1 //----------------------------------------------------------------------------- 
   2 // Gerhard de Koning Gans - May 2008 
   3 // Hagen Fritsch - June 2010 
   4 // Gerhard de Koning Gans - May 2011 
   5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation 
   7 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   8 // at your option, any later version. See the LICENSE.txt file for the text of 
  10 //----------------------------------------------------------------------------- 
  11 // Routines to support iClass. 
  12 //----------------------------------------------------------------------------- 
  13 // Based on ISO14443a implementation. Still in experimental phase. 
  14 // Contribution made during a security research at Radboud University Nijmegen 
  16 // Please feel free to contribute and extend iClass support!! 
  17 //----------------------------------------------------------------------------- 
  21 // We still have sometimes a demodulation error when snooping iClass communication. 
  22 // The resulting trace of a read-block-03 command may look something like this: 
  24 //  +  22279:    :     0c  03  e8  01     
  26 //    ...with an incorrect answer... 
  28 //  +     85:   0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb  33  bb  00  01! 0e! 04! bb     !crc 
  30 // We still left the error signalling bytes in the traces like 0xbb 
  32 // A correct trace should look like this: 
  34 // +  21112:    :     0c  03  e8  01     
  35 // +     85:   0: TAG ff  ff  ff  ff  ff  ff  ff  ff  ea  f5     
  37 //----------------------------------------------------------------------------- 
  39 #include "proxmark3.h" 
  45 // Needed for CRC in emulation mode; 
  46 // same construction as in ISO 14443; 
  47 // different initial value (CRC_ICLASS) 
  48 #include "iso14443crc.h" 
  49 #include "iso15693tools.h" 
  51 static int timeout 
= 4096; 
  54 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
); 
  56 //----------------------------------------------------------------------------- 
  57 // The software UART that receives commands from the reader, and its state 
  59 //----------------------------------------------------------------------------- 
  63         STATE_START_OF_COMMUNICATION
, 
  84 static RAMFUNC 
int OutOfNDecoding(int bit
) 
  90                 Uart
.bitBuffer 
= bit 
^ 0xFF0; 
  95                 Uart
.bitBuffer 
^= bit
; 
  99                 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; 
 102                 if(Uart.byteCnt > 15) { return TRUE; } 
 108         if(Uart
.state 
!= STATE_UNSYNCD
) { 
 111                 if((Uart
.bitBuffer 
& Uart
.syncBit
) ^ Uart
.syncBit
) { 
 117                 if(((Uart
.bitBuffer 
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) { 
 123                 if(bit 
!= bitright
) { bit 
= bitright
; } 
 126                 // So, now we only have to deal with *bit*, lets see... 
 127                 if(Uart
.posCnt 
== 1) { 
 128                         // measurement first half bitperiod 
 130                                 // Drop in first half means that we are either seeing 
 133                                 if(Uart
.nOutOfCnt 
== 1) { 
 134                                         // End of Communication 
 135                                         Uart
.state 
= STATE_UNSYNCD
; 
 137                                         if(Uart
.byteCnt 
== 0) { 
 138                                                 // Its not straightforward to show single EOFs 
 139                                                 // So just leave it and do not return TRUE 
 140                                                 Uart
.output
[Uart
.byteCnt
] = 0xf0; 
 143                                                 // Calculate the parity bit for the client... 
 150                                 else if(Uart
.state 
!= STATE_START_OF_COMMUNICATION
) { 
 151                                         // When not part of SOF or EOF, it is an error 
 152                                         Uart
.state 
= STATE_UNSYNCD
; 
 159                         // measurement second half bitperiod 
 160                         // Count the bitslot we are in... (ISO 15693) 
 164                                 if(Uart
.dropPosition
) { 
 165                                         if(Uart
.state 
== STATE_START_OF_COMMUNICATION
) { 
 171                                         // It is an error if we already have seen a drop in current frame 
 172                                         Uart
.state 
= STATE_UNSYNCD
; 
 176                                         Uart
.dropPosition 
= Uart
.nOutOfCnt
; 
 183                         if(Uart
.nOutOfCnt 
== Uart
.OutOfCnt 
&& Uart
.OutOfCnt 
== 4) { 
 186                                 if(Uart
.state 
== STATE_START_OF_COMMUNICATION
) { 
 187                                         if(Uart
.dropPosition 
== 4) { 
 188                                                 Uart
.state 
= STATE_RECEIVING
; 
 191                                         else if(Uart
.dropPosition 
== 3) { 
 192                                                 Uart
.state 
= STATE_RECEIVING
; 
 194                                                 //Uart.output[Uart.byteCnt] = 0xdd; 
 198                                                 Uart
.state 
= STATE_UNSYNCD
; 
 201                                         Uart
.dropPosition 
= 0; 
 206                                         if(!Uart
.dropPosition
) { 
 207                                                 Uart
.state 
= STATE_UNSYNCD
; 
 216                                                 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } 
 217                                                 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } 
 219                                                 Uart
.shiftReg 
^= ((Uart
.dropPosition 
& 0x03) << 6); 
 221                                                 Uart
.dropPosition 
= 0; 
 223                                                 if(Uart
.bitCnt 
== 8) { 
 224                                                         Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg 
& 0xff); 
 227                                                         // Calculate the parity bit for the client... 
 228                                                         Uart
.parityBits 
<<= 1; 
 229                                                         Uart
.parityBits 
^= OddByteParity
[(Uart
.shiftReg 
& 0xff)]; 
 237                         else if(Uart
.nOutOfCnt 
== Uart
.OutOfCnt
) { 
 240                                 if(!Uart
.dropPosition
) { 
 241                                         Uart
.state 
= STATE_UNSYNCD
; 
 247                                         Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition 
& 0xff); 
 250                                         // Calculate the parity bit for the client... 
