am a stupid memory tag, no crypto
965 case 3: { // MIFARE DESFire
966 // Says: I am a DESFire tag, ph33r me
971 case 4: { // ISO/IEC 14443-4
972 // Says: I am a javacard (JCOP)
977 case 5: { // MIFARE TNP3XXX
984 Dbprintf("Error: unkown tagtype (%d)",tagType
);
989 // The second response contains the (mandatory) first 24 bits of the UID
990 uint8_t response2
[5] = {0x00};
992 // Check if the uid uses the (optional) part
993 uint8_t response2a
[5] = {0x00};
997 num_to_bytes(uid_1st
,3,response2
+1);
998 num_to_bytes(uid_2nd
,4,response2a
);
999 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1001 // Configure the ATQA and SAK accordingly
1002 response1
[0] |= 0x40;
1005 num_to_bytes(uid_1st
,4,response2
);
1006 // Configure the ATQA and SAK accordingly
1007 response1
[0] &= 0xBF;
1011 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1012 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1014 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1015 uint8_t response3
[3] = {0x00};
1017 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1019 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1020 uint8_t response3a
[3] = {0x00};
1021 response3a
[0] = sak
& 0xFB;
1022 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1024 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1025 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1026 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1027 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1028 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1029 // TC(1) = 0x02: CID supported, NAD not supported
1030 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1032 #define TAG_RESPONSE_COUNT 7
1033 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1034 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1035 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1036 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1037 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1038 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1039 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1040 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1043 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1044 // Such a response is less time critical, so we can prepare them on the fly
1045 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1046 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1047 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1048 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1049 tag_response_info_t dynamic_response_info
= {
1050 .response
= dynamic_response_buffer
,
1052 .modulation
= dynamic_modulation_buffer
,
1056 // We need to listen to the high-frequency, peak-detected path.
1057 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1059 BigBuf_free_keep_EM();
1061 // allocate buffers:
1062 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1063 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1064 uint8_t *free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1065 size_t free_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
1070 // Prepare the responses of the anticollision phase
1071 // there will be not enough time to do this at the moment the reader sends it REQA
1072 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1073 prepare_allocated_tag_modulation(&responses
[i
], &free_buffer_pointer
, &free_buffer_size
);
1078 // To control where we are in the protocol
1082 // Just to allow some checks
1088 tag_response_info_t
* p_response
;
1092 // Clean receive command buffer
1093 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1094 DbpString("Button press");
1100 // Okay, look at the command now.
1102 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1103 p_response
= &responses
[0]; order
= 1;
1104 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1105 p_response
= &responses
[0]; order
= 6;
1106 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1107 p_response
= &responses
[1]; order
= 2;
1108 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1109 p_response
= &responses
[2]; order
= 20;
1110 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1111 p_response
= &responses
[3]; order
= 3;
1112 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1113 p_response
= &responses
[4]; order
= 30;
1114 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1115 EmSendCmd(data
+(4*receivedCmd
[1]),16);
1116 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1117 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1119 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1121 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1122 p_response
= &responses
[5]; order
= 7;
1123 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1124 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1125 EmSend4bit(CARD_NACK_NA
);
1128 p_response
= &responses
[6]; order
= 70;
1130 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1131 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1132 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1133 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1135 // Check for ISO 14443A-4 compliant commands, look at left nibble
1136 switch (receivedCmd
[0]) {
1139 case 0x0A: { // IBlock (command)
1140 dynamic_response_info
.response
[0] = receivedCmd
[0];
1141 dynamic_response_info
.response
[1] = 0x00;
1142 dynamic_response_info
.response
[2] = 0x90;
1143 dynamic_response_info
.response
[3] = 0x00;
1144 dynamic_response_info
.response_n
= 4;
1148 case 0x1B: { // Chaining command
1149 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1150 dynamic_response_info
.response_n
= 2;
1155 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1156 dynamic_response_info
.response_n
= 2;
1160 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1161 dynamic_response_info
.response_n
= 2;
1165 case 0xC2: { // Readers sends deselect command
1166 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1167 dynamic_response_info
.response_n
= 2;
1171 // Never seen this command before
1172 Dbprintf("Received unknown command (len=%d):",len
);
1173 Dbhexdump(len
,receivedCmd
,false);
1175 dynamic_response_info
.response_n
= 0;
1179 if (dynamic_response_info
.response_n
> 0) {
1180 // Copy the CID from the reader query
1181 dynamic_response_info
.response
[1] = receivedCmd
[1];
1183 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1184 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1185 dynamic_response_info
.response_n
+= 2;
1187 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1188 Dbprintf("Error preparing tag response");
1191 p_response
= &dynamic_response_info
;
1195 // Count number of wakeups received after a halt
1196 if(order
== 6 && lastorder
== 5) { happened
++; }
1198 // Count number of other messages after a halt
1199 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1201 if(cmdsRecvd
> 999) {
1202 DbpString("1000 commands later...");
1207 if (p_response
!= NULL
) {
1208 EmSendPrecompiledCmd(p_response
);
1211 if (!get_tracing()) {
1212 Dbprintf("Trace Full. Simulation stopped.");
1217 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1219 BigBuf_free_keep_EM();
1223 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1224 // of bits specified in the delay parameter.
