1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1/crapto1.h"
21 #include "mifareutil.h"
23 #include "protocols.h"
25 static uint32_t iso14a_timeout
;
28 // the block number for the ISO14443-4 PCB
29 static uint8_t iso14_pcb_blocknum
= 0;
34 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
35 #define REQUEST_GUARD_TIME (7000/16 + 1)
36 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
37 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
38 // bool LastCommandWasRequest = FALSE;
41 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43 // When the PM acts as reader and is receiving tag data, it takes
44 // 3 ticks delay in the AD converter
45 // 16 ticks until the modulation detector completes and sets curbit
46 // 8 ticks until bit_to_arm is assigned from curbit
47 // 8*16 ticks for the transfer from FPGA to ARM
48 // 4*16 ticks until we measure the time
49 // - 8*16 ticks because we measure the time of the previous transfer
50 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
52 // When the PM acts as a reader and is sending, it takes
53 // 4*16 ticks until we can write data to the sending hold register
54 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
55 // 8 ticks until the first transfer starts
56 // 8 ticks later the FPGA samples the data
57 // 1 tick to assign mod_sig_coil
58 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60 // When the PM acts as tag and is receiving it takes
61 // 2 ticks delay in the RF part (for the first falling edge),
62 // 3 ticks for the A/D conversion,
63 // 8 ticks on average until the start of the SSC transfer,
64 // 8 ticks until the SSC samples the first data
65 // 7*16 ticks to complete the transfer from FPGA to ARM
66 // 8 ticks until the next ssp_clk rising edge
67 // 4*16 ticks until we measure the time
68 // - 8*16 ticks because we measure the time of the previous transfer
69 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
71 // The FPGA will report its internal sending delay in
72 uint16_t FpgaSendQueueDelay
;
73 // the 5 first bits are the number of bits buffered in mod_sig_buf
74 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
75 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77 // When the PM acts as tag and is sending, it takes
78 // 4*16 ticks until we can write data to the sending hold register
79 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
80 // 8 ticks until the first transfer starts
81 // 8 ticks later the FPGA samples the data
82 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
83 // + 1 tick to assign mod_sig_coil
84 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
86 // When the PM acts as sniffer and is receiving tag data, it takes
87 // 3 ticks A/D conversion
88 // 14 ticks to complete the modulation detection
89 // 8 ticks (on average) until the result is stored in to_arm
90 // + the delays in transferring data - which is the same for
91 // sniffing reader and tag data and therefore not relevant
92 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
94 // When the PM acts as sniffer and is receiving reader data, it takes
95 // 2 ticks delay in analogue RF receiver (for the falling edge of the
96 // start bit, which marks the start of the communication)
97 // 3 ticks A/D conversion
98 // 8 ticks on average until the data is stored in to_arm.
99 // + the delays in transferring data - which is the same for
100 // sniffing reader and tag data and therefore not relevant
101 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
103 //variables used for timing purposes:
104 //these are in ssp_clk cycles:
105 static uint32_t NextTransferTime
;
106 static uint32_t LastTimeProxToAirStart
;
107 static uint32_t LastProxToAirDuration
;
111 // CARD TO READER - manchester
112 // Sequence D: 11110000 modulation with subcarrier during first half
113 // Sequence E: 00001111 modulation with subcarrier during second half
114 // Sequence F: 00000000 no modulation with subcarrier
115 // READER TO CARD - miller
116 // Sequence X: 00001100 drop after half a period
117 // Sequence Y: 00000000 no drop
118 // Sequence Z: 11000000 drop at start
126 const uint8_t OddByteParity
[256] = {
127 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
146 void iso14a_set_trigger(bool enable
) {
151 void iso14a_set_timeout(uint32_t timeout
) {
152 iso14a_timeout
= timeout
;
153 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
157 void iso14a_set_ATS_timeout(uint8_t *ats
) {
163 if (ats
[0] > 1) { // there is a format byte T0
164 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
165 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
170 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
171 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
173 iso14a_set_timeout(fwt
/(8*16));
179 //-----------------------------------------------------------------------------
180 // Generate the parity value for a byte sequence
182 //-----------------------------------------------------------------------------
183 byte_t
oddparity (const byte_t bt
)
185 return OddByteParity
[bt
];
188 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
190 uint16_t paritybit_cnt
= 0;
191 uint16_t paritybyte_cnt
= 0;
192 uint8_t parityBits
= 0;
194 for (uint16_t i
= 0; i
< iLen
; i
++) {
195 // Generate the parity bits
196 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
197 if (paritybit_cnt
== 7) {
198 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
199 parityBits
= 0; // and advance to next Parity Byte
207 // save remaining parity bits
208 par
[paritybyte_cnt
] = parityBits
;
212 void AppendCrc14443a(uint8_t* data
, int len
)
214 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
217 void AppendCrc14443b(uint8_t* data
, int len
)
219 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
223 //=============================================================================
224 // ISO 14443 Type A - Miller decoder
225 //=============================================================================
227 // This decoder is used when the PM3 acts as a tag.
228 // The reader will generate "pauses" by temporarily switching of the field.
229 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
230 // The FPGA does a comparison with a threshold and would deliver e.g.:
231 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
232 // The Miller decoder needs to identify the following sequences:
233 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
234 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
235 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
236 // Note 1: the bitstream may start at any time. We therefore need to sync.
237 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
238 //-----------------------------------------------------------------------------
241 // Lookup-Table to decide if 4 raw bits are a modulation.
242 // We accept the following:
243 // 0001 - a 3 tick wide pause
244 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
245 // 0111 - a 2 tick wide pause shifted left
246 // 1001 - a 2 tick wide pause shifted right
247 const bool Mod_Miller_LUT
[] = {
248 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
249 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
251 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
252 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
256 Uart
.state
= STATE_UNSYNCD
;
258 Uart
.len
= 0; // number of decoded data bytes
259 Uart
.parityLen
= 0; // number of decoded parity bytes
260 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
261 Uart
.parityBits
= 0; // holds 8 parity bits
266 void UartInit(uint8_t *data
, uint8_t *parity
)
269 Uart
.parity
= parity
;
270 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
274 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
275 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
278 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
280 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
282 Uart
.syncBit
= 9999; // not set
283 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
284 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
285 // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
286 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
287 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
288 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
289 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
290 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
291 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
292 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
293 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
294 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
295 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
296 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
298 if (Uart
.syncBit
!= 9999) { // found a sync bit
299 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
300 Uart
.startTime
-= Uart
.syncBit
;
301 Uart
.endTime
= Uart
.startTime
;
302 Uart
.state
= STATE_START_OF_COMMUNICATION
;
307 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
308 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
310 } else { // Modulation in first half = Sequence Z = logic "0"
311 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
315 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
316 Uart
.state
= STATE_MILLER_Z
;
317 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
318 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
319 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
320 Uart
.parityBits
<<= 1; // make room for the parity bit
321 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
324 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
325 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
332 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
334 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
335 Uart
.state
= STATE_MILLER_X
;
336 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
337 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
338 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
339 Uart
.parityBits
<<= 1; // make room for the new parity bit
340 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
343 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
344 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
348 } else { // no modulation in both halves - Sequence Y
349 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
350 Uart
.state
= STATE_UNSYNCD
;
351 Uart
.bitCount
--; // last "0" was part of EOC sequence
352 Uart
.shiftReg
<<= 1; // drop it
353 if(Uart
.bitCount
> 0) { // if we decoded some bits
354 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
355 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
356 Uart
.parityBits
<<= 1; // add a (void) parity bit
357 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
358 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
360 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
361 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
362 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
365 return TRUE
; // we are finished with decoding the raw data sequence
367 UartReset(); // Nothing received - start over
370 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
372 } else { // a logic "0"
374 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
375 Uart
.state
= STATE_MILLER_Y
;
376 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
377 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
378 Uart
.parityBits
<<= 1; // make room for the parity bit
379 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
382 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
383 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
393 return FALSE
; // not finished yet, need more data
398 //=============================================================================
399 // ISO 14443 Type A - Manchester decoder
400 //=============================================================================
402 // This decoder is used when the PM3 acts as a reader.