 251                                         Uart
.parityBits 
<<= 1; 
 252                                         Uart
.parityBits 
^= OddByteParity
[(Uart
.dropPosition 
& 0xff)]; 
 257                                         Uart
.dropPosition 
= 0; 
 262                                 Uart.output[Uart.byteCnt] = 0xAA; 
 264                                 Uart.output[Uart.byteCnt] = error & 0xFF; 
 266                                 Uart.output[Uart.byteCnt] = 0xAA; 
 268                                 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; 
 270                                 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; 
 272                                 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; 
 274                                 Uart.output[Uart.byteCnt] = 0xAA; 
 282                 bit 
= Uart
.bitBuffer 
& 0xf0; 
 284                 bit 
^= 0x0F; // drops become 1s ;-) 
 286                         // should have been high or at least (4 * 128) / fc 
 287                         // according to ISO this should be at least (9 * 128 + 20) / fc 
 288                         if(Uart
.highCnt 
== 8) { 
 289                                 // we went low, so this could be start of communication 
 290                                 // it turns out to be safer to choose a less significant 
 291                                 // syncbit... so we check whether the neighbour also represents the drop 
 292                                 Uart
.posCnt 
= 1;   // apparently we are busy with our first half bit period 
 293                                 Uart
.syncBit 
= bit 
& 8; 
 295                                 if(!Uart
.syncBit
)       { Uart
.syncBit 
= bit 
& 4; Uart
.samples 
= 2; } 
 296                                 else if(bit 
& 4)        { Uart
.syncBit 
= bit 
& 4; Uart
.samples 
= 2; bit 
<<= 2; } 
 297                                 if(!Uart
.syncBit
)       { Uart
.syncBit 
= bit 
& 2; Uart
.samples 
= 1; } 
 298                                 else if(bit 
& 2)        { Uart
.syncBit 
= bit 
& 2; Uart
.samples 
= 1; bit 
<<= 1; } 
 299                                 if(!Uart
.syncBit
)       { Uart
.syncBit 
= bit 
& 1; Uart
.samples 
= 0; 
 300                                         if(Uart
.syncBit 
&& (Uart
.bitBuffer 
& 8)) { 
 303                                                 // the first half bit period is expected in next sample 
 308                                 else if(bit 
& 1)        { Uart
.syncBit 
= bit 
& 1; Uart
.samples 
= 0; } 
 311                                 Uart
.state 
= STATE_START_OF_COMMUNICATION
; 
 316                                 Uart
.OutOfCnt 
= 4; // Start at 1/4, could switch to 1/256 
 317                                 Uart
.dropPosition 
= 0; 
 326                         if(Uart
.highCnt 
< 8) { 
 335 //============================================================================= 
 337 //============================================================================= 
 342                 DEMOD_START_OF_COMMUNICATION
, 
 343                 DEMOD_START_OF_COMMUNICATION2
, 
 344                 DEMOD_START_OF_COMMUNICATION3
, 
 348                 DEMOD_END_OF_COMMUNICATION
, 
 349                 DEMOD_END_OF_COMMUNICATION2
, 
 373 static RAMFUNC 
int ManchesterDecoding(int v
) 
 380         Demod
.buffer 
= Demod
.buffer2
; 
 381         Demod
.buffer2 
= Demod
.buffer3
; 
 389         if(Demod
.state
==DEMOD_UNSYNCD
) { 
 390                 Demod
.output
[Demod
.len
] = 0xfa; 
 393                 Demod
.posCount 
= 1;             // This is the first half bit period, so after syncing handle the second part 
 396                         Demod
.syncBit 
= 0x08; 
 403                         Demod
.syncBit 
= 0x04; 
 410                         Demod
.syncBit 
= 0x02; 
 413                 if(bit 
& 0x01 && Demod
.syncBit
) { 
 414                         Demod
.syncBit 
= 0x01; 
 419                         Demod
.state 
= DEMOD_START_OF_COMMUNICATION
; 
 420                         Demod
.sub 
= SUB_FIRST_HALF
; 
 423                         Demod
.parityBits 
= 0; 
 426                                 //if(trigger) LED_A_OFF();  // Not useful in this case... 
 427                                 switch(Demod
.syncBit
) { 
 428                                         case 0x08: Demod
.samples 
= 3; break; 
 429                                         case 0x04: Demod
.samples 
= 2; break; 
 430                                         case 0x02: Demod
.samples 
= 1; break; 
 431                                         case 0x01: Demod
.samples 
= 0; break; 
 433                                 // SOF must be long burst... otherwise stay unsynced!!! 
 434                                 if(!(Demod
.buffer 
& Demod
.syncBit
) || !(Demod
.buffer2 
& Demod
.syncBit
)) { 
 435                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 439                                 // SOF must be long burst... otherwise stay unsynced!!! 
 440                                 if(!(Demod
.buffer2 
& Demod
.syncBit
) || !(Demod
.buffer3 
& Demod
.syncBit
)) { 
 441                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 451                 modulation 
= bit 
& Demod
.syncBit
; 
 452                 modulation 
|= ((bit 
<< 1) ^ ((Demod
.buffer 
& 0x08) >> 3)) & Demod
.syncBit
; 
 453                 //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; 
 457                 if(Demod
.posCount
==0) { 
 460                                 Demod
.sub 
= SUB_FIRST_HALF
; 
 463                                 Demod
.sub 
= SUB_NONE
; 
 468                         /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { 
 469                                 if(Demod.state!=DEMOD_ERROR_WAIT) { 
 470                                         Demod.state = DEMOD_ERROR_WAIT; 
 471                                         Demod.output[Demod.len] = 0xaa; 
 475                         //else if(modulation) { 
 477                                 if(Demod
.sub 
== SUB_FIRST_HALF
) { 
 478                                         Demod
.sub 
= SUB_BOTH
; 
 481                                         Demod
.sub 
= SUB_SECOND_HALF
; 
 484                         else if(Demod
.sub 
== SUB_NONE
) { 
 485                                 if(Demod
.state 
== DEMOD_SOF_COMPLETE
) { 
 486                                         Demod
.output
[Demod
.len
] = 0x0f; 
 488                                         Demod
.parityBits 
<<= 1; 
 489                                         Demod
.parityBits 
^= OddByteParity
[0x0f]; 
 490                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 495                                         Demod
.state 
= DEMOD_ERROR_WAIT
; 
 498                                 /*if(Demod.state!=DEMOD_ERROR_WAIT) { 
 499                                         Demod.state = DEMOD_ERROR_WAIT; 
 500                                         Demod.output[Demod.len] = 0xaa; 
 505                         switch(Demod
.state
) { 
 506                                 case DEMOD_START_OF_COMMUNICATION
: 
 507                                         if(Demod
.sub 
== SUB_BOTH
) { 
 508                                                 //Demod.state = DEMOD_MANCHESTER_D; 
 509                                                 Demod
.state 
= DEMOD_START_OF_COMMUNICATION2
; 
 511                                                 Demod
.sub 
= SUB_NONE
; 
 514                                                 Demod
.output
[Demod
.len
] = 0xab; 
 515                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 519                                 case DEMOD_START_OF_COMMUNICATION2
: 