1225 static void PrepareDelayedTransfer(uint16_t delay
) {
1226 uint8_t bitmask
= 0;
1227 uint8_t bits_to_shift
= 0;
1228 uint8_t bits_shifted
= 0;
1232 for (uint16_t i
= 0; i
< delay
; i
++) {
1233 bitmask
|= (0x01 << i
);
1235 ToSend
[ToSendMax
++] = 0x00;
1236 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1237 bits_to_shift
= ToSend
[i
] & bitmask
;
1238 ToSend
[i
] = ToSend
[i
] >> delay
;
1239 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1240 bits_shifted
= bits_to_shift
;
1246 //-------------------------------------------------------------------------------------
1247 // Transmit the command (to the tag) that was placed in ToSend[].
1248 // Parameter timing:
1249 // if NULL: transfer at next possible time, taking into account
1250 // request guard time, startup frame guard time and frame delay time
1251 // if == 0: transfer immediately and return time of transfer
1252 // if != 0: delay transfer until time specified
1253 //-------------------------------------------------------------------------------------
1254 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
) {
1257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1259 uint32_t ThisTransferTime
= 0;
1262 if (*timing
== 0) { // Measure time
1263 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1265 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1267 if (MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1268 while (GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1269 LastTimeProxToAirStart
= *timing
;
1271 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1272 while (GetCountSspClk() < ThisTransferTime
);
1273 LastTimeProxToAirStart
= ThisTransferTime
;
1278 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1279 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1287 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1292 //-----------------------------------------------------------------------------
1293 // Prepare reader command (in bits, support short frames) to send to FPGA
1294 //-----------------------------------------------------------------------------
1295 static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
) {
1302 // Start of Communication (Seq. Z)
1303 ToSend
[++ToSendMax
] = SEC_Z
;
1304 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1307 size_t bytecount
= nbytes(bits
);
1308 // Generate send structure for the data bits
1309 for (i
= 0; i
< bytecount
; i
++) {
1310 // Get the current byte to send
1312 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1314 for (j
= 0; j
< bitsleft
; j
++) {
1317 ToSend
[++ToSendMax
] = SEC_X
;
1318 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1323 ToSend
[++ToSendMax
] = SEC_Z
;
1324 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1327 ToSend
[++ToSendMax
] = SEC_Y
;
1334 // Only transmit parity bit if we transmitted a complete byte
1335 if (j
== 8 && parity
!= NULL
) {
1336 // Get the parity bit
1337 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1339 ToSend
[++ToSendMax
] = SEC_X
;
1340 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1345 ToSend
[++ToSendMax
] = SEC_Z
;
1346 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1349 ToSend
[++ToSendMax
] = SEC_Y
;
1356 // End of Communication: Logic 0 followed by Sequence Y
1359 ToSend
[++ToSendMax
] = SEC_Z
;
1360 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1363 ToSend
[++ToSendMax
] = SEC_Y
;
1366 ToSend
[++ToSendMax
] = SEC_Y
;
1368 // Convert to length of command:
1373 //-----------------------------------------------------------------------------
1374 // Wait for commands from reader
1375 // Stop when button is pressed (return 1) or field was gone (return 2)
1376 // Or return 0 when command is captured
1377 //-----------------------------------------------------------------------------
1378 int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
) {
1379 uint32_t field_off_time
= -1;
1380 uint32_t samples
= 0;
1383 uint8_t dmaBuf
[DMA_BUFFER_SIZE
];
1384 uint8_t *upTo
= dmaBuf
;
1388 // Run a 'software UART' on the stream of incoming samples.
1389 UartInit(received
, parity
);
1392 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1394 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
1395 while (GetCountSspClk() < LastTimeProxToAirStart
+ LastProxToAirDuration
+ (FpgaSendQueueDelay
>>3) - 8 - 3) /* wait */ ;
1397 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1398 // only, since we are receiving, not transmitting).
