1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
25 #include "lfsampling.h"
27 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
35 #include "iso14443a.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendMax
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
87 void DbpIntegers(int x1
, int x2
, int x3
)
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
93 void Dbprintf(const char *fmt
, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string
[128];
99 kvsprintf(fmt
, output_string
, 10, ap
);
102 DbpString(output_string
);
105 // prints HEX & ASCII
106 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
119 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
122 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
124 Dbprintf("%*D",l
,d
," ");
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch
)
139 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
140 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
141 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
144 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
146 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
148 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
149 AT91C_BASE_ADC
->ADC_MR
=
150 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
151 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
152 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
154 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
155 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
157 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
159 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
162 int AvgAdc(int ch
) // was static - merlok
167 for(i
= 0; i
< 32; i
++) {
171 return (a
+ 15) >> 5;
174 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
176 int i
, adcval
= 0, peak
= 0;
179 * Sweeps the useful LF range of the proxmark from
180 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
181 * read the voltage in the antenna, the result left
182 * in the buffer is a graph which should clearly show
183 * the resonating frequency of your LF antenna
184 * ( hopefully around 95 if it is tuned to 125kHz!)
187 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
191 for (i
=255; i
>=19; i
--) {
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
195 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
196 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
197 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
199 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
200 if(LF_Results
[i
] > peak
) {
202 peak
= LF_Results
[i
];
208 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
213 void MeasureAntennaTuningHfOnly(int *vHf
)
215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
220 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
226 void MeasureAntennaTuning(int mode
)
228 uint8_t LF_Results
[256] = {0};
229 int peakv
= 0, peakf
= 0;
230 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
234 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
235 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
236 MeasureAntennaTuningHfOnly(&vHf
);
237 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
239 if (mode
& FLAG_TUNE_LF
) {
240 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
242 if (mode
& FLAG_TUNE_HF
) {
243 MeasureAntennaTuningHfOnly(&vHf
);
247 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void MeasureAntennaTuningHf(void)
255 int vHf
= 0; // in mV
257 DbpString("Measuring HF antenna, press button to exit");
259 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
260 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
261 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
265 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
267 Dbprintf("%d mV",vHf
);
268 if (BUTTON_PRESS()) break;
270 DbpString("cancelled");
272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
277 void ReadMem(int addr
)
279 const uint8_t *data
= ((uint8_t *)addr
);
281 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
282 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
285 /* osimage version information is linked in */
286 extern struct version_information version_information
;
287 /* bootrom version information is pointed to from _bootphase1_version_pointer */
288 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
289 void SendVersion(void)
291 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
292 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
294 /* Try to find the bootrom version information. Expect to find a pointer at
295 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
296 * pointer, then use it.
298 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
299 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
300 strcat(VersionString
, "bootrom version information appears invalid\n");
302 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
303 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
306 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
307 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
309 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
310 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
312 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
316 uint32_t compressed_data_section_size
= common_area
.arg1
;
317 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data
= BigBuf_get_addr();
331 uint32_t start_time
= end_time
= GetTickCount();
332 uint32_t bytes_transferred
= 0;
335 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
337 end_time
= GetTickCount();
338 bytes_transferred
+= USB_CMD_DATA_SIZE
;
342 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred
/ (end_time
- start_time
));
350 * Prints runtime information about the PM3.