403 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
404 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
405 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
406 // The Manchester decoder needs to identify the following sequences:
407 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
408 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
409 // 8 ticks unmodulated: Sequence F = end of communication
410 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
411 // Note 1: the bitstream may start at any time. We therefore need to sync.
412 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
415 // Lookup-Table to decide if 4 raw bits are a modulation.
416 // We accept three or four "1" in any position
417 const bool Mod_Manchester_LUT
[] = {
418 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
419 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
422 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
423 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
428 Demod
.state
= DEMOD_UNSYNCD
;
429 Demod
.len
= 0; // number of decoded data bytes
431 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
432 Demod
.parityBits
= 0; //
433 Demod
.collisionPos
= 0; // Position of collision bit
434 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
440 void DemodInit(uint8_t *data
, uint8_t *parity
)
443 Demod
.parity
= parity
;
447 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
448 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
451 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
453 if (Demod
.state
== DEMOD_UNSYNCD
) {
455 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
456 if (Demod
.twoBits
== 0x0000) {
462 Demod
.syncBit
= 0xFFFF; // not set
463 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
464 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
465 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
466 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
467 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
468 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
469 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
470 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
471 if (Demod
.syncBit
!= 0xFFFF) {
472 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
473 Demod
.startTime
-= Demod
.syncBit
;
474 Demod
.bitCount
= offset
; // number of decoded data bits
475 Demod
.state
= DEMOD_MANCHESTER_DATA
;
481 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
482 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
483 if (!Demod
.collisionPos
) {
484 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
486 } // modulation in first half only - Sequence D = 1
488 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
489 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
490 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
491 Demod
.parityBits
<<= 1; // make room for the parity bit
492 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
495 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
496 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
497 Demod
.parityBits
= 0;
500 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
501 } else { // no modulation in first half
502 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
504 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
505 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
506 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
507 Demod
.parityBits
<<= 1; // make room for the new parity bit
508 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
511 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
512 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
513 Demod
.parityBits
= 0;
516 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
517 } else { // no modulation in both halves - End of communication
518 if(Demod
.bitCount
> 0) { // there are some remaining data bits
519 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
520 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
521 Demod
.parityBits
<<= 1; // add a (void) parity bit
522 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
523 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
525 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
526 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
527 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
530 return TRUE
; // we are finished with decoding the raw data sequence
531 } else { // nothing received. Start over
539 return FALSE
; // not finished yet, need more data
542 //=============================================================================
543 // Finally, a `sniffer' for ISO 14443 Type A
544 // Both sides of communication!
545 //=============================================================================
547 //-----------------------------------------------------------------------------
548 // Record the sequence of commands sent by the reader to the tag, with
549 // triggering so that we start recording at the point that the tag is moved
551 //-----------------------------------------------------------------------------
552 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
554 // bit 0 - trigger from first card answer
555 // bit 1 - trigger from first reader 7-bit request
559 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
561 // Allocate memory from BigBuf for some buffers
562 // free all previous allocations first
565 // The command (reader -> tag) that we're receiving.
566 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
567 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
569 // The response (tag -> reader) that we're receiving.
570 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
571 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
573 // The DMA buffer, used to stream samples from the FPGA
574 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
580 uint8_t *data
= dmaBuf
;
581 uint8_t previous_data
= 0;
584 bool TagIsActive
= FALSE
;
585 bool ReaderIsActive
= FALSE
;
587 // Set up the demodulator for tag -> reader responses.
588 DemodInit(receivedResponse
, receivedResponsePar
);
590 // Set up the demodulator for the reader -> tag commands
591 UartInit(receivedCmd
, receivedCmdPar
);
593 // Setup and start DMA.
594 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
596 // We won't start recording the frames that we acquire until we trigger;
597 // a good trigger condition to get started is probably when we see a
598 // response from the tag.
599 // triggered == FALSE -- to wait first for card
600 bool triggered
= !(param
& 0x03);
602 // And now we loop, receiving samples.
603 for(uint32_t rsamples
= 0; TRUE
; ) {
606 DbpString("cancelled by button");
613 int register readBufDataP
= data
- dmaBuf
;
614 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
615 if (readBufDataP
<= dmaBufDataP
){
616 dataLen
= dmaBufDataP
- readBufDataP
;
618 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
620 // test for length of buffer
621 if(dataLen
> maxDataLen
) {
622 maxDataLen
= dataLen
;
623 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
624 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
628 if(dataLen
< 1) continue;
630 // primary buffer was stopped( <-- we lost data!
631 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
632 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
633 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
634 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
636 // secondary buffer sets as primary, secondary buffer was stopped
637 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
638 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
639 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
644 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
646 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
647 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
648 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
651 // check - if there is a short 7bit request from reader
652 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
655 if (!LogTrace(receivedCmd
,
657 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
658 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
662 /* And ready to receive another command. */
664 /* And also reset the demod code, which might have been */
665 /* false-triggered by the commands from the reader. */
669 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
672 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
673 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
674 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
677 if (!LogTrace(receivedResponse
,
679 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
680 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
684 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
686 // And ready to receive another response.
688 // And reset the Miller decoder including itS (now outdated) input buffer
689 UartInit(receivedCmd
, receivedCmdPar
);
693 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
697 previous_data
= *data
;
700 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
705 DbpString("COMMAND FINISHED");
708 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
709 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
713 //-----------------------------------------------------------------------------
714 // Prepare tag messages
715 //-----------------------------------------------------------------------------
716 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
720 // Correction bit, might be removed when not needed
725 ToSendStuffBit(1); // 1
731 ToSend
[++ToSendMax
] = SEC_D
;
732 LastProxToAirDuration
= 8 * ToSendMax
- 4;
734 for(uint16_t i
= 0; i
< len
; i
++) {
738 for(uint16_t j
= 0; j
< 8; j
++) {
740 ToSend
[++ToSendMax
] = SEC_D
;
742 ToSend
[++ToSendMax
] = SEC_E
;
747 // Get the parity bit
748 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
749 ToSend
[++ToSendMax
] = SEC_D
;
750 LastProxToAirDuration
= 8 * ToSendMax
- 4;
752 ToSend
[++ToSendMax
] = SEC_E
;
753 LastProxToAirDuration
= 8 * ToSendMax
;
758 ToSend
[++ToSendMax
] = SEC_F
;
760 // Convert from last byte pos to length
764 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
766 uint8_t par
[MAX_PARITY_SIZE
];
768 GetParity(cmd
, len
, par
);
769 CodeIso14443aAsTagPar(cmd
, len
, par
);
773 static void Code4bitAnswerAsTag(uint8_t cmd
)
779 // Correction bit, might be removed when not needed
784 ToSendStuffBit(1); // 1
790 ToSend
[++ToSendMax
] = SEC_D
;
793 for(i
= 0; i
< 4; i
++) {
795 ToSend
[++ToSendMax
] = SEC_D
;
796 LastProxToAirDuration
= 8 * ToSendMax
- 4;
798 ToSend
[++ToSendMax
] = SEC_E
;
799 LastProxToAirDuration
= 8 * ToSendMax
;
805 ToSend
[++ToSendMax
] = SEC_F
;
807 // Convert from last byte pos to length
811 //-----------------------------------------------------------------------------
812 // Wait for commands from reader
813 // Stop when button is pressed
814 // Or return TRUE when command is captured
815 //-----------------------------------------------------------------------------
816 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
818 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
819 // only, since we are receiving, not transmitting).
820 // Signal field is off with the appropriate LED
822 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
824 // Now run a `software UART' on the stream of incoming samples.