1399 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1401 // clear receive register, measure time of next transfer
1402 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
; (void) temp
;
1403 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
1404 uint32_t start_time
= GetCountSspClk() & 0xfffffff8;
1406 // Setup and start DMA.
1407 FpgaSetupSscDma(dmaBuf
, DMA_BUFFER_SIZE
);
1410 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (DMA_BUFFER_SIZE
-1);
1412 if (behindBy
== 0) continue;
1416 if(upTo
>= dmaBuf
+ DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1417 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1418 if(behindBy
> (9*DMA_BUFFER_SIZE
/10)) {
1419 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1424 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1425 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1426 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
; // DMA Next Counter registers
1429 if (BUTTON_PRESS()) {
1434 // check reader's HF field
1435 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW
)) {
1436 if ((MAX_ADC_HF_VOLTAGE_LOW
* AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF_LOW
]) >> 10 < MF_MINFIELDV
) {
1437 if (GetTickCount() - field_off_time
> 50) {
1438 ret
= 2; // reader has switched off HF field for more than 50ms. Timeout
1442 field_off_time
= GetTickCount(); // HF field is still there. Reset timer
1444 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
; // restart ADC
1447 if (MillerDecoding(b
, start_time
+ samples
*8)) {
1457 FpgaDisableSscDma();
1462 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
) {
1467 bool correctionNeeded
;
1469 // Modulate Manchester
1470 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1472 // include correction bit if necessary
1473 if (Uart
.bitCount
== 7)
1475 // Short tags (7 bits) don't have parity, determine the correct value from MSB
1476 correctionNeeded
= Uart
.output
[0] & 0x40;
1480 // Look at the last parity bit
1481 correctionNeeded
= Uart
.parity
[(Uart
.len
-1)/8] & (0x80 >> ((Uart
.len
-1) & 7));
1484 if (correctionNeeded
) {
1485 // 1236, so correction bit needed
1491 // clear receiving shift register and holding register
1492 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1493 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1494 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1496 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1497 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1498 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1499 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1502 LastTimeProxToAirStart
= (GetCountSspClk() & 0xfffffff8) + (correctionNeeded
?8:0);
1505 for (; i
< respLen
; ) {
1506 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1507 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1508 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1511 if(BUTTON_PRESS()) {
1521 int EmSend4bit(uint8_t resp
){
1522 Code4bitAnswerAsTag(resp
);
1523 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
);
1524 // Log this tag answer and fix timing of previous reader command:
1525 EmLogTraceTag(&resp
, 1, NULL
, LastProxToAirDuration
);
1530 static int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1531 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1532 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
);
1533 // Log this tag answer and fix timing of previous reader command:
1534 EmLogTraceTag(resp
, respLen
, par
, LastProxToAirDuration
);
1539 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1540 uint8_t par
[MAX_PARITY_SIZE
];
1541 GetParity(resp
, respLen
, par
);
1542 return EmSendCmdExPar(resp
, respLen
, par
);
1546 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1547 return EmSendCmdExPar(resp
, respLen
, par
);
1551 int EmSendPrecompiledCmd(tag_response_info_t
*response_info
) {
1552 int ret
= EmSendCmd14443aRaw(response_info
->modulation
, response_info
->modulation_n
);
1553 // Log this tag answer and fix timing of previous reader command:
1554 EmLogTraceTag(response_info
->response
, response_info
->response_n
, &(response_info
->par
), response_info
->ProxToAirDuration
);
1559 //-----------------------------------------------------------------------------
1560 // Wait a certain time for tag response
1561 // If a response is captured return true
1562 // If it takes too long return false
1563 //-----------------------------------------------------------------------------
1564 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
) {
1567 // Set FPGA mode to "reader listen mode", no modulation (listen
1568 // only, since we are receiving, not transmitting).