 520                                         if(Demod
.sub 
== SUB_SECOND_HALF
) { 
 521                                                 Demod
.state 
= DEMOD_START_OF_COMMUNICATION3
; 
 524                                                 Demod
.output
[Demod
.len
] = 0xab; 
 525                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 529                                 case DEMOD_START_OF_COMMUNICATION3
: 
 530                                         if(Demod
.sub 
== SUB_SECOND_HALF
) { 
 531 //                                              Demod.state = DEMOD_MANCHESTER_D; 
 532                                                 Demod
.state 
= DEMOD_SOF_COMPLETE
; 
 533                                                 //Demod.output[Demod.len] = Demod.syncBit & 0xFF; 
 537                                                 Demod
.output
[Demod
.len
] = 0xab; 
 538                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 542                                 case DEMOD_SOF_COMPLETE
: 
 543                                 case DEMOD_MANCHESTER_D
: 
 544                                 case DEMOD_MANCHESTER_E
: 
 545                                         // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) 
 546                                         //                          00001111 = 1 (0 in 14443) 
 547                                         if(Demod
.sub 
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF 
 549                                                 Demod
.shiftReg 
= (Demod
.shiftReg 
>> 1) ^ 0x100; 
 550                                                 Demod
.state 
= DEMOD_MANCHESTER_D
; 
 552                                         else if(Demod
.sub 
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF 
 554                                                 Demod
.shiftReg 
>>= 1; 
 555                                                 Demod
.state 
= DEMOD_MANCHESTER_E
; 
 557                                         else if(Demod
.sub 
== SUB_BOTH
) { 
 558                                                 Demod
.state 
= DEMOD_MANCHESTER_F
; 
 561                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 566                                 case DEMOD_MANCHESTER_F
: 
 567                                         // Tag response does not need to be a complete byte! 
 568                                         if(Demod
.len 
> 0 || Demod
.bitCount 
> 0) { 
 569                                                 if(Demod
.bitCount 
> 1) {  // was > 0, do not interpret last closing bit, is part of EOF 
 570                                                         Demod
.shiftReg 
>>= (9 - Demod
.bitCount
); 
 571                                                         Demod
.output
[Demod
.len
] = Demod
.shiftReg 
& 0xff; 
 573                                                         // No parity bit, so just shift a 0 
 574                                                         Demod
.parityBits 
<<= 1; 
 577                                                 Demod
.state 
= DEMOD_UNSYNCD
; 
 581                                                 Demod
.output
[Demod
.len
] = 0xad; 
 582                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 587                                 case DEMOD_ERROR_WAIT
: 
 588                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 592                                         Demod
.output
[Demod
.len
] = 0xdd; 
 593                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 597                         /*if(Demod.bitCount>=9) { 
 598                                 Demod.output[Demod.len] = Demod.shiftReg & 0xff; 
 601                                 Demod.parityBits <<= 1; 
 602                                 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); 
 607                         if(Demod
.bitCount
>=8) { 
 608                                 Demod
.shiftReg 
>>= 1; 
 609                                 Demod
.output
[Demod
.len
] = (Demod
.shiftReg 
& 0xff); 
 612                                 // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT 
 613                                 Demod
.parityBits 
<<= 1; 
 614                                 Demod
.parityBits 
^= OddByteParity
[(Demod
.shiftReg 
& 0xff)]; 
 621                                 Demod
.output
[Demod
.len
] = 0xBB; 
 623                                 Demod
.output
[Demod
.len
] = error 
& 0xFF; 
 625                                 Demod
.output
[Demod
.len
] = 0xBB; 
 627                                 Demod
.output
[Demod
.len
] = bit 
& 0xFF; 
 629                                 Demod
.output
[Demod
.len
] = Demod
.buffer 
& 0xFF; 
 632                                 Demod
.output
[Demod
.len
] = Demod
.buffer2 
& 0xFF; 
 634                                 Demod
.output
[Demod
.len
] = Demod
.syncBit 
& 0xFF; 
 636                                 Demod
.output
[Demod
.len
] = 0xBB; 
 643         } // end (state != UNSYNCED) 
 648 //============================================================================= 
 649 // Finally, a `sniffer' for iClass communication 
 650 // Both sides of communication! 
 651 //============================================================================= 
 653 //----------------------------------------------------------------------------- 
 654 // Record the sequence of commands sent by the reader to the tag, with 
 655 // triggering so that we start recording at the point that the tag is moved 
 657 //----------------------------------------------------------------------------- 
 658 void RAMFUNC 
SnoopIClass(void) 
 662     // We won't start recording the frames that we acquire until we trigger; 
 663     // a good trigger condition to get started is probably when we see a 
 664     // response from the tag. 
 665     //int triggered = FALSE; // FALSE to wait first for card 
 667     // The command (reader -> tag) that we're receiving. 
 668         // The length of a received command will in most cases be no more than 18 bytes. 
 669         // So 32 should be enough! 
 670         uint8_t *readerToTagCmd 
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
); 
 671     // The response (tag -> reader) that we're receiving. 
 672         uint8_t *tagToReaderResponse 
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
); 
 674     FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 676     // reset traceLen to 0 
 677     iso14a_set_tracing(TRUE
); 
 678     iso14a_clear_trace(); 
 679     iso14a_set_trigger(FALSE
); 
 681     // The DMA buffer, used to stream samples from the FPGA 
 682     int8_t *dmaBuf 
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
; 
 688     // Count of samples received so far, so that we can include timing 
 689     // information in the trace buffer. 
 693     // Set up the demodulator for tag -> reader responses. 
 694         Demod
.output 
= tagToReaderResponse
; 
 696     Demod
.state 
= DEMOD_UNSYNCD
; 
 698     // Setup for the DMA. 
 701     lastRxCounter 
= DMA_BUFFER_SIZE
; 
 702     FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); 
 704     // And the reader -> tag commands 
 705     memset(&Uart
, 0, sizeof(Uart
)); 
 706         Uart
.output 
= readerToTagCmd
; 
 707     Uart
.byteCntMax 
= 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// 
 708     Uart
.state 
= STATE_UNSYNCD
; 
 710     // And put the FPGA in the appropriate mode 
 711     // Signal field is off with the appropriate LED 
 713     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_SNIFFER
); 
 714     SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 716         uint32_t time_0 
= GetCountSspClk(); 
 724     // And now we loop, receiving samples. 