825 UartInit(received
, parity
);
828 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
833 if(BUTTON_PRESS()) return FALSE
;
835 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
836 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
837 if(MillerDecoding(b
, 0)) {
845 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
846 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
847 int EmSend4bit(uint8_t resp
);
848 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
849 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
850 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
851 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
852 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
853 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
855 static uint8_t* free_buffer_pointer
;
862 uint32_t ProxToAirDuration
;
863 } tag_response_info_t
;
865 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
866 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
867 // This will need the following byte array for a modulation sequence
868 // 144 data bits (18 * 8)
871 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
872 // 1 just for the case
874 // 166 bytes, since every bit that needs to be send costs us a byte
878 // Prepare the tag modulation bits from the message
879 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
881 // Make sure we do not exceed the free buffer space
882 if (ToSendMax
> max_buffer_size
) {
883 Dbprintf("Out of memory, when modulating bits for tag answer:");
884 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
888 // Copy the byte array, used for this modulation to the buffer position
889 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
891 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
892 response_info
->modulation_n
= ToSendMax
;
893 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
899 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
900 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
901 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
902 // -> need 273 bytes buffer
903 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
905 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
906 // Retrieve and store the current buffer index
907 response_info
->modulation
= free_buffer_pointer
;
909 // Determine the maximum size we can use from our buffer
910 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
912 // Forward the prepare tag modulation function to the inner function
913 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
914 // Update the free buffer offset
915 free_buffer_pointer
+= ToSendMax
;
922 //-----------------------------------------------------------------------------
923 // Main loop of simulated tag: receive commands from reader, decide what
924 // response to send, and send it.
925 //-----------------------------------------------------------------------------
926 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
930 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
931 uint8_t response1
[2];
934 case 1: { // MIFARE Classic
935 // Says: I am Mifare 1k - original line
940 case 2: { // MIFARE Ultralight
941 // Says: I am a stupid memory tag, no crypto
946 case 3: { // MIFARE DESFire
947 // Says: I am a DESFire tag, ph33r me
952 case 4: { // ISO/IEC 14443-4
953 // Says: I am a javacard (JCOP)
958 case 5: { // MIFARE TNP3XXX
965 Dbprintf("Error: unkown tagtype (%d)",tagType
);
970 // The second response contains the (mandatory) first 24 bits of the UID
971 uint8_t response2
[5] = {0x00};
973 // Check if the uid uses the (optional) part
974 uint8_t response2a
[5] = {0x00};
978 num_to_bytes(uid_1st
,3,response2
+1);
979 num_to_bytes(uid_2nd
,4,response2a
);
980 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
982 // Configure the ATQA and SAK accordingly
983 response1
[0] |= 0x40;
986 num_to_bytes(uid_1st
,4,response2
);
987 // Configure the ATQA and SAK accordingly
988 response1
[0] &= 0xBF;
992 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
993 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
995 // Prepare the mandatory SAK (for 4 and 7 byte UID)
996 uint8_t response3
[3] = {0x00};
998 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1000 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1001 uint8_t response3a
[3] = {0x00};
1002 response3a
[0] = sak
& 0xFB;
1003 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1005 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1006 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1007 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1008 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1009 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1010 // TC(1) = 0x02: CID supported, NAD not supported
1011 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1013 #define TAG_RESPONSE_COUNT 7
1014 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1015 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1016 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1017 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1018 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1019 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1020 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1021 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1024 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1025 // Such a response is less time critical, so we can prepare them on the fly
1026 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1027 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1028 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1029 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1030 tag_response_info_t dynamic_response_info
= {
1031 .response
= dynamic_response_buffer
,
1033 .modulation
= dynamic_modulation_buffer
,
1037 // We need to listen to the high-frequency, peak-detected path.
1038 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1040 BigBuf_free_keep_EM();
1042 // allocate buffers:
1043 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1044 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1045 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1051 // Prepare the responses of the anticollision phase
1052 // there will be not enough time to do this at the moment the reader sends it REQA
1053 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1054 prepare_allocated_tag_modulation(&responses
[i
]);
1059 // To control where we are in the protocol
1063 // Just to allow some checks
1069 tag_response_info_t
* p_response
;
1073 // Clean receive command buffer
1074 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1075 DbpString("Button press");
1081 // Okay, look at the command now.
1083 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1084 p_response
= &responses
[0]; order
= 1;
1085 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1086 p_response
= &responses
[0]; order
= 6;
1087 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1088 p_response
= &responses
[1]; order
= 2;
1089 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1090 p_response
= &responses
[2]; order
= 20;
1091 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1092 p_response
= &responses
[3]; order
= 3;
1093 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1094 p_response
= &responses
[4]; order
= 30;
1095 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1096 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1097 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1098 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1100 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1103 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1106 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1107 p_response
= &responses
[5]; order
= 7;
1108 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1109 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1110 EmSend4bit(CARD_NACK_NA
);
1113 p_response
= &responses
[6]; order
= 70;
1115 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1117 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1119 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1120 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1121 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1123 // Check for ISO 14443A-4 compliant commands, look at left nibble
1124 switch (receivedCmd
[0]) {
1127 case 0x0A: { // IBlock (command)
1128 dynamic_response_info
.response
[0] = receivedCmd
[0];
1129 dynamic_response_info
.response
[1] = 0x00;
1130 dynamic_response_info
.response
[2] = 0x90;
1131 dynamic_response_info
.response
[3] = 0x00;
1132 dynamic_response_info
.response_n
= 4;
1136 case 0x1B: { // Chaining command
1137 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1138 dynamic_response_info
.response_n
= 2;
1143 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1144 dynamic_response_info
.response_n
= 2;
1148 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1149 dynamic_response_info
.response_n
= 2;
1153 case 0xC2: { // Readers sends deselect command
1154 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1155 dynamic_response_info
.response_n
= 2;
1159 // Never seen this command before
1161 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1163 Dbprintf("Received unknown command (len=%d):",len
);
1164 Dbhexdump(len
,receivedCmd
,false);
1166 dynamic_response_info
.response_n
= 0;
1170 if (dynamic_response_info
.response_n
> 0) {
1171 // Copy the CID from the reader query
1172 dynamic_response_info
.response
[1] = receivedCmd
[1];
1174 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1175 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1176 dynamic_response_info
.response_n
+= 2;
1178 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1179 Dbprintf("Error preparing tag response");
1181 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1185 p_response
= &dynamic_response_info
;
1189 // Count number of wakeups received after a halt
1190 if(order
== 6 && lastorder
== 5) { happened
++; }
1192 // Count number of other messages after a halt
1193 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1195 if(cmdsRecvd
> 999) {
1196 DbpString("1000 commands later...");
1201 if (p_response
!= NULL
) {
1202 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1203 // do the tracing for the previous reader request and this tag answer:
1204 uint8_t par
[MAX_PARITY_SIZE
];
1205 GetParity(p_response
->response
, p_response
->response_n
, par
);
1207 EmLogTrace(Uart
.output
,
1209 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1210 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1212 p_response
->response
,
1213 p_response
->response_n
,
1214 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1215 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1220 Dbprintf("Trace Full. Simulation stopped.");
1225 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1227 BigBuf_free_keep_EM();
1231 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1232 // of bits specified in the delay parameter.
1233 void PrepareDelayedTransfer(uint16_t delay
)
1235 uint8_t bitmask
= 0;
1236 uint8_t bits_to_shift
= 0;
1237 uint8_t bits_shifted
= 0;
1241 for (uint16_t i
= 0; i
< delay
; i
++) {
1242 bitmask
|= (0x01 << i
);
1244 ToSend
[ToSendMax
++] = 0x00;
1245 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1246 bits_to_shift
= ToSend
[i
] & bitmask
;
1247 ToSend
[i
] = ToSend
[i
] >> delay
;
1248 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1249 bits_shifted
= bits_to_shift
;
1255 //-------------------------------------------------------------------------------------
1256 // Transmit the command (to the tag) that was placed in ToSend[].