1569 // Signal field is on with the appropriate LED
1571 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1573 // Now get the answer from the card
1574 DemodInit(receivedResponse
, receivedResponsePar
);
1577 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1583 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1584 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1585 if (ManchesterDecoding(b
, offset
, 0)) {
1586 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1588 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1596 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
) {
1598 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1600 // Send command to tag
1601 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1605 // Log reader command in trace buffer
1606 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, true);
1610 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
) {
1611 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1615 static void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
) {
1616 // Generate parity and redirect
1617 uint8_t par
[MAX_PARITY_SIZE
];
1618 GetParity(frame
, len
/8, par
);
1619 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1623 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
) {
1624 // Generate parity and redirect
1625 uint8_t par
[MAX_PARITY_SIZE
];
1626 GetParity(frame
, len
, par
);
1627 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1631 static int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
) {
1632 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return false;
1633 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, false);
1638 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
) {
1639 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return false;
1641 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, false);
1646 static void iso14a_set_ATS_times(uint8_t *ats
) {
1652 if (ats
[0] > 1) { // there is a format byte T0
1653 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
1654 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
1659 fwi
= (tb1
& 0xf0) >> 4; // frame waiting time integer (FWI)
1661 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
1662 iso14a_set_timeout(fwt
/(8*16));
1664 sfgi
= tb1
& 0x0f; // startup frame guard time integer (SFGI)
1665 if (sfgi
!= 0 && sfgi
!= 15) {
1666 sfgt
= 256 * 16 * (1 << sfgi
); // startup frame guard time (SFGT) in 1/fc
1667 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
+ (sfgt
- DELAY_AIR2ARM_AS_READER
- DELAY_ARM2AIR_AS_READER
)/16);
1674 static int GetATQA(uint8_t *resp
, uint8_t *resp_par
) {
1676 #define WUPA_RETRY_TIMEOUT 10 // 10ms
1677 uint8_t wupa
[] = {ISO14443A_CMD_WUPA
}; // 0x26 - REQA 0x52 - WAKE-UP
1679 uint32_t save_iso14a_timeout
= iso14a_get_timeout();
1680 iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
1682 uint32_t start_time
= GetTickCount();
1685 // we may need several tries if we did send an unknown command or a wrong authentication before...
1687 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1688 ReaderTransmitBitsPar(wupa
, 7, NULL
, NULL
);
1690 len
= ReaderReceive(resp
, resp_par
);
1691 } while (len
== 0 && GetTickCount() <= start_time
+ WUPA_RETRY_TIMEOUT
);
1693 iso14a_set_timeout(save_iso14a_timeout
);
1698 // performs iso14443a anticollision (optional) and card select procedure
1699 // fills the uid and cuid pointer unless NULL
1700 // fills the card info record unless NULL
1701 // if anticollision is false, then the UID must be provided in uid_ptr[]
1702 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1703 // requests ATS unless no_rats is true
1704 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
, bool anticollision
, uint8_t num_cascades
, bool no_rats
) {
1705 uint8_t sel_all
[] = { 0x93,0x20 };
1706 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1707 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1708 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1709 uint8_t resp_par
[MAX_PARITY_SIZE
];
1711 size_t uid_resp_len
;
1713 uint8_t sak
= 0x04; // cascade uid
1714 int cascade_level
= 0;
1719 p_hi14a_card
->uidlen
= 0;
1720 memset(p_hi14a_card
->uid
, 0, 10);
1721 p_hi14a_card
->ats_len
= 0;
1724 if (!GetATQA(resp
, resp_par
)) {
1729 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1732 if (anticollision
) {
1735 memset(uid_ptr
,0,10);
1739 // check for proprietary anticollision:
1740 if ((resp
[0] & 0x1F) == 0) {
1744 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1745 // which case we need to make a cascade 2 request and select - this is a long UID
1746 // While the UID is not complete, the 3rd bit (from the right) is set in the SAK.
1747 for (; sak
& 0x04; cascade_level
++) {
1748 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1749 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1751 if (anticollision
) {
1753 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1754 if (!ReaderReceive(resp
, resp_par
)) {
1758 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1759 memset(uid_resp
, 0, 4);
1760 uint16_t uid_resp_bits
= 0;
1761 uint16_t collision_answer_offset
= 0;
1762 // anti-collision-loop:
1763 while (Demod
.collisionPos
) {
1764 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1765 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1766 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1767 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1769 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1771 // construct anticollosion command:
1772 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1773 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1774 sel_uid
[2+i
] = uid_resp
[i
];
1776 collision_answer_offset
= uid_resp_bits
%8;
1777 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1778 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) {
1782 // finally, add the last bits and BCC of the UID
1783 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1784 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1785 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1788 } else { // no collision, use the response to SELECT_ALL as current uid
1789 memcpy(uid_resp
, resp
, 4);
1792 if (cascade_level
< num_cascades
- 1) {
1794 memcpy(uid_resp
+1, uid_ptr
+cascade_level
*3, 3);
1796 memcpy(uid_resp
, uid_ptr
+cascade_level
*3, 4);
1801 // calculate crypto UID. Always use last 4 Bytes.