 728         int behindBy 
= (lastRxCounter 
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & 
 730         if(behindBy 
> maxBehindBy
) { 
 731             maxBehindBy 
= behindBy
; 
 733                 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
); 
 737         if(behindBy 
< 1) continue; 
 743         if(upTo 
- dmaBuf 
> DMA_BUFFER_SIZE
) { 
 744             upTo 
-= DMA_BUFFER_SIZE
; 
 745             lastRxCounter 
+= DMA_BUFFER_SIZE
; 
 746             AT91C_BASE_PDC_SSC
->PDC_RNPR 
= (uint32_t) upTo
; 
 747             AT91C_BASE_PDC_SSC
->PDC_RNCR 
= DMA_BUFFER_SIZE
; 
 754                 decbyte 
^= (1 << (3 - div
)); 
 757         // FOR READER SIDE COMMUMICATION... 
 760         decbyter 
^= (smpl 
& 0x30); 
 764         if((div 
+ 1) % 2 == 0) { 
 766                 if(OutOfNDecoding((smpl 
& 0xF0) >> 4)) { 
 767                     rsamples 
= samples 
- Uart
.samples
; 
 770                         //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; 
 771                         //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; 
 774                                 LogTrace(Uart
.output
,Uart
.byteCnt
, (GetCountSspClk()-time_0
) << 4, Uart
.parityBits
,TRUE
); 
 775                                 LogTrace(NULL
, 0, (GetCountSspClk()-time_0
) << 4, 0, TRUE
); 
 779                         /* And ready to receive another command. */ 
 780                     Uart
.state 
= STATE_UNSYNCD
; 
 781                     /* And also reset the demod code, which might have been */ 
 782                     /* false-triggered by the commands from the reader. */ 
 783                     Demod
.state 
= DEMOD_UNSYNCD
; 
 792                 if(ManchesterDecoding(smpl 
& 0x0F)) { 
 793                     rsamples 
= samples 
- Demod
.samples
; 
 798                                 LogTrace(Demod
.output
,Demod
.len
, (GetCountSspClk()-time_0
) << 4 , Demod
.parityBits
,FALSE
); 
 799                                 LogTrace(NULL
, 0, (GetCountSspClk()-time_0
) << 4, 0, FALSE
); 
 803                     // And ready to receive another response. 
 804                     memset(&Demod
, 0, sizeof(Demod
)); 
 805                         Demod
.output 
= tagToReaderResponse
; 
 806                     Demod
.state 
= DEMOD_UNSYNCD
; 
 816             DbpString("cancelled_a"); 
 821     DbpString("COMMAND FINISHED"); 
 823     Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
); 
 824     Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]); 
 827     AT91C_BASE_PDC_SSC
->PDC_PTCR 
= AT91C_PDC_RXTDIS
; 
 828     Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
); 
 829     Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]); 
 836 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) { 
 838         for(i 
= 0; i 
< 8; i
++) { 
 839                 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8
] << 5); 
 843 //----------------------------------------------------------------------------- 
 844 // Wait for commands from reader 
 845 // Stop when button is pressed 
 846 // Or return TRUE when command is captured 
 847 //----------------------------------------------------------------------------- 
 848 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
) 
 850     // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen 
 851     // only, since we are receiving, not transmitting). 
 852     // Signal field is off with the appropriate LED 
 854     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
); 
 856     // Now run a `software UART' on the stream of incoming samples. 
 857     Uart
.output 
= received
; 
 858     Uart
.byteCntMax 
= maxLen
; 
 859     Uart
.state 
= STATE_UNSYNCD
; 
 864         if(BUTTON_PRESS()) return FALSE
; 
 866         if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
 867             AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
 869         if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
 870             uint8_t b 
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
 871                         /*if(OutOfNDecoding((b & 0xf0) >> 4)) { 
 875                         if(OutOfNDecoding(b 
& 0x0f)) { 
 884 //----------------------------------------------------------------------------- 
 885 // Prepare tag messages 
 886 //----------------------------------------------------------------------------- 
 887 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
) 
 889         //So far a dummy implementation, not used 
 890         //int lastProxToAirDuration =0; 
 896         ToSend
[++ToSendMax
] = 0x00; 
 897         ToSend
[++ToSendMax
] = 0x00; 
 898         ToSend
[++ToSendMax
] = 0x00; 
 899         ToSend
[++ToSendMax
] = 0xff;//Proxtoair duration starts here 
 900         ToSend
[++ToSendMax
] = 0xff; 
 901         ToSend
[++ToSendMax
] = 0xff; 
 902         ToSend
[++ToSendMax
] = 0x00; 
 903         ToSend
[++ToSendMax
] = 0xff; 
 905         for(i 
= 0; i 
< len
; i
++) { 
 910                 for(j 
= 0; j 
< 8; j
++) { 
 912                                 ToSend
[++ToSendMax
] = 0x00; 
 913                                 ToSend
[++ToSendMax
] = 0xff; 
 915                                 ToSend
[++ToSendMax
] = 0xff; 
 916                                 ToSend
[++ToSendMax
] = 0x00; 
 923         ToSend
[++ToSendMax
] = 0xff; 
 924         ToSend
[++ToSendMax
] = 0x00; 
 925         ToSend
[++ToSendMax
] = 0xff; 
 926         ToSend
[++ToSendMax
] = 0xff; 
 927         ToSend
[++ToSendMax
] = 0xff;      
 928         ToSend
[++ToSendMax
] = 0x00; 
 929         ToSend
[++ToSendMax
] = 0x00; 
 930         ToSend
[++ToSendMax
] = 0x00; 
 932         //lastProxToAirDuration  = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end 
 934         // Convert from last byte pos to length 
 939 static void CodeIClassTagSOF() 
 941         //So far a dummy implementation, not used 
 942         //int lastProxToAirDuration =0; 
 946         ToSend
[++ToSendMax
] = 0x00; 
 947         ToSend
[++ToSendMax
] = 0x00; 
 948         ToSend
[++ToSendMax
] = 0x00; 
 949         ToSend
[++ToSendMax
] = 0xff; 
 950         ToSend
[++ToSendMax
] = 0xff; 
 951         ToSend
[++ToSendMax
] = 0xff; 
 952         ToSend
[++ToSendMax
] = 0x00; 
 953         ToSend
[++ToSendMax
] = 0xff; 
 955 //      lastProxToAirDuration  = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning 
 958         // Convert from last byte pos to length 
 961 int doIClassSimulation(uint8_t csn
[], int breakAfterMacReceived
, uint8_t *reader_mac_buf
); 
 963  * @brief SimulateIClass simulates an iClass card. 