352 void SendStatus(void)
354 BigBuf_print_status();
356 printConfig(); //LF Sampling config
359 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
360 Dbprintf(" ToSendMax........%d",ToSendMax
);
361 Dbprintf(" ToSendBit........%d",ToSendBit
);
363 cmd_send(CMD_ACK
,1,0,0,0,0);
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
370 void StandAloneMode()
372 DbpString("Stand-alone mode! No PC necessary.");
373 // Oooh pretty -- notify user we're in elite samy mode now
375 LED(LED_ORANGE
, 200);
377 LED(LED_ORANGE
, 200);
379 LED(LED_ORANGE
, 200);
381 LED(LED_ORANGE
, 200);
390 #ifdef WITH_ISO14443a_StandAlone
391 void StandAloneMode14a()
394 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
397 bool playing
= false, GotoRecord
= false, GotoClone
= false;
398 bool cardRead
[OPTS
] = {false};
399 uint8_t readUID
[10] = {0};
400 uint32_t uid_1st
[OPTS
]={0};
401 uint32_t uid_2nd
[OPTS
]={0};
402 uint32_t uid_tmp1
= 0;
403 uint32_t uid_tmp2
= 0;
404 iso14a_card_select_t hi14a_card
[OPTS
];
406 LED(selected
+ 1, 0);
414 if (GotoRecord
|| !cardRead
[selected
])
418 LED(selected
+ 1, 0);
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
423 /* need this delay to prevent catching some weird data */
425 /* Code for reading from 14a tag */
426 uint8_t uid
[10] ={0};
428 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
433 if (BUTTON_PRESS()) {
434 if (cardRead
[selected
]) {
435 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
438 else if (cardRead
[(selected
+1)%OPTS
]) {
439 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
440 selected
= (selected
+1)%OPTS
;
444 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
448 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
452 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
453 memcpy(readUID
,uid
,10*sizeof(uint8_t));
454 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
455 // Set UID byte order
456 for (int i
=0; i
<4; i
++)
458 dst
= (uint8_t *)&uid_tmp2
;
459 for (int i
=0; i
<4; i
++)
461 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
462 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
466 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
467 uid_1st
[selected
] = (uid_tmp1
)>>8;
468 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
471 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
472 uid_1st
[selected
] = uid_tmp1
;
473 uid_2nd
[selected
] = uid_tmp2
;
479 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
480 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
483 LED(LED_ORANGE
, 200);
485 LED(LED_ORANGE
, 200);
488 LED(selected
+ 1, 0);
490 // Next state is replay:
493 cardRead
[selected
] = true;
495 /* MF Classic UID clone */
500 LED(selected
+ 1, 0);
501 LED(LED_ORANGE
, 250);
505 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
507 // wait for button to be released
508 while(BUTTON_PRESS())
510 // Delay cloning until card is in place
513 Dbprintf("Starting clone. [Bank: %u]", selected
);
514 // need this delay to prevent catching some weird data
516 // Begin clone function here:
517 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
518 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
519 memcpy(c.d.asBytes, data, 16);
522 Block read is similar:
523 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
524 We need to imitate that call with blockNo 0 to set a uid.
526 The get and set commands are handled in this file:
527 // Work with "magic Chinese" card
528 case CMD_MIFARE_CSETBLOCK:
529 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
531 case CMD_MIFARE_CGETBLOCK:
532 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
535 mfCSetUID provides example logic for UID set workflow:
536 -Read block0 from card in field with MifareCGetBlock()
537 -Configure new values without replacing reserved bytes
538 memcpy(block0, uid, 4); // Copy UID bytes from byte array
540 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
541 Bytes 5-7 are reserved SAK and ATQA for mifare classic
542 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
544 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
545 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
546 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
547 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
548 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
552 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
553 memcpy(newBlock0
,oldBlock0
,16);
554 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
556 newBlock0
[0] = uid_1st
[selected
]>>24;
557 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
558 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
559 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
560 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
561 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
562 MifareCSetBlock(0, 0xFF,0, newBlock0
);
563 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
564 if (memcmp(testBlock0
,newBlock0
,16)==0)
566 DbpString("Cloned successfull!");
567 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
570 selected
= (selected
+1) % OPTS
;
573 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
578 LED(selected
+ 1, 0);
581 // Change where to record (or begin playing)
582 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
585 LED(selected
+ 1, 0);
587 // Begin transmitting
589 DbpString("Playing");
592 int button_action
= BUTTON_HELD(1000);
593 if (button_action
== 0) { // No button action, proceed with sim
594 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
595 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
596 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
597 DbpString("Mifare Classic");
598 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
600 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
601 DbpString("Mifare Ultralight");
602 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
604 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
605 DbpString("Mifare DESFire");
606 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
609 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
610 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
613 else if (button_action
== BUTTON_SINGLE_CLICK
) {
614 selected
= (selected
+ 1) % OPTS
;
615 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
619 else if (button_action
== BUTTON_HOLD
) {
620 Dbprintf("Playtime over. Begin cloning...");
627 /* We pressed a button so ignore it here with a delay */
630 LED(selected
+ 1, 0);
635 // samy's sniff and repeat routine
639 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
641 int high
[OPTS
], low
[OPTS
];
646 // Turn on selected LED
647 LED(selected
+ 1, 0);
654 // Was our button held down or pressed?