1803 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1806 // Construct SELECT UID command
1807 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1808 memcpy(sel_uid
+2, uid_resp
, 4); // the UID received during anticollision, or the provided UID
1809 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1810 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1811 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1814 if (!ReaderReceive(resp
, resp_par
)) {
1819 // Test if more parts of the uid are coming
1820 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1821 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1822 // http://www.nxp.com/documents/application_note/AN10927.pdf
1823 uid_resp
[0] = uid_resp
[1];
1824 uid_resp
[1] = uid_resp
[2];
1825 uid_resp
[2] = uid_resp
[3];
1829 if(uid_ptr
&& anticollision
) {
1830 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1834 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1835 p_hi14a_card
->uidlen
+= uid_resp_len
;
1840 p_hi14a_card
->sak
= sak
;
1843 // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
1844 if( (sak
& 0x20) == 0) return 2;
1847 // Request for answer to select
1848 AppendCrc14443a(rats
, 2);
1849 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1851 if (!(len
= ReaderReceive(resp
, resp_par
))) {
1856 memcpy(p_hi14a_card
->ats
, resp
, len
);
1857 p_hi14a_card
->ats_len
= len
;
1860 // reset the PCB block number
1861 iso14_pcb_blocknum
= 0;
1863 // set default timeout and delay next transfer based on ATS
1864 iso14a_set_ATS_times(resp
);
1871 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1872 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1873 // Set up the synchronous serial port
1874 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1875 // connect Demodulated Signal to ADC:
1876 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1878 // Signal field is on with the appropriate LED
1879 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1880 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1885 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1887 // Set ADC to read field strength
1888 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1889 AT91C_BASE_ADC
->ADC_MR
=
1890 ADC_MODE_PRESCALE(63) |
1891 ADC_MODE_STARTUP_TIME(1) |
1892 ADC_MODE_SAMPLE_HOLD_TIME(15);
1893 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF_LOW
);
1900 LastTimeProxToAirStart
= 0;
1901 FpgaSendQueueDelay
= 0;
1902 LastProxToAirDuration
= 20; // arbitrary small value. Avoid lock in EmGetCmd()
1903 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1904 iso14a_set_timeout(1060); // 10ms default
1907 /* Peter Fillmore 2015
1908 Added card id field to the function
1909 info from ISO14443A standard
1912 b3 = depends on block
1913 b4 = Card ID following if set to 1
1914 b5 = depends on block type
1915 b6 = depends on block type
1918 b8 b7 b6 b5 b4 b3 b2 b1
1922 b8 b7 b6 b5 b4 b3 b2 b1
1926 b8 b7 b6 b5 b4 b3 b2 b1
1928 b5,b6 = 00 - DESELECT
1931 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, bool send_chaining
, void *data
, uint8_t *res
) {
1932 uint8_t parity
[MAX_PARITY_SIZE
];
1933 uint8_t real_cmd
[cmd_len
+ 4];
1936 // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
1937 real_cmd
[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
1938 if (send_chaining
) {
1939 real_cmd
[0] |= 0x10;
1941 // put block number into the PCB
1942 real_cmd
[0] |= iso14_pcb_blocknum
;
1943 memcpy(real_cmd
+ 1, cmd
, cmd_len
);
1946 real_cmd
[0] = 0xA2; // r-block + ACK
1947 real_cmd
[0] |= iso14_pcb_blocknum
;
1949 AppendCrc14443a(real_cmd
, cmd_len
+ 1);
1951 ReaderTransmit(real_cmd
, cmd_len
+ 3, NULL
);
1953 size_t len
= ReaderReceive(data
, parity
);
1954 uint8_t *data_bytes
= (uint8_t *) data
;
1957 return 0; //DATA LINK ERROR
1960 while (len
&& ((data_bytes
[0] & 0xF2) == 0xF2)) {
1961 uint32_t save_iso14a_timeout
= iso14a_get_timeout();
1962 // temporarily increase timeout
1963 iso14a_set_timeout(MAX((data_bytes
[1] & 0x3f) * save_iso14a_timeout
, MAX_ISO14A_TIMEOUT
));
1964 // Transmit WTX back
1965 // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
1966 data_bytes
[1] = data_bytes
[1] & 0x3f; // 2 high bits mandatory set to 0b
1967 // now need to fix CRC.