 964  * @param arg0 type of simulation 
 965  *                      - 0 uses the first 8 bytes in usb data as CSN 
 966  *                      - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified 
 967  *                      in the usb data. This mode collects MAC from the reader, in order to do an offline 
 968  *                      attack on the keys. For more info, see "dismantling iclass" and proxclone.com. 
 969  *                      - Other : Uses the default CSN (031fec8af7ff12e0) 
 970  * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) 
 974 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) 
 976         uint32_t simType 
= arg0
; 
 977         uint32_t numberOfCSNS 
= arg1
; 
 978         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 980         // Enable and clear the trace 
 981         iso14a_set_tracing(TRUE
); 
 982         iso14a_clear_trace(); 
 984         uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; 
 986                 // Use the CSN from commandline 
 987                 memcpy(csn_crc
, datain
, 8); 
 988                 doIClassSimulation(csn_crc
,0,NULL
); 
 989         }else if(simType 
== 1) 
 991                 doIClassSimulation(csn_crc
,0,NULL
); 
 993         else if(simType 
== 2) 
 996                 uint8_t mac_responses
[64] = { 0 }; 
 997                 Dbprintf("Going into attack mode"); 
 998                 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time 
 999                 // in order to collect MAC's from the reader. This can later be used in an offlne-attack 
1000                 // in order to obtain the keys, as in the "dismantling iclass"-paper. 
1002                 for( ; i 
< numberOfCSNS 
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++) 
1004                         // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. 
1006                         memcpy(csn_crc
, datain
+(i
*8), 8); 
1007                         if(doIClassSimulation(csn_crc
,1,mac_responses
)) 
1009                                 return; // Button pressed 
1012                 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8); 
1016                 // We may want a mode here where we hardcode the csns to use (from proxclone). 
1017                 // That will speed things up a little, but not required just yet. 
1018                 Dbprintf("The mode is not implemented, reserved for future use"); 
1020         Dbprintf("Done..."); 
1024  * @brief Does the actual simulation 
1025  * @param csn - csn to use 
1026  * @param breakAfterMacReceived if true, returns after reader MAC has been received. 
1028 int doIClassSimulation(uint8_t csn
[], int breakAfterMacReceived
, uint8_t *reader_mac_buf
) 
1032         // CSN followed by two CRC bytes 
1033         uint8_t response2
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1034         uint8_t response3
[] = { 0,0,0,0,0,0,0,0,0,0}; 
1035         memcpy(response3
,csn
,sizeof(response3
)); 
1036         Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]); 
1038         uint8_t response4
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1040         // Construct anticollision-CSN 
1041         rotateCSN(response3
,response2
); 
1043         // Compute CRC on both CSNs 
1044         ComputeCrc14443(CRC_ICLASS
, response2
, 8, &response2
[8], &response2
[9]); 
1045         ComputeCrc14443(CRC_ICLASS
, response3
, 8, &response3
[8], &response3
[9]); 
1051         // Tag    anticoll. CSN 
1052         // Reader 81 anticoll. CSN 
1057         uint8_t* respdata 
= NULL
; 
1061         // Respond SOF -- takes 8 bytes 
1062         uint8_t *resp1 
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); 
1065         // Anticollision CSN (rotated CSN) 
1066         // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) 
1067         uint8_t *resp2 
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET 
+ 10); 
1071         // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) 
1072         uint8_t *resp3 
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET 
+ 190); 
1076         // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) 
1077         uint8_t *resp4 
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET 
+ 370); 
1081         uint8_t *receivedCmd 
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
); 
1082         memset(receivedCmd
, 0x44, RECV_CMD_SIZE
); 
1085         // Prepare card messages 
1088         // First card answer: SOF 
1090         memcpy(resp1
, ToSend
, ToSendMax
); resp1Len 
= ToSendMax
; 
1092         // Anticollision CSN 
1093         CodeIClassTagAnswer(response2
, sizeof(response2
)); 
1094         memcpy(resp2
, ToSend
, ToSendMax
); resp2Len 
= ToSendMax
; 
1097         CodeIClassTagAnswer(response3
, sizeof(response3
)); 
1098         memcpy(resp3
, ToSend
, ToSendMax
); resp3Len 
= ToSendMax
; 
1101         CodeIClassTagAnswer(response4
, sizeof(response4
)); 
1102         memcpy(resp4
, ToSend
, ToSendMax
); resp4Len 
= ToSendMax
; 
1105         // Start from off (no field generated) 
1106         //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); 
1108         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
); 
1111         // We need to listen to the high-frequency, peak-detected path. 
1112         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1115         // To control where we are in the protocol 
1117         uint32_t time_0 
= GetCountSspClk(); 
1118         uint32_t t2r_time 
=0; 
1119         uint32_t r2t_time 
=0; 
1122         bool buttonPressed 
= false; 
1124         /** Hack  for testing 
1125         memcpy(reader_mac_buf,csn,8); 
1133                 // Can be used to get a trigger for an oscilloscope.. 
1136                 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) { 
1137                         buttonPressed 
= true; 
1140                 r2t_time 
= GetCountSspClk(); 
1144                 // Okay, look at the command now. 
1145                 if(receivedCmd
[0] == 0x0a ) { 
1146                         // Reader in anticollission phase 
1147                         resp 
= resp1
; respLen 
= resp1Len
; //order = 1; 
1149                         respsize 
= sizeof(sof
); 
1150                 } else if(receivedCmd
[0] == 0x0c) { 
1151                         // Reader asks for anticollission CSN 
1152                         resp 
= resp2
; respLen 
= resp2Len
; //order = 2; 
1153                         respdata 
= response2
; 
1154                         respsize 
= sizeof(response2
); 
1155                         //DbpString("Reader requests anticollission CSN:"); 
1156                 } else if(receivedCmd
[0] == 0x81) { 
1157                         // Reader selects anticollission CSN. 