655 int button_pressed
= BUTTON_HELD(1000);
658 // Button was held for a second, begin recording
659 if (button_pressed
> 0 && cardRead
== 0)
662 LED(selected
+ 1, 0);
666 DbpString("Starting recording");
668 // wait for button to be released
669 while(BUTTON_PRESS())
672 /* need this delay to prevent catching some weird data */
675 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
676 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
679 LED(selected
+ 1, 0);
680 // Finished recording
682 // If we were previously playing, set playing off
683 // so next button push begins playing what we recorded
690 else if (button_pressed
> 0 && cardRead
== 1)
693 LED(selected
+ 1, 0);
697 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
699 // wait for button to be released
700 while(BUTTON_PRESS())
703 /* need this delay to prevent catching some weird data */
706 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
707 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
710 LED(selected
+ 1, 0);
711 // Finished recording
713 // If we were previously playing, set playing off
714 // so next button push begins playing what we recorded
721 // Change where to record (or begin playing)
722 else if (button_pressed
)
724 // Next option if we were previously playing
726 selected
= (selected
+ 1) % OPTS
;
730 LED(selected
+ 1, 0);
732 // Begin transmitting
736 DbpString("Playing");
737 // wait for button to be released
738 while(BUTTON_PRESS())
740 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
741 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
742 DbpString("Done playing");
743 if (BUTTON_HELD(1000) > 0)
745 DbpString("Exiting");
750 /* We pressed a button so ignore it here with a delay */
753 // when done, we're done playing, move to next option
754 selected
= (selected
+ 1) % OPTS
;
757 LED(selected
+ 1, 0);
760 while(BUTTON_PRESS())
769 Listen and detect an external reader. Determine the best location
773 Inside the ListenReaderField() function, there is two mode.
774 By default, when you call the function, you will enter mode 1.
775 If you press the PM3 button one time, you will enter mode 2.
776 If you press the PM3 button a second time, you will exit the function.
778 DESCRIPTION OF MODE 1:
779 This mode just listens for an external reader field and lights up green
780 for HF and/or red for LF. This is the original mode of the detectreader
783 DESCRIPTION OF MODE 2:
784 This mode will visually represent, using the LEDs, the actual strength of the
785 current compared to the maximum current detected. Basically, once you know
786 what kind of external reader is present, it will help you spot the best location to place
787 your antenna. You will probably not get some good results if there is a LF and a HF reader
788 at the same place! :-)
792 static const char LIGHT_SCHEME
[] = {
793 0x0, /* ---- | No field detected */
794 0x1, /* X--- | 14% of maximum current detected */
795 0x2, /* -X-- | 29% of maximum current detected */
796 0x4, /* --X- | 43% of maximum current detected */
797 0x8, /* ---X | 57% of maximum current detected */
798 0xC, /* --XX | 71% of maximum current detected */
799 0xE, /* -XXX | 86% of maximum current detected */
800 0xF, /* XXXX | 100% of maximum current detected */
802 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
804 void ListenReaderField(int limit
)
806 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
807 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
808 int mode
=1, display_val
, display_max
, i
;
812 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
815 // switch off FPGA - we don't want to measure our own signal
816 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
817 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
821 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
823 if(limit
!= HF_ONLY
) {
824 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
828 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
830 if (limit
!= LF_ONLY
) {
831 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
836 if (BUTTON_PRESS()) {
841 DbpString("Signal Strength Mode");
845 DbpString("Stopped");
853 if (limit
!= HF_ONLY
) {
855 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
861 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
862 // see if there's a significant change
863 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
864 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
871 if (limit
!= LF_ONLY
) {
873 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
879 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
880 // see if there's a significant change
881 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
882 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
890 if (limit
== LF_ONLY
) {
892 display_max
= lf_max
;
893 } else if (limit
== HF_ONLY
) {
895 display_max
= hf_max
;
896 } else { /* Pick one at random */
897 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
899 display_max
= hf_max
;
902 display_max
= lf_max
;
905 for (i
=0; i
<LIGHT_LEN
; i
++) {
906 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
907 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
908 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
909 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
910 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
918 void UsbPacketReceived(uint8_t *packet
, int len
)
920 UsbCommand
*c
= (UsbCommand
*)packet
;