1968 AppendCrc14443a(data_bytes
, len
- 2);
1970 ReaderTransmit(data_bytes
, len
, NULL
);
1971 // retrieve the result again (with increased timeout)
1972 len
= ReaderReceive(data
, parity
);
1975 iso14a_set_timeout(save_iso14a_timeout
);
1978 // if we received an I- or R(ACK)-Block with a block number equal to the
1979 // current block number, toggle the current block number
1980 if (len
>= 3 // PCB+CRC = 3 bytes
1981 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1982 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1983 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1985 iso14_pcb_blocknum
^= 1;
1988 // if we received I-block with chaining we need to send ACK and receive another block of data
1990 *res
= data_bytes
[0];
1993 if (len
>= 3 && !CheckCrc14443(CRC_14443_A
, data_bytes
, len
)) {
2002 // memmove(data_bytes, data_bytes + 1, len);
2003 for (int i
= 0; i
< len
; i
++)
2004 data_bytes
[i
] = data_bytes
[i
+ 1];
2011 //-----------------------------------------------------------------------------
2012 // Read an ISO 14443a tag. Send out commands and store answers.
2014 //-----------------------------------------------------------------------------
2015 void ReaderIso14443a(UsbCommand
*c
) {
2017 iso14a_command_t param
= c
->arg
[0];
2018 uint8_t *cmd
= c
->d
.asBytes
;
2019 size_t len
= c
->arg
[1] & 0xffff;
2020 size_t lenbits
= c
->arg
[1] >> 16;
2021 uint32_t timeout
= c
->arg
[2];
2023 byte_t buf
[USB_CMD_DATA_SIZE
] = {0};
2024 uint8_t par
[MAX_PARITY_SIZE
];
2025 bool cantSELECT
= false;
2029 if(param
& ISO14A_CLEAR_TRACE
) {
2033 if(param
& ISO14A_REQUEST_TRIGGER
) {
2034 iso14a_set_trigger(true);
2037 if(param
& ISO14A_CONNECT
) {
2039 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
2040 if(!(param
& ISO14A_NO_SELECT
)) {
2041 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
2042 arg0
= iso14443a_select_card(NULL
, card
, NULL
, true, 0, param
& ISO14A_NO_RATS
);
2044 // if we cant select then we cant send data
2045 if (arg0
!= 1 && arg0
!= 2) {
2046 // 1 - all is OK with ATS, 2 - without ATS
2049 FpgaDisableTracing();
2051 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
2056 if(param
& ISO14A_SET_TIMEOUT
) {
2057 iso14a_set_timeout(timeout
);
2060 if(param
& ISO14A_APDU
&& !cantSELECT
) {
2062 arg0
= iso14_apdu(cmd
, len
, (param
& ISO14A_SEND_CHAINING
), buf
, &res
);
2063 FpgaDisableTracing();
2065 cmd_send(CMD_ACK
, arg0
, res
, 0, buf
, sizeof(buf
));
2069 if(param
& ISO14A_RAW
&& !cantSELECT
) {
2070 if(param
& ISO14A_APPEND_CRC
) {
2071 if(param
& ISO14A_TOPAZMODE
) {
2072 AppendCrc14443b(cmd
,len
);
2074 AppendCrc14443a(cmd
,len
);
2077 if (lenbits
) lenbits
+= 16;
2079 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2080 if(param
& ISO14A_TOPAZMODE
) {
2081 int bits_to_send
= lenbits
;
2083 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2085 while (bits_to_send
> 0) {
2086 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2090 GetParity(cmd
, lenbits
/8, par
);
2091 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2093 } else { // want to send complete bytes only
2094 if(param
& ISO14A_TOPAZMODE
) {
2096 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2098 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2101 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2104 arg0
= ReaderReceive(buf
, par
);
2105 FpgaDisableTracing();
2108 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2112 if(param
& ISO14A_REQUEST_TRIGGER
) {
2113 iso14a_set_trigger(false);
2116 if(param
& ISO14A_NO_DISCONNECT
) {
2120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2125 // Determine the distance between two nonces.
2126 // Assume that the difference is small, but we don't know which is first.
2127 // Therefore try in alternating directions.
2128 static int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2131 uint32_t nttmp1
, nttmp2
;
2133 if (nt1
== nt2
) return 0;
2138 for (i
= 1; i
< 32768; i
++) {
2139 nttmp1
= prng_successor(nttmp1
, 1);
2140 if (nttmp1
== nt2
) return i
;
2141 nttmp2
= prng_successor(nttmp2
, 1);
2142 if (nttmp2
== nt1
) return -i
;
2145 return(-99999); // either nt1 or nt2 are invalid nonces
2149 //-----------------------------------------------------------------------------
2150 // Recover several bits of the cypher stream. This implements (first stages of)
2151 // the algorithm described in "The Dark Side of Security by Obscurity and
2152 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2153 // (article by Nicolas T. Courtois, 2009)
2154 //-----------------------------------------------------------------------------
2155 void ReaderMifare(bool first_try
)
2158 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2159 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2160 static uint8_t mf_nr_ar3
;
2162 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
2163 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
2165 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2167 // free eventually allocated BigBuf memory. We want all for tracing.