1158                         // Tag sends the corresponding real CSN 
1159                         resp 
= resp3
; respLen 
= resp3Len
; //order = 3; 
1160                         respdata 
= response3
; 
1161                         respsize 
= sizeof(response3
); 
1162                         //DbpString("Reader selects anticollission CSN:"); 
1163                 } else if(receivedCmd
[0] == 0x88) { 
1164                         // Read e-purse (88 02) 
1165                         resp 
= resp4
; respLen 
= resp4Len
; //order = 4; 
1166                         respdata 
= response4
; 
1167                         respsize 
= sizeof(response4
); 
1169                 } else if(receivedCmd
[0] == 0x05) { 
1170                         // Reader random and reader MAC!!! 
1172             // We do not know what to answer, so lets keep quiet 
1173                         resp 
= resp1
; respLen 
= 0; //order = 5; 
1176                         if (breakAfterMacReceived
){ 
1178                                 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]); 
1179                                 Dbprintf("RDR:  (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
, 
1180                                                  receivedCmd
[0], receivedCmd
[1], receivedCmd
[2], 
1181                                                 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5], 
1182                                                 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]); 
1183                                 if (reader_mac_buf 
!= NULL
) 
1185                                         memcpy(reader_mac_buf
,receivedCmd
+1,8); 
1189                 } else if(receivedCmd
[0] == 0x00 && len 
== 1) { 
1190                         // Reader ends the session 
1191                         resp 
= resp1
; respLen 
= 0; //order = 0; 
1195                         //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 
1196                         // Never seen this command before 
1197                         Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", 
1199                         receivedCmd
[0], receivedCmd
[1], receivedCmd
[2], 
1200                         receivedCmd
[3], receivedCmd
[4], receivedCmd
[5], 
1201                         receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]); 
1203                         resp 
= resp1
; respLen 
= 0; //order = 0; 
1208                 if(cmdsRecvd 
>  100) { 
1209                         //DbpString("100 commands later..."); 
1217                         SendIClassAnswer(resp
, respLen
, 21); 
1218                         t2r_time 
= GetCountSspClk(); 
1222                         LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, Uart
.parityBits
,TRUE
); 
1223                         LogTrace(NULL
,0, (r2t_time
-time_0
) << 4, 0,TRUE
); 
1225                         if (respdata 
!= NULL
) { 
1226                                 LogTrace(respdata
,respsize
, (t2r_time
-time_0
) << 4,SwapBits(GetParity(respdata
,respsize
),respsize
),FALSE
); 
1227                                 LogTrace(NULL
,0, (t2r_time
-time_0
) << 4,0,FALSE
); 
1232                                 DbpString("Trace full"); 
1237                 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
); 
1240         //Dbprintf("%x", cmdsRecvd); 
1245                 DbpString("Button pressed"); 
1247         return buttonPressed
; 
1250 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
) 
1252         int i 
= 0, d
=0;//, u = 0, d = 0; 
1255         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K
); 
1257         AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
1259         while(!BUTTON_PRESS()) { 
1260                 if((AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
)){ 
1261                         b 
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
; 
1263                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)){ 
1276                         AT91C_BASE_SSC
->SSC_THR 
= b
; 
1279                 if (i 
> respLen 
+4) break; 
1287 //----------------------------------------------------------------------------- 
1288 // Transmit the command (to the tag) that was placed in ToSend[]. 
1289 //----------------------------------------------------------------------------- 
1290 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
) 
1293   FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_MOD
); 
1294   AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
1301   for(c 
= 0; c 
< *wait
;) { 
1302     if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1303       AT91C_BASE_SSC
->SSC_THR 
= 0x00;           // For exact timing! 
1306     if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1307       volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1314   bool firstpart 
= TRUE
; 
1317     if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1319       // DOUBLE THE SAMPLES! 
1321         sendbyte 
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);  
1324         sendbyte 
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4); 
1327       if(sendbyte 
== 0xff) { 
1330       AT91C_BASE_SSC
->SSC_THR 
= sendbyte
; 
1331       firstpart 
= !firstpart
; 
1337     if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1338       volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1343   if (samples
) *samples 
= (c 
+ *wait
) << 3; 
1347 //----------------------------------------------------------------------------- 
1348 // Prepare iClass reader command to send to FPGA 
1349 //----------------------------------------------------------------------------- 
1350 void CodeIClassCommand(const uint8_t * cmd
, int len
) 
1357   // Start of Communication: 1 out of 4 
1358   ToSend
[++ToSendMax
] = 0xf0; 
1359   ToSend
[++ToSendMax
] = 0x00; 
1360   ToSend
[++ToSendMax
] = 0x0f; 
1361   ToSend
[++ToSendMax
] = 0x00; 
1363   // Modulate the bytes  
1364   for (i 
= 0; i 
< len
; i
++) { 
1366     for(j 
= 0; j 
< 4; j
++) { 
1367       for(k 
= 0; k 
< 4; k
++) { 
1369                                 ToSend
[++ToSendMax
] = 0x0f; 
1372                                 ToSend
[++ToSendMax
] = 0x00; 
1379   // End of Communication 
1380   ToSend
[++ToSendMax
] = 0x00; 
1381   ToSend
[++ToSendMax
] = 0x00; 
1382   ToSend
[++ToSendMax
] = 0xf0; 
1383   ToSend
[++ToSendMax
] = 0x00; 
1385   // Convert from last character reference to length 
1389 void ReaderTransmitIClass(uint8_t* frame
, int len
) 
1395   // This is tied to other size changes 
1396   //    uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; 
1397   CodeIClassCommand(frame
,len
); 
1400   TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
); 
1404   // Store reader command in buffer 
1405   if (tracing
) LogTrace(frame
,len
,rsamples
,par
,TRUE
); 
1408 //----------------------------------------------------------------------------- 
1409 // Wait a certain time for tag response 
1410 //  If a response is captured return TRUE 
1411 //  If it takes too long return FALSE 
1412 //----------------------------------------------------------------------------- 
1413 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer 
1415         // buffer needs to be 512 bytes 
1418         // Set FPGA mode to "reader listen mode", no modulation (listen 
1419         // only, since we are receiving, not transmitting). 