1257 // Parameter timing:
1258 // if NULL: transfer at next possible time, taking into account
1259 // request guard time and frame delay time
1260 // if == 0: transfer immediately and return time of transfer
1261 // if != 0: delay transfer until time specified
1262 //-------------------------------------------------------------------------------------
1263 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1268 uint32_t ThisTransferTime
= 0;
1271 if(*timing
== 0) { // Measure time
1272 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1274 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1276 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1277 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1278 LastTimeProxToAirStart
= *timing
;
1280 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1281 while(GetCountSspClk() < ThisTransferTime
);
1282 LastTimeProxToAirStart
= ThisTransferTime
;
1286 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1290 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1291 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1299 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1303 //-----------------------------------------------------------------------------
1304 // Prepare reader command (in bits, support short frames) to send to FPGA
1305 //-----------------------------------------------------------------------------
1306 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1314 // Start of Communication (Seq. Z)
1315 ToSend
[++ToSendMax
] = SEC_Z
;
1316 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1319 size_t bytecount
= nbytes(bits
);
1320 // Generate send structure for the data bits
1321 for (i
= 0; i
< bytecount
; i
++) {
1322 // Get the current byte to send
1324 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1326 for (j
= 0; j
< bitsleft
; j
++) {
1329 ToSend
[++ToSendMax
] = SEC_X
;
1330 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1335 ToSend
[++ToSendMax
] = SEC_Z
;
1336 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1339 ToSend
[++ToSendMax
] = SEC_Y
;
1346 // Only transmit parity bit if we transmitted a complete byte
1347 if (j
== 8 && parity
!= NULL
) {
1348 // Get the parity bit
1349 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1351 ToSend
[++ToSendMax
] = SEC_X
;
1352 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1357 ToSend
[++ToSendMax
] = SEC_Z
;
1358 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1361 ToSend
[++ToSendMax
] = SEC_Y
;
1368 // End of Communication: Logic 0 followed by Sequence Y
1371 ToSend
[++ToSendMax
] = SEC_Z
;
1372 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1375 ToSend
[++ToSendMax
] = SEC_Y
;
1378 ToSend
[++ToSendMax
] = SEC_Y
;
1380 // Convert to length of command:
1384 //-----------------------------------------------------------------------------
1385 // Prepare reader command to send to FPGA
1386 //-----------------------------------------------------------------------------
1387 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1389 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1393 //-----------------------------------------------------------------------------
1394 // Wait for commands from reader
1395 // Stop when button is pressed (return 1) or field was gone (return 2)
1396 // Or return 0 when command is captured
1397 //-----------------------------------------------------------------------------
1398 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1402 uint32_t timer
= 0, vtime
= 0;
1406 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1407 // only, since we are receiving, not transmitting).
1408 // Signal field is off with the appropriate LED
1410 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1412 // Set ADC to read field strength
1413 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1414 AT91C_BASE_ADC
->ADC_MR
=
1415 ADC_MODE_PRESCALE(63) |
1416 ADC_MODE_STARTUP_TIME(1) |
1417 ADC_MODE_SAMPLE_HOLD_TIME(15);
1418 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1420 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1422 // Now run a 'software UART' on the stream of incoming samples.
1423 UartInit(received
, parity
);
1426 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1431 if (BUTTON_PRESS()) return 1;
1433 // test if the field exists
1434 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1436 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1437 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1438 if (analogCnt
>= 32) {
1439 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1440 vtime
= GetTickCount();
1441 if (!timer
) timer
= vtime
;
1442 // 50ms no field --> card to idle state
1443 if (vtime
- timer
> 50) return 2;
1445 if (timer
) timer
= 0;
1451 // receive and test the miller decoding
1452 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1453 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1454 if(MillerDecoding(b
, 0)) {
1464 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1468 uint32_t ThisTransferTime
;
1470 // Modulate Manchester
1471 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1473 // include correction bit if necessary
1474 if (Uart
.parityBits
& 0x01) {
1475 correctionNeeded
= TRUE
;
1477 if(correctionNeeded
) {
1478 // 1236, so correction bit needed
1484 // clear receiving shift register and holding register
1485 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1486 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1487 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1488 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1490 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1491 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1492 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1493 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1496 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1499 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1502 for(; i
< respLen
; ) {
1503 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1504 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1505 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1508 if(BUTTON_PRESS()) {
1513 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1514 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1515 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1516 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1517 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1518 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1523 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1528 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1529 Code4bitAnswerAsTag(resp
);
1530 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1531 // do the tracing for the previous reader request and this tag answer:
1533 GetParity(&resp
, 1, par
);
1534 EmLogTrace(Uart
.output
,
1536 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1537 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1541 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1542 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1547 int EmSend4bit(uint8_t resp
){
1548 return EmSend4bitEx(resp
, false);
1551 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1552 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1553 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1554 // do the tracing for the previous reader request and this tag answer:
1555 EmLogTrace(Uart
.output
,
1557 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1558 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1562 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1563 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1568 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1569 uint8_t par
[MAX_PARITY_SIZE
];
1570 GetParity(resp
, respLen
, par
);
1571 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1574 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1575 uint8_t par
[MAX_PARITY_SIZE
];
1576 GetParity(resp
, respLen
, par
);
1577 return EmSendCmdExPar(resp
, respLen
, false, par
);
1580 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1581 return EmSendCmdExPar(resp
, respLen
, false, par
);
1584 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1585 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1588 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1589 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1590 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1591 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1592 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1593 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1594 reader_EndTime
= tag_StartTime
- exact_fdt
;
1595 reader_StartTime
= reader_EndTime
- reader_modlen
;
1596 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1598 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1604 //-----------------------------------------------------------------------------
1605 // Wait a certain time for tag response
1606 // If a response is captured return TRUE
1607 // If it takes too long return FALSE
1608 //-----------------------------------------------------------------------------
1609 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1613 // Set FPGA mode to "reader listen mode", no modulation (listen
1614 // only, since we are receiving, not transmitting).
1615 // Signal field is on with the appropriate LED
1617 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1619 // Now get the answer from the card
1620 DemodInit(receivedResponse
, receivedResponsePar
);
1623 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1629 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1630 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1631 if(ManchesterDecoding(b
, offset
, 0)) {
1632 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1634 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1642 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1644 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1646 // Send command to tag
1647 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1651 // Log reader command in trace buffer
1653 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1658 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1660 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1664 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1666 // Generate parity and redirect
1667 uint8_t par
[MAX_PARITY_SIZE
];
1668 GetParity(frame
, len
/8, par
);
1669 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1673 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1675 // Generate parity and redirect
1676 uint8_t par
[MAX_PARITY_SIZE
];
1677 GetParity(frame
, len
, par
);
1678 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1681 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1683 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1685 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1690 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1692 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1694 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1699 /* performs iso14443a anticollision procedure
1700 * fills the uid pointer unless NULL
1701 * fills resp_data unless NULL */
1702 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1703 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1704 uint8_t sel_all
[] = { 0x93,0x20 };
1705 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1706 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1707 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1708 uint8_t resp_par
[MAX_PARITY_SIZE
];
1710 size_t uid_resp_len
;
1712 uint8_t sak
= 0x04; // cascade uid
1713 int cascade_level
= 0;
1716 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1717 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1720 if(!ReaderReceive(resp
, resp_par
)) return 0;
1723 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1724 p_hi14a_card
->uidlen
= 0;
1725 memset(p_hi14a_card
->uid
,0,10);
1730 memset(uid_ptr
,0,10);
1733 // check for proprietary anticollision:
1734 if ((resp
[0] & 0x1F) == 0) {
1738 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1739 // which case we need to make a cascade 2 request and select - this is a long UID
1740 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1741 for(; sak
& 0x04; cascade_level
++) {
1742 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1743 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1746 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1747 if (!ReaderReceive(resp
, resp_par
)) return 0;
1749 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1750 memset(uid_resp
, 0, 4);
1751 uint16_t uid_resp_bits
= 0;
1752 uint16_t collision_answer_offset
= 0;
1753 // anti-collision-loop:
1754 while (Demod
.collisionPos
) {
1755 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1756 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1757 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1758 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1760 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1762 // construct anticollosion command:
1763 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1764 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1765 sel_uid
[2+i
] = uid_resp
[i
];
1767 collision_answer_offset
= uid_resp_bits
%8;
1768 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1769 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1771 // finally, add the last bits and BCC of the UID
1772 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1773 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1774 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1777 } else { // no collision, use the response to SELECT_ALL as current uid
1778 memcpy(uid_resp
, resp
, 4);
1782 // calculate crypto UID. Always use last 4 Bytes.