2173 uint8_t nt_diff
= 0;
2174 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2175 static uint8_t par_low
= 0;
2177 uint8_t uid
[10] ={0};
2181 uint32_t previous_nt
= 0;
2182 static uint32_t nt_attacked
= 0;
2183 uint8_t par_list
[8] = {0x00};
2184 uint8_t ks_list
[8] = {0x00};
2186 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2187 uint32_t sync_time
= GetCountSspClk() & 0xfffffff8;
2188 static int32_t sync_cycles
;
2189 int catch_up_cycles
= 0;
2190 int last_catch_up
= 0;
2191 uint16_t elapsed_prng_sequences
;
2192 uint16_t consecutive_resyncs
= 0;
2197 par
[0] = par_low
= 0;
2198 sync_cycles
= PRNG_SEQUENCE_LENGTH
; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2202 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2204 mf_nr_ar
[3] = mf_nr_ar3
;
2213 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2214 #define MAX_SYNC_TRIES 32
2215 #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
2216 #define NUM_DEBUG_INFOS 8 // per strategy
2217 #define MAX_STRATEGY 3
2218 uint16_t unexpected_random
= 0;
2219 uint16_t sync_tries
= 0;
2220 int16_t debug_info_nr
= -1;
2221 uint16_t strategy
= 0;
2222 int32_t debug_info
[MAX_STRATEGY
][NUM_DEBUG_INFOS
];
2223 uint32_t select_time
;
2226 for (uint16_t i
= 0; true; i
++) {
2231 // Test if the action was cancelled
2232 if(BUTTON_PRESS()) {
2237 if (strategy
== 2) {
2238 // test with additional hlt command
2240 int len
= mifare_sendcmd_short(NULL
, false, 0x50, 0x00, receivedAnswer
, receivedAnswerPar
, &halt_time
);
2241 if (len
&& MF_DBGLEVEL
>= 3) {
2242 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len
);
2246 if (strategy
== 3) {
2247 // test with FPGA power off/on
2248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2250 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2254 if(!iso14443a_select_card(uid
, NULL
, &cuid
, true, 0, true)) {
2255 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2258 select_time
= GetCountSspClk();
2260 elapsed_prng_sequences
= 1;
2261 if (debug_info_nr
== -1) {
2262 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2263 catch_up_cycles
= 0;
2265 // if we missed the sync time already or are about to miss it, advance to the next nonce repeat
2266 while(sync_time
< GetCountSspClk() + SYNC_TIME_BUFFER
) {
2267 elapsed_prng_sequences
++;
2268 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2271 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2272 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2274 // collect some information on tag nonces for debugging:
2275 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2276 if (strategy
== 0) {
2277 // nonce distances at fixed time after card select:
2278 sync_time
= select_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2279 } else if (strategy
== 1) {
2280 // nonce distances at fixed time between authentications:
2281 sync_time
= sync_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2282 } else if (strategy
== 2) {
2283 // nonce distances at fixed time after halt:
2284 sync_time
= halt_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2286 // nonce_distances at fixed time after power on
2287 sync_time
= DEBUG_FIXED_SYNC_CYCLES
;
2289 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2292 // Receive the (4 Byte) "random" nonce
2293 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2294 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2299 nt
= bytes_to_num(receivedAnswer
, 4);
2301 // Transmit reader nonce with fake par
2302 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2304 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2305 int nt_distance
= dist_nt(previous_nt
, nt
);
2306 if (nt_distance
== 0) {
2309 if (nt_distance
== -99999) { // invalid nonce received
2310 unexpected_random
++;
2311 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2312 isOK
= -3; // Card has an unpredictable PRNG. Give up
2315 continue; // continue trying...