1420         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_LISTEN
); 
1422         // Now get the answer from the card 
1423         Demod
.output 
= receivedResponse
; 
1425         Demod
.state 
= DEMOD_UNSYNCD
; 
1428         if (elapsed
) *elapsed 
= 0; 
1436                 if(BUTTON_PRESS()) return FALSE
; 
1438                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1439                         AT91C_BASE_SSC
->SSC_THR 
= 0x00;  // To make use of exact timing of next command from reader!! 
1440                         if (elapsed
) (*elapsed
)++; 
1442                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1443                         if(c 
< timeout
) { c
++; } else { return FALSE
; } 
1444                         b 
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1447                         /*if(ManchesterDecoding((b>>4) & 0xf)) { 
1448                                 *samples = ((c - 1) << 3) + 4; 
1451                         if(ManchesterDecoding(b 
& 0x0f)) { 
1459 int ReaderReceiveIClass(uint8_t* receivedAnswer
) 
1462   if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
; 
1463   rsamples 
+= samples
; 
1464   if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,rsamples
,Demod
.parityBits
,FALSE
); 
1465   if(samples 
== 0) return FALSE
; 
1469 void setupIclassReader() 
1471     FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
1472     // Reset trace buffer 
1473     iso14a_set_tracing(TRUE
); 
1474     iso14a_clear_trace(); 
1478     // Start from off (no field generated) 
1479     // Signal field is off with the appropriate LED 
1481     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1484     SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1486     // Now give it time to spin up. 
1487     // Signal field is on with the appropriate LED 
1488     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_MOD
); 
1494 // Reader iClass Anticollission 
1495 void ReaderIClass(uint8_t arg0
) { 
1496     uint8_t act_all
[]     = { 0x0a }; 
1497     uint8_t identify
[]    = { 0x0c }; 
1498     uint8_t select
[]      = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1499     uint8_t readcheck_cc
[]= { 0x88, 0x02 }; 
1501     uint8_t card_data
[24]={0}; 
1502     uint8_t last_csn
[8]={0}; 
1504     uint8_t* resp 
= (((uint8_t *)BigBuf
) + 3560);       // was 3560 - tied to other size changes 
1505     FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
1508     bool abort_after_read 
= arg0 
& FLAG_ICLASS_READER_ONLY_ONCE
; 
1510     setupIclassReader(); 
1512     size_t datasize 
= 0; 
1513     while(!BUTTON_PRESS()) 
1518         ReaderTransmitIClass(act_all
, 1); 
1520         if(ReaderReceiveIClass(resp
)) { 
1522             ReaderTransmitIClass(identify
, 1); 
1524             if(ReaderReceiveIClass(resp
) == 10) { 
1525                 //Copy the Anti-collision CSN to our select-packet 
1526                 memcpy(&select
[1],resp
,8); 
1527                 //Dbprintf("Anti-collision CSN: %02x %02x %02x %02x %02x %02x %02x %02x",resp[0], resp[1], resp[2], 
1528                 //        resp[3], resp[4], resp[5], 
1529                 //        resp[6], resp[7]); 
1531                 ReaderTransmitIClass(select
, sizeof(select
)); 
1533                 if(ReaderReceiveIClass(resp
) == 10) { 
1534                     //Save CSN in response data 
1535                     memcpy(card_data
,resp
,8); 
1537                     //Flag that we got to at least stage 1, read CSN 
1541                     //Dbprintf("Readcheck on Sector 2"); 
1542                     ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
)); 
1543                     if(ReaderReceiveIClass(resp
) == 8) { 
1544                         //Save CC (e-purse) in response data 
1545                         memcpy(card_data
+8,resp
,8); 
1552                     //Send back to client, but don't bother if we already sent this 
1553                     if(memcmp(last_csn
, card_data
, 8) != 0) 
1554                         cmd_send(CMD_ACK
,read_status
,0,0,card_data
,datasize
); 
1556                     //Save that we already sent this.... 
1557                     if(read_status 
==  2) 
1558                         memcpy(last_csn
, card_data
, 8); 
1562                     if(abort_after_read
) break; 
1567         if(traceLen 
> TRACE_SIZE
) { 
1568             DbpString("Trace full"); 
1575 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) { 
1576         uint8_t act_all
[]     = { 0x0a }; 
1577         uint8_t identify
[]    = { 0x0c }; 
1578         uint8_t select
[]      = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1579         uint8_t readcheck_cc
[]= { 0x88, 0x02 }; 
1580         uint8_t check
[]       = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1581         uint8_t read
[]        = { 0x0c, 0x00, 0x00, 0x00 }; 
1585         bool read_success
=false; 
1588         static struct memory_t
{ 
1596         uint8_t* resp 
= (((uint8_t *)BigBuf
) + 3560);   // was 3560 - tied to other size changes 
1597     // Enable and clear the trace 
1598     iso14a_set_tracing(TRUE
); 
1599     iso14a_clear_trace(); 
1605         // Start from off (no field generated) 
1606         // Signal field is off with the appropriate LED 
1608         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1611         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1613         // Now give it time to spin up. 