1784 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1787 // Construct SELECT UID command
1788 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1789 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1790 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1791 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1792 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1795 if (!ReaderReceive(resp
, resp_par
)) return 0;
1798 // Test if more parts of the uid are coming
1799 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1800 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1801 // http://www.nxp.com/documents/application_note/AN10927.pdf
1802 uid_resp
[0] = uid_resp
[1];
1803 uid_resp
[1] = uid_resp
[2];
1804 uid_resp
[2] = uid_resp
[3];
1810 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1814 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1815 p_hi14a_card
->uidlen
+= uid_resp_len
;
1820 p_hi14a_card
->sak
= sak
;
1821 p_hi14a_card
->ats_len
= 0;
1824 // non iso14443a compliant tag
1825 if( (sak
& 0x20) == 0) return 2;
1827 // Request for answer to select
1828 AppendCrc14443a(rats
, 2);
1829 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1831 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1835 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1836 p_hi14a_card
->ats_len
= len
;
1839 // reset the PCB block number
1840 iso14_pcb_blocknum
= 0;
1842 // set default timeout based on ATS
1843 iso14a_set_ATS_timeout(resp
);
1848 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1849 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1850 // Set up the synchronous serial port
1852 // connect Demodulated Signal to ADC:
1853 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1855 // Signal field is on with the appropriate LED
1856 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1857 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1862 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1869 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1870 iso14a_set_timeout(1050); // 10ms default
1873 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1874 uint8_t parity
[MAX_PARITY_SIZE
];
1875 uint8_t real_cmd
[cmd_len
+4];
1876 real_cmd
[0] = 0x0a; //I-Block
1877 // put block number into the PCB
1878 real_cmd
[0] |= iso14_pcb_blocknum
;
1879 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1880 memcpy(real_cmd
+2, cmd
, cmd_len
);
1881 AppendCrc14443a(real_cmd
,cmd_len
+2);
1883 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1884 size_t len
= ReaderReceive(data
, parity
);
1885 uint8_t *data_bytes
= (uint8_t *) data
;
1887 return 0; //DATA LINK ERROR
1888 // if we received an I- or R(ACK)-Block with a block number equal to the
1889 // current block number, toggle the current block number
1890 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1891 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1892 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1893 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1895 iso14_pcb_blocknum
^= 1;
1901 //-----------------------------------------------------------------------------
1902 // Read an ISO 14443a tag. Send out commands and store answers.
1904 //-----------------------------------------------------------------------------
1905 void ReaderIso14443a(UsbCommand
*c
)
1907 iso14a_command_t param
= c
->arg
[0];
1908 uint8_t *cmd
= c
->d
.asBytes
;
1909 size_t len
= c
->arg
[1] & 0xffff;
1910 size_t lenbits
= c
->arg
[1] >> 16;
1911 uint32_t timeout
= c
->arg
[2];
1913 byte_t buf
[USB_CMD_DATA_SIZE
];
1914 uint8_t par
[MAX_PARITY_SIZE
];
1916 if(param
& ISO14A_CONNECT
) {
1922 if(param
& ISO14A_REQUEST_TRIGGER
) {
1923 iso14a_set_trigger(TRUE
);
1926 if(param
& ISO14A_CONNECT
) {
1927 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1928 if(!(param
& ISO14A_NO_SELECT
)) {
1929 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1930 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1931 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1935 if(param
& ISO14A_SET_TIMEOUT
) {
1936 iso14a_set_timeout(timeout
);
1939 if(param
& ISO14A_APDU
) {
1940 arg0
= iso14_apdu(cmd
, len
, buf
);
1941 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1944 if(param
& ISO14A_RAW
) {
1945 if(param
& ISO14A_APPEND_CRC
) {
1946 if(param
& ISO14A_TOPAZMODE
) {
1947 AppendCrc14443b(cmd
,len
);
1949 AppendCrc14443a(cmd
,len
);
1952 if (lenbits
) lenbits
+= 16;
1954 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
1955 if(param
& ISO14A_TOPAZMODE
) {
1956 int bits_to_send
= lenbits
;
1958 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
1960 while (bits_to_send
> 0) {
1961 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
1965 GetParity(cmd
, lenbits
/8, par
);
1966 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
1968 } else { // want to send complete bytes only
1969 if(param
& ISO14A_TOPAZMODE
) {
1971 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
1973 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
1976 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
1979 arg0
= ReaderReceive(buf
, par
);
1980 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1983 if(param
& ISO14A_REQUEST_TRIGGER
) {
1984 iso14a_set_trigger(FALSE
);
1987 if(param
& ISO14A_NO_DISCONNECT
) {
1991 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1996 // Determine the distance between two nonces.
1997 // Assume that the difference is small, but we don't know which is first.
1998 // Therefore try in alternating directions.
1999 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2002 uint32_t nttmp1
, nttmp2
;
2004 if (nt1
== nt2
) return 0;
2009 for (i
= 1; i
< 32768; i
++) {
2010 nttmp1
= prng_successor(nttmp1
, 1);
2011 if (nttmp1
== nt2
) return i
;
2012 nttmp2
= prng_successor(nttmp2
, 1);
2013 if (nttmp2
== nt1
) return -i
;
2016 return(-99999); // either nt1 or nt2 are invalid nonces
2020 //-----------------------------------------------------------------------------
2021 // Recover several bits of the cypher stream. This implements (first stages of)
2022 // the algorithm described in "The Dark Side of Security by Obscurity and
2023 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2024 // (article by Nicolas T. Courtois, 2009)
2025 //-----------------------------------------------------------------------------
2026 void ReaderMifare(bool first_try
)
2029 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2030 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2031 static uint8_t mf_nr_ar3
;
2033 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
2034 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
2037 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2040 // free eventually allocated BigBuf memory. We want all for tracing.
2047 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2048 static byte_t par_low
= 0;
2050 uint8_t uid
[10] ={0};
2054 uint32_t previous_nt
= 0;
2055 static uint32_t nt_attacked
= 0;
2056 byte_t par_list
[8] = {0x00};
2057 byte_t ks_list
[8] = {0x00};
2059 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2060 static uint32_t sync_time
;
2061 static int32_t sync_cycles
;
2062 int catch_up_cycles
= 0;
2063 int last_catch_up
= 0;
2064 uint16_t elapsed_prng_sequences
;
2065 uint16_t consecutive_resyncs
= 0;
2070 sync_time
= GetCountSspClk() & 0xfffffff8;
2071 sync_cycles
= PRNG_SEQUENCE_LENGTH
; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2076 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2078 mf_nr_ar
[3] = mf_nr_ar3
;
2087 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2088 #define MAX_SYNC_TRIES 32
2089 #define NUM_DEBUG_INFOS 8 // per strategy
2090 #define MAX_STRATEGY 3
2091 uint16_t unexpected_random
= 0;
2092 uint16_t sync_tries
= 0;
2093 int16_t debug_info_nr
= -1;
2094 uint16_t strategy
= 0;
2095 int32_t debug_info
[MAX_STRATEGY
][NUM_DEBUG_INFOS
];
2096 uint32_t select_time
;
2099 for(uint16_t i
= 0; TRUE
; i
++) {
2104 // Test if the action was cancelled
2105 if(BUTTON_PRESS()) {
2110 if (strategy
== 2) {
2111 // test with additional hlt command
2113 int len
= mifare_sendcmd_short(NULL
, false, 0x50, 0x00, receivedAnswer
, receivedAnswerPar
, &halt_time
);
2114 if (len
&& MF_DBGLEVEL
>= 3) {
2115 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len
);
2119 if (strategy
== 3) {
2120 // test with FPGA power off/on
2121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2123 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2127 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2128 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2131 select_time
= GetCountSspClk();
2133 elapsed_prng_sequences
= 1;
2134 if (debug_info_nr
== -1) {
2135 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2136 catch_up_cycles
= 0;
2138 // if we missed the sync time already, advance to the next nonce repeat
2139 while(GetCountSspClk() > sync_time
) {
2140 elapsed_prng_sequences
++;
2141 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2144 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2145 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2147 // collect some information on tag nonces for debugging:
2148 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2149 if (strategy
== 0) {
2150 // nonce distances at fixed time after card select:
2151 sync_time
= select_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2152 } else if (strategy
== 1) {
2153 // nonce distances at fixed time between authentications:
2154 sync_time
= sync_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2155 } else if (strategy
== 2) {
2156 // nonce distances at fixed time after halt:
2157 sync_time
= halt_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2159 // nonce_distances at fixed time after power on
2160 sync_time
= DEBUG_FIXED_SYNC_CYCLES
;
2162 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2165 // Receive the (4 Byte) "random" nonce
2166 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2167 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2172 nt
= bytes_to_num(receivedAnswer
, 4);
2174 // Transmit reader nonce with fake par
2175 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2177 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2178 int nt_distance
= dist_nt(previous_nt
, nt
);
2179 if (nt_distance
== 0) {
2182 if (nt_distance
== -99999) { // invalid nonce received
2183 unexpected_random
++;
2184 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2185 isOK
= -3; // Card has an unpredictable PRNG. Give up
2188 continue; // continue trying...