2318 if (++sync_tries
> MAX_SYNC_TRIES
) {
2319 if (strategy
> MAX_STRATEGY
|| MF_DBGLEVEL
< 3) {
2320 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2322 } else { // continue for a while, just to collect some debug info
2323 debug_info
[strategy
][debug_info_nr
] = nt_distance
;
2325 if (debug_info_nr
== NUM_DEBUG_INFOS
) {
2332 sync_cycles
= (sync_cycles
- nt_distance
/elapsed_prng_sequences
);
2333 if (sync_cycles
<= 0) {
2334 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2336 if (MF_DBGLEVEL
>= 3) {
2337 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2343 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2344 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2345 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2346 catch_up_cycles
= 0;
2349 catch_up_cycles
/= elapsed_prng_sequences
;
2350 if (catch_up_cycles
== last_catch_up
) {
2351 consecutive_resyncs
++;
2354 last_catch_up
= catch_up_cycles
;
2355 consecutive_resyncs
= 0;
2357 if (consecutive_resyncs
< 3) {
2358 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2361 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2362 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2364 catch_up_cycles
= 0;
2365 consecutive_resyncs
= 0;
2370 consecutive_resyncs
= 0;
2372 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2373 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2374 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2377 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2381 if(led_on
) LED_B_ON(); else LED_B_OFF();
2383 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2384 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2386 // Test if the information is complete
2387 if (nt_diff
== 0x07) {
2392 nt_diff
= (nt_diff
+ 1) & 0x07;
2393 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2396 if (nt_diff
== 0 && first_try
)
2399 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2404 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2410 mf_nr_ar
[3] &= 0x1F;
2413 if (MF_DBGLEVEL
>= 3) {
2414 for (uint16_t i
= 0; i
<= MAX_STRATEGY
; i
++) {
2415 for (uint16_t j
= 0; j
< NUM_DEBUG_INFOS
; j
++) {
2416 Dbprintf("collected debug info[%d][%d] = %d", i
, j
, debug_info
[i
][j
]);
2422 FpgaDisableTracing();
2425 memcpy(buf
+ 0, uid
, 4);
2426 num_to_bytes(nt
, 4, buf
+ 4);
2427 memcpy(buf
+ 8, par_list
, 8);
2428 memcpy(buf
+ 16, ks_list
, 8);
2429 memcpy(buf
+ 24, mf_nr_ar
, 8);
2431 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, 32);
2434 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2441 //-----------------------------------------------------------------------------
2444 //-----------------------------------------------------------------------------
2445 void RAMFUNC
SniffMifare(uint8_t param
) {
2447 // bit 0 - trigger from first card answer
2448 // bit 1 - trigger from first reader 7-bit request
2450 // C(red) A(yellow) B(green)
2454 // init trace buffer
2458 // The command (reader -> tag) that we're receiving.
2459 // The length of a received command will in most cases be no more than 18 bytes.
2460 // So 32 should be enough!
2461 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2462 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2463 // The response (tag -> reader) that we're receiving.
2464 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2465 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2467 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2469 // free eventually allocated BigBuf memory
2471 // allocate the DMA buffer, used to stream samples from the FPGA
2472 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2473 uint8_t *data
= dmaBuf
;
2474 uint8_t previous_data
= 0;
2477 bool ReaderIsActive
= false;
2478 bool TagIsActive
= false;
2480 // Set up the demodulator for tag -> reader responses.
2481 DemodInit(receivedResponse
, receivedResponsePar
);
2483 // Set up the demodulator for the reader -> tag commands
2484 UartInit(receivedCmd
, receivedCmdPar
);
2486 // Setup for the DMA.
2487 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2492 // And now we loop, receiving samples.
2493 for (uint32_t sniffCounter
= 0; true; ) {
2495 if(BUTTON_PRESS()) {
2496 DbpString("Canceled by button.");
2502 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2503 // check if a transaction is completed (timeout after 2000ms).
2504 // if yes, stop the DMA transfer and send what we have so far to the client
2505 if (MfSniffSend(2000)) {
2506 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2510 ReaderIsActive
= false;
2511 TagIsActive
= false;
2512 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2516 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2517 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2518 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2519 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2521 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2523 // test for length of buffer
2524 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2525 maxDataLen
= dataLen
;
2526 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2527 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2531 if(dataLen
< 1) continue;
2533 // primary buffer was stopped ( <-- we lost data!
2534 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2535 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2536 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2537 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2539 // secondary buffer sets as primary, secondary buffer was stopped
2540 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2541 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2542 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2545 if (sniffCounter
& 0x01) {
2547 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2548 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2549 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2551 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, true)) break;
2553 /* And ready to receive another command. */
2554 UartInit(receivedCmd
, receivedCmdPar
);
2556 /* And also reset the demod code */
2559 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2562 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2563 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2564 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2566 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, false)) break;
2568 // And ready to receive another response.
2570 // And reset the Miller decoder including its (now outdated) input buffer
2571 UartInit(receivedCmd
, receivedCmdPar
);
2573 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2577 previous_data
= *data
;
2580 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2586 FpgaDisableTracing();
2587 FpgaDisableSscDma();
2590 DbpString("COMMAND FINISHED.");
2594 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);