1614         // Signal field is on with the appropriate LED 
1615         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_MOD
); 
1620         for(int i
=0;i
<1;i
++) { 
1622                 if(traceLen 
> TRACE_SIZE
) { 
1623                         DbpString("Trace full"); 
1627                 if (BUTTON_PRESS()) break; 
1630                 ReaderTransmitIClass(act_all
, 1); 
1632                 if(ReaderReceiveIClass(resp
)) { 
1633                         ReaderTransmitIClass(identify
, 1); 
1634                         if(ReaderReceiveIClass(resp
) == 10) { 
1636                                 memcpy(&select
[1],resp
,8); 
1637                                 ReaderTransmitIClass(select
, sizeof(select
)); 
1639                                 if(ReaderReceiveIClass(resp
) == 10) { 
1640                                         Dbprintf("     Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", 
1641                                         resp
[0], resp
[1], resp
[2], 
1642                                         resp
[3], resp
[4], resp
[5], 
1646                                 Dbprintf("Readcheck on Sector 2"); 
1647                                 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
)); 
1648                                 if(ReaderReceiveIClass(resp
) == 8) { 
1649                                    Dbprintf("     CC: %02x %02x %02x %02x %02x %02x %02x %02x", 
1650                                         resp
[0], resp
[1], resp
[2], 
1651                                         resp
[3], resp
[4], resp
[5], 
1654                                 Dbprintf("Authenticate"); 
1655                                 //for now replay captured auth (as cc not updated) 
1656                                 memcpy(check
+5,MAC
,4); 
1657                                 Dbprintf("     AA: %02x %02x %02x %02x", 
1658                                         check
[5], check
[6], check
[7],check
[8]); 
1659                                 ReaderTransmitIClass(check
, sizeof(check
)); 
1660                                 if(ReaderReceiveIClass(resp
) == 4) { 
1661                                    Dbprintf("     AR: %02x %02x %02x %02x", 
1662                                         resp
[0], resp
[1], resp
[2],resp
[3]); 
1664                                   Dbprintf("Error: Authentication Fail!"); 
1667                                 Dbprintf("Dump Contents"); 
1668                                 //first get configuration block 
1671                                 uint8_t *blockno
=&read
[1]; 
1672                                 crc 
= iclass_crc16((char *)blockno
,1); 
1674                                 read
[3] = crc 
& 0xff; 
1675                                 while(!read_success
){ 
1676                                       ReaderTransmitIClass(read
, sizeof(read
)); 
1677                                       if(ReaderReceiveIClass(resp
) == 10) { 
1680                                          memory
.k16
= (mem 
& 0x80); 
1681                                          memory
.book
= (mem 
& 0x20); 
1682                                          memory
.k2
= (mem 
& 0x8); 
1683                                          memory
.lockauth
= (mem 
& 0x2); 
1684                                          memory
.keyaccess
= (mem 
& 0x1); 
1691                                 //then loop around remaining blocks 
1692                                 for(uint8_t j
=0; j
<cardsize
; j
++){ 
1694                                     uint8_t *blockno
=&j
; 
1697                                     crc 
= iclass_crc16((char *)blockno
,1); 
1699                                     read
[3] = crc 
& 0xff; 
1700                                     while(!read_success
){ 
1701                                       ReaderTransmitIClass(read
, sizeof(read
)); 
1702                                       if(ReaderReceiveIClass(resp
) == 10) { 
1704                                          Dbprintf("     %02x: %02x %02x %02x %02x %02x %02x %02x %02x", 
1705                                           j
, resp
[0], resp
[1], resp
[2], 
1706                                           resp
[3], resp
[4], resp
[5], 
1719 //2. Create Read method (cut-down from above) based off responses from 1.  
1720 //   Since we have the MAC could continue to use replay function. 
1721 //3. Create Write method 
1723 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) { 
1724         uint8_t act_all[]     = { 0x0a }; 
1725         uint8_t identify[]    = { 0x0c }; 
1726         uint8_t select[]      = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1727         uint8_t readcheck_cc[]= { 0x88, 0x02 }; 
1728         uint8_t check[]       = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1729         uint8_t read[]        = { 0x0c, 0x00, 0x00, 0x00 }; 
1730         uint8_t write[]       = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1734         uint8_t* resp = (((uint8_t *)BigBuf) + 3560);   // was 3560 - tied to other size changes 
1736         // Reset trace buffer 
1737     memset(trace, 0x44, RECV_CMD_OFFSET); 
1742         // Start from off (no field generated) 
1743         // Signal field is off with the appropriate LED 
1745         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); 
1748         SetAdcMuxFor(GPIO_MUXSEL_HIPKD); 
1750         // Now give it time to spin up. 
1751         // Signal field is on with the appropriate LED 
1752         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); 
1757         for(int i=0;i<1;i++) { 
1759                 if(traceLen > TRACE_SIZE) { 
1760                         DbpString("Trace full"); 
1764                 if (BUTTON_PRESS()) break; 
1767                 ReaderTransmitIClass(act_all, 1); 
1769                 if(ReaderReceiveIClass(resp)) { 
1770                         ReaderTransmitIClass(identify, 1); 
1771                         if(ReaderReceiveIClass(resp) == 10) { 
1773                                 memcpy(&select[1],resp,8); 
1774                                 ReaderTransmitIClass(select, sizeof(select)); 
1776                                 if(ReaderReceiveIClass(resp) == 10) { 
1777                                         Dbprintf("     Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", 
1778                                         resp[0], resp[1], resp[2], 
1779                                         resp[3], resp[4], resp[5], 
1783                                 Dbprintf("Readcheck on Sector 2"); 
1784                                 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); 
1785                                 if(ReaderReceiveIClass(resp) == 8) { 
1786                                    Dbprintf("     CC: %02x %02x %02x %02x %02x %02x %02x %02x", 
1787                                         resp[0], resp[1], resp[2], 
1788                                         resp[3], resp[4], resp[5], 
1791                                 Dbprintf("Authenticate"); 
1792                                 //for now replay captured auth (as cc not updated) 
1793                                 memcpy(check+5,MAC,4); 
1794                                 Dbprintf("     AA: %02x %02x %02x %02x", 
1795                                         check[5], check[6], check[7],check[8]); 
1796                                 ReaderTransmitIClass(check, sizeof(check)); 
1797                                 if(ReaderReceiveIClass(resp) == 4) { 
1798                                    Dbprintf("     AR: %02x %02x %02x %02x", 
1799                                         resp[0], resp[1], resp[2],resp[3]); 
1801                                   Dbprintf("Error: Authentication Fail!"); 
1804                                 Dbprintf("Write Block"); 
1806                                 //read configuration for max block number 
1809                                 uint8_t *blockno=&read[1]; 
1810                                 crc = iclass_crc16((char *)blockno,1); 
1812                                 read[3] = crc & 0xff; 
1813                                 while(!read_success){ 
1814                                       ReaderTransmitIClass(read, sizeof(read)); 
1815                                       if(ReaderReceiveIClass(resp) == 10) { 
1818                                          memory.k16= (mem & 0x80); 
1819                                          memory.book= (mem & 0x20); 
1820                                          memory.k2= (mem & 0x8); 
1821                                          memory.lockauth= (mem & 0x2); 
1822                                          memory.keyaccess= (mem & 0x1); 
1831                                 memcpy(write+1,blockNo,1); 
1832                                 memcpy(write+2,data,8); 
1833                                 memcpy(write+10,mac,4); 
1834                                 while(!send_success){ 
1835                                   ReaderTransmitIClass(write, sizeof(write)); 
1836                                   if(ReaderReceiveIClass(resp) == 10) {