2191 if (++sync_tries
> MAX_SYNC_TRIES
) {
2192 if (strategy
> MAX_STRATEGY
|| MF_DBGLEVEL
< 3) {
2193 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2195 } else { // continue for a while, just to collect some debug info
2196 debug_info
[strategy
][debug_info_nr
] = nt_distance
;
2198 if (debug_info_nr
== NUM_DEBUG_INFOS
) {
2205 sync_cycles
= (sync_cycles
- nt_distance
/elapsed_prng_sequences
);
2206 if (sync_cycles
<= 0) {
2207 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2209 if (MF_DBGLEVEL
>= 3) {
2210 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2216 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2217 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2218 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2219 catch_up_cycles
= 0;
2222 catch_up_cycles
/= elapsed_prng_sequences
;
2223 if (catch_up_cycles
== last_catch_up
) {
2224 consecutive_resyncs
++;
2227 last_catch_up
= catch_up_cycles
;
2228 consecutive_resyncs
= 0;
2230 if (consecutive_resyncs
< 3) {
2231 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2234 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2235 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2237 catch_up_cycles
= 0;
2238 consecutive_resyncs
= 0;
2243 consecutive_resyncs
= 0;
2245 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2246 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2247 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2250 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2254 if(led_on
) LED_B_ON(); else LED_B_OFF();
2256 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2257 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2259 // Test if the information is complete
2260 if (nt_diff
== 0x07) {
2265 nt_diff
= (nt_diff
+ 1) & 0x07;
2266 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2269 if (nt_diff
== 0 && first_try
)
2272 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2277 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2283 mf_nr_ar
[3] &= 0x1F;
2286 if (MF_DBGLEVEL
>= 3) {
2287 for (uint16_t i
= 0; i
<= MAX_STRATEGY
; i
++) {
2288 for(uint16_t j
= 0; j
< NUM_DEBUG_INFOS
; j
++) {
2289 Dbprintf("collected debug info[%d][%d] = %d", i
, j
, debug_info
[i
][j
]);
2296 memcpy(buf
+ 0, uid
, 4);
2297 num_to_bytes(nt
, 4, buf
+ 4);
2298 memcpy(buf
+ 8, par_list
, 8);
2299 memcpy(buf
+ 16, ks_list
, 8);
2300 memcpy(buf
+ 24, mf_nr_ar
, 4);
2302 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, 28);
2305 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2324 *MIFARE 1K simulate.
2327 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2328 * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2329 * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2330 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
2331 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2332 * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
2333 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
2334 * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
2336 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2338 int cardSTATE
= MFEMUL_NOFIELD
;
2339 int _UID_LEN
= 0; // 4, 7, 10
2340 int vHf
= 0; // in mV
2342 uint32_t selTimer
= 0;
2343 uint32_t authTimer
= 0;
2345 uint8_t cardWRBL
= 0;
2346 uint8_t cardAUTHSC
= 0;
2347 uint8_t cardAUTHKEY
= 0xff; // no authentication
2348 uint32_t cardRr
= 0;
2350 //uint32_t rn_enc = 0;
2352 uint32_t cardINTREG
= 0;
2353 uint8_t cardINTBLOCK
= 0;
2354 struct Crypto1State mpcs
= {0, 0};
2355 struct Crypto1State
*pcs
;
2357 uint32_t numReads
= 0;//Counts numer of times reader read a block
2358 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2359 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2360 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2361 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2363 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2364 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2365 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2366 uint8_t rUIDBCC3
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2368 uint8_t rSAKfinal
[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated
2369 uint8_t rSAK1
[] = {0x04, 0xda, 0x17}; // indicate UID not finished
2371 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2372 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2374 //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
2375 // This will be used in the reader-only attack.
2377 //allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
2378 #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
2379 nonces_t ar_nr_resp
[ATTACK_KEY_COUNT
*2]; //*2 for 2 separate attack types (nml, moebius)
2380 memset(ar_nr_resp
, 0x00, sizeof(ar_nr_resp
));
2382 uint8_t ar_nr_collected
[ATTACK_KEY_COUNT
*2]; //*2 for 2nd attack type (moebius)
2383 memset(ar_nr_collected
, 0x00, sizeof(ar_nr_collected
));
2384 uint8_t nonce1_count
= 0;
2385 uint8_t nonce2_count
= 0;
2386 uint8_t moebius_n_count
= 0;
2387 bool gettingMoebius
= false;
2388 uint8_t mM
= 0; //moebius_modifier for collection storage
2390 // Authenticate response - nonce
2392 if (flags
& FLAG_RANDOM_NONCE
) {
2395 nonce
= bytes_to_num(rAUTH_NT
, 4);
2398 //-- Determine the UID
2399 // Can be set from emulator memory, incoming data
2400 // and can be 7 or 4 bytes long
2401 if (flags
& FLAG_4B_UID_IN_DATA
)
2403 // 4B uid comes from data-portion of packet
2404 memcpy(rUIDBCC1
,datain
,4);
2405 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2407 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2408 // 7B uid comes from data-portion of packet
2409 memcpy(&rUIDBCC1
[1],datain
,3);
2410 memcpy(rUIDBCC2
, datain
+3, 4);
2412 } else if (flags
& FLAG_10B_UID_IN_DATA
) {
2413 memcpy(&rUIDBCC1
[1], datain
, 3);
2414 memcpy(&rUIDBCC2
[1], datain
+3, 3);
2415 memcpy( rUIDBCC3
, datain
+6, 4);
2418 // get UID from emul memory - guess at length
2419 emlGetMemBt(receivedCmd
, 7, 1);
2420 if (receivedCmd
[0] == 0x00) { // ---------- 4BUID
2421 emlGetMemBt(rUIDBCC1
, 0, 4);
2423 } else { // ---------- 7BUID
2424 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2425 emlGetMemBt(rUIDBCC2
, 3, 4);
2433 cuid
= bytes_to_num(rUIDBCC1
, 4);
2435 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2436 if (MF_DBGLEVEL
>= 2) {
2437 Dbprintf("4B UID: %02x%02x%02x%02x",
2448 cuid
= bytes_to_num(rUIDBCC2
, 4);
2452 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2453 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2454 if (MF_DBGLEVEL
>= 2) {
2455 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
2468 //sak_10[0] &= 0xFB;
2470 cuid
= bytes_to_num(rUIDBCC3
, 4);
2475 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2476 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2477 rUIDBCC3
[4] = rUIDBCC3
[0] ^ rUIDBCC3
[1] ^ rUIDBCC3
[2] ^ rUIDBCC3
[3];
2479 if (MF_DBGLEVEL
>= 2) {
2480 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
2498 // We need to listen to the high-frequency, peak-detected path.
2499 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2501 // free eventually allocated BigBuf memory but keep Emulator Memory
2502 BigBuf_free_keep_EM();
2508 bool finished
= FALSE
;
2509 bool button_pushed
= BUTTON_PRESS();
2510 while (!button_pushed
&& !finished
&& !usb_poll_validate_length()) {
2513 // find reader field
2514 if (cardSTATE
== MFEMUL_NOFIELD
) {
2515 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2516 if (vHf
> MF_MINFIELDV
) {
2517 cardSTATE_TO_IDLE();
2521 if (cardSTATE
== MFEMUL_NOFIELD
) continue;
2524 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2525 if (res
== 2) { //Field is off!
2526 cardSTATE
= MFEMUL_NOFIELD
;
2529 } else if (res
== 1) {
2530 break; //return value 1 means button press
2533 // REQ or WUP request in ANY state and WUP in HALTED state
2534 if (len
== 1 && ((receivedCmd
[0] == ISO14443A_CMD_REQA
&& cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == ISO14443A_CMD_WUPA
)) {
2535 selTimer
= GetTickCount();
2536 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == ISO14443A_CMD_WUPA
));
2537 cardSTATE
= MFEMUL_SELECT1
;
2539 // init crypto block
2542 crypto1_destroy(pcs
);
2544 if (flags
& FLAG_RANDOM_NONCE
) {
2550 switch (cardSTATE
) {
2551 case MFEMUL_NOFIELD
:
2554 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2557 case MFEMUL_SELECT1
:{
2558 // select all - 0x93 0x20
2559 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
&& receivedCmd
[1] == 0x20)) {
2560 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2561 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2565 // select card - 0x93 0x70 ...
2567 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
&& receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2568 if (MF_DBGLEVEL
>= 4)
2569 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2573 cardSTATE
= MFEMUL_WORK
;
2575 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2576 EmSendCmd(rSAKfinal
, sizeof(rSAKfinal
));
2579 cardSTATE
= MFEMUL_SELECT2
;
2580 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2583 cardSTATE
= MFEMUL_SELECT2
;
2584 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2589 cardSTATE_TO_IDLE();
2593 case MFEMUL_SELECT3
:{
2595 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2598 // select all cl3 - 0x97 0x20
2599 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3
&& receivedCmd
[1] == 0x20)) {
2600 EmSendCmd(rUIDBCC3
, sizeof(rUIDBCC3
));
2603 // select card cl3 - 0x97 0x70
2605 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3
&&
2606 receivedCmd
[1] == 0x70 &&
2607 memcmp(&receivedCmd
[2], rUIDBCC3
, 4) == 0) ) {
2609 EmSendCmd(rSAKfinal
, sizeof(rSAKfinal
));
2610 cardSTATE
= MFEMUL_WORK
;
2612 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer
);
2615 cardSTATE_TO_IDLE();
2620 cardSTATE_TO_IDLE();
2621 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2625 uint32_t nr
= bytes_to_num(receivedCmd
, 4);
2626 uint32_t ar
= bytes_to_num(&receivedCmd
[4], 4);
2628 // Collect AR/NR per keytype & sector
2629 if(flags
& FLAG_NR_AR_ATTACK
) {
2630 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
2631 if ( ar_nr_collected
[i
+mM
]==0 || ((cardAUTHSC
== ar_nr_resp
[i
+mM
].sector
) && (cardAUTHKEY
== ar_nr_resp
[i
+mM
].keytype
) && (ar_nr_collected
[i
+mM
] > 0)) ) {
2632 // if first auth for sector, or matches sector and keytype of previous auth
2633 if (ar_nr_collected
[i
+mM
] < 2) {
2634 // if we haven't already collected 2 nonces for this sector
2635 if (ar_nr_resp
[ar_nr_collected
[i
+mM
]].ar
!= ar
) {
2636 // Avoid duplicates... probably not necessary, ar should vary.
2637 if (ar_nr_collected
[i
+mM
]==0) {
2638 // first nonce collect
2639 ar_nr_resp
[i
+mM
].cuid
= cuid
;
2640 ar_nr_resp
[i
+mM
].sector
= cardAUTHSC
;
2641 ar_nr_resp
[i
+mM
].keytype
= cardAUTHKEY
;
2642 ar_nr_resp
[i
+mM
].nonce
= nonce
;
2643 ar_nr_resp
[i
+mM
].nr
= nr
;
2644 ar_nr_resp
[i
+mM
].ar
= ar
;
2646 // add this nonce to first moebius nonce
2647 ar_nr_resp
[i
+ATTACK_KEY_COUNT
].cuid
= cuid
;
2648 ar_nr_resp
[i
+ATTACK_KEY_COUNT
].sector
= cardAUTHSC
;
2649 ar_nr_resp
[i
+ATTACK_KEY_COUNT
].keytype
= cardAUTHKEY
;
2650 ar_nr_resp
[i
+ATTACK_KEY_COUNT
].nonce
= nonce
;
2651 ar_nr_resp
[i
+ATTACK_KEY_COUNT
].nr
= nr
;
2652 ar_nr_resp
[i
+ATTACK_KEY_COUNT
].ar
= ar
;
2653 ar_nr_collected
[i
+ATTACK_KEY_COUNT
]++;
2654 } else { // second nonce collect (std and moebius)
2655 ar_nr_resp
[i
+mM
].nonce2
= nonce
;
2656 ar_nr_resp
[i
+mM
].nr2
= nr
;
2657 ar_nr_resp
[i
+mM
].ar2
= ar
;
2658 if (!gettingMoebius
) {
2660 // check if this was the last second nonce we need for std attack
2661 if ( nonce2_count
== nonce1_count
) {
2662 // done collecting std test switch to moebius
2663 // first finish incrementing last sample
2664 ar_nr_collected
[i
+mM
]++;
2665 // switch to moebius collection
2666 gettingMoebius
= true;
2667 mM
= ATTACK_KEY_COUNT
;
2668 if (flags
& FLAG_RANDOM_NONCE
) {
2677 // if we've collected all the nonces we need - finish.
2678 if (nonce1_count
== moebius_n_count
) finished
= true;
2681 ar_nr_collected
[i
+mM
]++;
2684 // we found right spot for this nonce stop looking
2691 crypto1_word(pcs
, nr
, 1);
2692 cardRr
= ar
^ crypto1_word(pcs
, 0, 0);
2695 if (cardRr
!= prng_successor(nonce
, 64)){
2696 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2697 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2698 cardRr
, prng_successor(nonce
, 64));
2699 // Shouldn't we respond anything here?
2700 // Right now, we don't nack or anything, which causes the
2701 // reader to do a WUPA after a while. /Martin
2702 // -- which is the correct response. /piwi
2703 cardSTATE_TO_IDLE();
2704 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2709 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2711 num_to_bytes(ans
, 4, rAUTH_AT
);
2713 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2715 cardSTATE
= MFEMUL_WORK
;
2716 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2717 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2718 GetTickCount() - authTimer
);
2721 case MFEMUL_SELECT2
:{
2723 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2726 // select all cl2 - 0x95 0x20
2727 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
&& receivedCmd
[1] == 0x20)) {
2728 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2732 // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
2734 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
&& receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2737 EmSendCmd(rSAKfinal
, sizeof(rSAKfinal
));
2738 cardSTATE
= MFEMUL_WORK
;
2740 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2743 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2744 cardSTATE
= MFEMUL_SELECT3
;
2751 // i guess there is a command). go into the work state.
2753 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2756 cardSTATE
= MFEMUL_WORK
;
2758 //intentional fall-through to the next case-stmt
2763 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2767 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2769 if(encrypted_data
) {
2771 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2774 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2776 // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
2777 if (receivedCmd
[1] >= 16 * 4 && !(flags
& FLAG_NR_AR_ATTACK
)) {
2778 //is this the correct response to an auth on a out of range block? marshmellow
2779 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2780 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2784 authTimer
= GetTickCount();
2785 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2786 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2787 crypto1_destroy(pcs
);//Added by martin
2788 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2789 //uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY);
2790 //Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF));
2792 if (!encrypted_data
) { // first authentication
2793 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2795 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2796 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2797 } else { // nested authentication
2798 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2799 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2800 num_to_bytes(ans
, 4, rAUTH_AT
);
2803 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2804 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2805 cardSTATE
= MFEMUL_AUTH1
;
2809 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2810 // BUT... ACK --> NACK
2811 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2812 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2816 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2817 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2818 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2823 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2827 if(receivedCmd
[0] == 0x30 // read block
2828 || receivedCmd
[0] == 0xA0 // write block
2829 || receivedCmd
[0] == 0xC0 // inc
2830 || receivedCmd
[0] == 0xC1 // dec
2831 || receivedCmd
[0] == 0xC2 // restore
2832 || receivedCmd
[0] == 0xB0) { // transfer
2833 if (receivedCmd
[1] >= 16 * 4) {
2834 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2835 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2839 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2840 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2841 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2846 if (receivedCmd
[0] == 0x30) {
2847 if (MF_DBGLEVEL
>= 4) {
2848 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2850 emlGetMem(response
, receivedCmd
[1], 1);
2851 AppendCrc14443a(response
, 16);
2852 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2853 EmSendCmdPar(response
, 18, response_par
);
2855 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2856 Dbprintf("%d reads done, exiting", numReads
);
2862 if (receivedCmd
[0] == 0xA0) {
2863 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2864 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2865 cardSTATE
= MFEMUL_WRITEBL2
;
2866 cardWRBL
= receivedCmd
[1];
2869 // increment, decrement, restore
2870 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2871 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2872 if (emlCheckValBl(receivedCmd
[1])) {
2873 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2874 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2877 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2878 if (receivedCmd
[0] == 0xC1)
2879 cardSTATE
= MFEMUL_INTREG_INC
;
2880 if (receivedCmd
[0] == 0xC0)
2881 cardSTATE
= MFEMUL_INTREG_DEC
;
2882 if (receivedCmd
[0] == 0xC2)
2883 cardSTATE
= MFEMUL_INTREG_REST
;
2884 cardWRBL
= receivedCmd
[1];
2888 if (receivedCmd
[0] == 0xB0) {
2889 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2890 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2891 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2893 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2897 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2900 cardSTATE
= MFEMUL_HALTED
;
2901 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2902 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2906 if (receivedCmd
[0] == 0xe0) {//RATS
2907 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2910 // command not allowed
2911 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2912 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2915 case MFEMUL_WRITEBL2
:{
2917 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2918 emlSetMem(receivedCmd
, cardWRBL
, 1);
2919 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2920 cardSTATE
= MFEMUL_WORK
;
2922 cardSTATE_TO_IDLE();
2923 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2928 case MFEMUL_INTREG_INC
:{
2929 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2930 memcpy(&ans
, receivedCmd
, 4);
2931 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2932 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2933 cardSTATE_TO_IDLE();
2936 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2937 cardINTREG
= cardINTREG
+ ans
;
2938 cardSTATE
= MFEMUL_WORK
;
2941 case MFEMUL_INTREG_DEC
:{
2942 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2943 memcpy(&ans
, receivedCmd
, 4);
2944 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2945 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2946 cardSTATE_TO_IDLE();
2949 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2950 cardINTREG
= cardINTREG
- ans
;
2951 cardSTATE
= MFEMUL_WORK
;
2954 case MFEMUL_INTREG_REST
:{
2955 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2956 memcpy(&ans
, receivedCmd
, 4);
2957 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2958 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2959 cardSTATE_TO_IDLE();
2962 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2963 cardSTATE
= MFEMUL_WORK
;
2967 button_pushed
= BUTTON_PRESS();
2970 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2973 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1) {
2974 for ( uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
2975 if (ar_nr_collected
[i
] == 2) {
2976 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i
<ATTACK_KEY_COUNT
/2) ? "keyA" : "keyB", ar_nr_resp
[i
].sector
);
2977 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2978 ar_nr_resp
[i
].cuid
, //UID
2979 ar_nr_resp
[i
].nonce
, //NT
2980 ar_nr_resp
[i
].nr
, //NR1
2981 ar_nr_resp
[i
].ar
, //AR1
2982 ar_nr_resp
[i
].nr2
, //NR2
2983 ar_nr_resp
[i
].ar2
//AR2
2987 for ( uint8_t i
= ATTACK_KEY_COUNT
; i
< ATTACK_KEY_COUNT
*2; i
++) {
2988 if (ar_nr_collected
[i
] == 2) {
2989 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i
<ATTACK_KEY_COUNT
/2) ? "keyA" : "keyB", ar_nr_resp
[i
].sector
);
2990 Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
2991 ar_nr_resp
[i
].cuid
, //UID
2992 ar_nr_resp
[i
].nonce
, //NT
2993 ar_nr_resp
[i
].nr
, //NR1
2994 ar_nr_resp
[i
].ar
, //AR1
2995 ar_nr_resp
[i
].nonce2
,//NT2
2996 ar_nr_resp
[i
].nr2
, //NR2
2997 ar_nr_resp
[i
].ar2
//AR2
3002 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
3004 if(flags
& FLAG_INTERACTIVE
) { // Interactive mode flag, means we need to send ACK
3005 //Send the collected ar_nr in the response
3006 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,button_pushed
,0,&ar_nr_resp
,sizeof(ar_nr_resp
));
3011 //-----------------------------------------------------------------------------
3014 //-----------------------------------------------------------------------------
3015 void RAMFUNC
SniffMifare(uint8_t param
) {
3017 // bit 0 - trigger from first card answer
3018 // bit 1 - trigger from first reader 7-bit request
3020 // C(red) A(yellow) B(green)
3022 // init trace buffer
3026 // The command (reader -> tag) that we're receiving.
3027 // The length of a received command will in most cases be no more than 18 bytes.
3028 // So 32 should be enough!
3029 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
3030 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
3031 // The response (tag -> reader) that we're receiving.
3032 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
3033 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
3035 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
3037 // free eventually allocated BigBuf memory
3039 // allocate the DMA buffer, used to stream samples from the FPGA
3040 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
3041 uint8_t *data
= dmaBuf
;
3042 uint8_t previous_data
= 0;
3045 bool ReaderIsActive
= FALSE
;
3046 bool TagIsActive
= FALSE
;
3048 // Set up the demodulator for tag -> reader responses.
3049 DemodInit(receivedResponse
, receivedResponsePar
);
3051 // Set up the demodulator for the reader -> tag commands
3052 UartInit(receivedCmd
, receivedCmdPar
);
3054 // Setup for the DMA.
3055 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
3062 // And now we loop, receiving samples.
3063 for(uint32_t sniffCounter
= 0; TRUE
; ) {
3065 if(BUTTON_PRESS()) {
3066 DbpString("cancelled by button");
3073 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
3074 // check if a transaction is completed (timeout after 2000ms).
3075 // if yes, stop the DMA transfer and send what we have so far to the client
3076 if (MfSniffSend(2000)) {
3077 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3081 ReaderIsActive
= FALSE
;
3082 TagIsActive
= FALSE
;
3083 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
3087 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
3088 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
3089 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
3090 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
3092 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
3094 // test for length of buffer
3095 if(dataLen
> maxDataLen
) { // we are more behind than ever...
3096 maxDataLen
= dataLen
;
3097 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
3098 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
3102 if(dataLen
< 1) continue;
3104 // primary buffer was stopped ( <-- we lost data!
3105 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
3106 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
3107 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
3108 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
3110 // secondary buffer sets as primary, secondary buffer was stopped
3111 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
3112 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
3113 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
3118 if (sniffCounter
& 0x01) {
3120 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
3121 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
3122 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
3124 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
3126 /* And ready to receive another command. */
3127 UartInit(receivedCmd
, receivedCmdPar
);
3129 /* And also reset the demod code */
3132 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
3135 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
3136 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
3137 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
3140 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
3142 // And ready to receive another response.
3144 // And reset the Miller decoder including its (now outdated) input buffer
3145 UartInit(receivedCmd
, receivedCmdPar
);
3147 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
3151 previous_data
= *data
;
3154 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
3160 DbpString("COMMAND FINISHED");
3162 FpgaDisableSscDma();
3165 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);