922 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
926 case CMD_SET_LF_SAMPLING_CONFIG
:
927 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
929 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
930 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
932 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
933 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
935 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
936 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
938 case CMD_HID_DEMOD_FSK
:
939 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
941 case CMD_HID_SIM_TAG
:
942 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
944 case CMD_FSK_SIM_TAG
:
945 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
947 case CMD_ASK_SIM_TAG
:
948 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
950 case CMD_PSK_SIM_TAG
:
951 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
953 case CMD_HID_CLONE_TAG
:
954 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
956 case CMD_IO_DEMOD_FSK
:
957 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
959 case CMD_IO_CLONE_TAG
:
960 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
962 case CMD_EM410X_DEMOD
:
963 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
965 case CMD_EM410X_WRITE_TAG
:
966 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
968 case CMD_READ_TI_TYPE
:
971 case CMD_WRITE_TI_TYPE
:
972 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
974 case CMD_SIMULATE_TAG_125K
:
976 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
979 case CMD_LF_SIMULATE_BIDIR
:
980 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
982 case CMD_INDALA_CLONE_TAG
:
983 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
985 case CMD_INDALA_CLONE_TAG_L
:
986 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
988 case CMD_T55XX_READ_BLOCK
:
989 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
991 case CMD_T55XX_WRITE_BLOCK
:
992 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
994 case CMD_T55XX_WAKEUP
:
995 T55xxWakeUp(c
->arg
[0]);
997 case CMD_T55XX_RESET_READ
:
1000 case CMD_PCF7931_READ
:
1003 case CMD_PCF7931_WRITE
:
1004 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1006 case CMD_EM4X_READ_WORD
:
1007 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1009 case CMD_EM4X_WRITE_WORD
:
1010 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1012 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1013 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1015 case CMD_VIKING_CLONE_TAG
:
1016 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1024 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1025 SnoopHitag(c
->arg
[0]);
1027 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1028 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1030 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1031 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1033 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1034 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1036 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1037 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1039 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1040 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1042 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1043 if ((hitag_function
)c
->arg
[0] < 10) {
1044 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1046 else if ((hitag_function
)c
->arg
[0] >= 10) {
1047 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1052 #ifdef WITH_ISO15693
1053 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1054 AcquireRawAdcSamplesIso15693();
1056 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1057 RecordRawAdcSamplesIso15693();
1060 case CMD_ISO_15693_COMMAND
:
1061 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1064 case CMD_ISO_15693_FIND_AFI
:
1065 BruteforceIso15693Afi(c
->arg
[0]);
1068 case CMD_ISO_15693_DEBUG
:
1069 SetDebugIso15693(c
->arg
[0]);
1072 case CMD_READER_ISO_15693
:
1073 ReaderIso15693(c
->arg
[0]);
1075 case CMD_SIMTAG_ISO_15693
:
1076 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1081 case CMD_SIMULATE_TAG_LEGIC_RF
:
1082 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1085 case CMD_WRITER_LEGIC_RF
:
1086 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1089 case CMD_READER_LEGIC_RF
:
1090 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1094 #ifdef WITH_ISO14443b
1095 case CMD_READ_SRI512_TAG
:
1096 ReadSTMemoryIso14443b(0x0F);
1098 case CMD_READ_SRIX4K_TAG
:
1099 ReadSTMemoryIso14443b(0x7F);
1101 case CMD_SNOOP_ISO_14443B
:
1104 case CMD_SIMULATE_TAG_ISO_14443B
:
1105 SimulateIso14443bTag();
1107 case CMD_ISO_14443B_COMMAND
:
1108 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1112 #ifdef WITH_ISO14443a
1113 case CMD_SNOOP_ISO_14443a
:
1114 SnoopIso14443a(c
->arg
[0]);
1116 case CMD_READER_ISO_14443a
:
1119 case CMD_SIMULATE_TAG_ISO_14443a
:
1120 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1123 case CMD_EPA_PACE_COLLECT_NONCE
:
1124 EPA_PACE_Collect_Nonce(c
);
1126 case CMD_EPA_PACE_REPLAY
:
1130 case CMD_READER_MIFARE
:
1131 ReaderMifare(c
->arg
[0]);
1133 case CMD_MIFARE_READBL
:
1134 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 case CMD_MIFAREU_READBL
:
1137 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1139 case CMD_MIFAREUC_AUTH
:
1140 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1142 case CMD_MIFAREU_READCARD
:
1143 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 case CMD_MIFAREUC_SETPWD
:
1146 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1148 case CMD_MIFARE_READSC
:
1149 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_MIFARE_WRITEBL
:
1152 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1154 //case CMD_MIFAREU_WRITEBL_COMPAT:
1155 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1157 case CMD_MIFAREU_WRITEBL
:
1158 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1160 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1161 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1163 case CMD_MIFARE_NESTED
:
1164 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1166 case CMD_MIFARE_CHKKEYS
:
1167 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1169 case CMD_SIMULATE_MIFARE_CARD
:
1170 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1174 case CMD_MIFARE_SET_DBGMODE
:
1175 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1177 case CMD_MIFARE_EML_MEMCLR
:
1178 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1180 case CMD_MIFARE_EML_MEMSET
:
1181 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1183 case CMD_MIFARE_EML_MEMGET
:
1184 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1186 case CMD_MIFARE_EML_CARDLOAD
:
1187 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1190 // Work with "magic Chinese" card
1191 case CMD_MIFARE_CWIPE
:
1192 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1194 case CMD_MIFARE_CSETBLOCK
:
1195 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1197 case CMD_MIFARE_CGETBLOCK
:
1198 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1200 case CMD_MIFARE_CIDENT
:
1205 case CMD_MIFARE_SNIFFER
:
1206 SniffMifare(c
->arg
[0]);
1212 // Makes use of ISO14443a FPGA Firmware
1213 case CMD_SNOOP_ICLASS
:
1216 case CMD_SIMULATE_TAG_ICLASS
:
1217 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1219 case CMD_READER_ICLASS
:
1220 ReaderIClass(c
->arg
[0]);
1222 case CMD_READER_ICLASS_REPLAY
:
1223 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1225 case CMD_ICLASS_EML_MEMSET
:
1226 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1228 case CMD_ICLASS_WRITEBLOCK
:
1229 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1231 case CMD_ICLASS_READCHECK
: // auth step 1
1232 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1234 case CMD_ICLASS_READBLOCK
:
1235 iClass_ReadBlk(c
->arg
[0]);
1237 case CMD_ICLASS_AUTHENTICATION
: //check
1238 iClass_Authentication(c
->d
.asBytes
);
1240 case CMD_ICLASS_DUMP
:
1241 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1243 case CMD_ICLASS_CLONE
:
1244 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1248 case CMD_HF_SNIFFER
:
1249 HfSnoop(c
->arg
[0], c
->arg
[1]);
1253 case CMD_BUFF_CLEAR
:
1257 case CMD_MEASURE_ANTENNA_TUNING
:
1258 MeasureAntennaTuning(c
->arg
[0]);
1261 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1262 MeasureAntennaTuningHf();
1265 case CMD_LISTEN_READER_FIELD
:
1266 ListenReaderField(c
->arg
[0]);
1269 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1270 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1272 LED_D_OFF(); // LED D indicates field ON or OFF
1275 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1278 uint8_t *BigBuf
= BigBuf_get_addr();
1279 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1280 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1281 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1283 // Trigger a finish downloading signal with an ACK frame
1284 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1288 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1289 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1290 // to be able to use this one for uploading data to device
1291 // arg1 = 0 upload for LF usage
1292 // 1 upload for HF usage
1294 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1296 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1298 uint8_t *b
= BigBuf_get_addr();
1299 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1300 cmd_send(CMD_ACK
,0,0,0,0,0);
1307 case CMD_SET_LF_DIVISOR
:
1308 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1309 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1312 case CMD_SET_ADC_MUX
:
1314 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1315 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1316 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1317 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1328 cmd_send(CMD_ACK
,0,0,0,0,0);
1338 case CMD_SETUP_WRITE
:
1339 case CMD_FINISH_WRITE
:
1340 case CMD_HARDWARE_RESET
:
1344 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1346 // We're going to reset, and the bootrom will take control.
1350 case CMD_START_FLASH
:
1351 if(common_area
.flags
.bootrom_present
) {
1352 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1355 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1359 case CMD_DEVICE_INFO
: {
1360 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1361 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1362 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1366 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1371 void __attribute__((noreturn
)) AppMain(void)
1375 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1376 /* Initialize common area */
1377 memset(&common_area
, 0, sizeof(common_area
));
1378 common_area
.magic
= COMMON_AREA_MAGIC
;
1379 common_area
.version
= 1;
1381 common_area
.flags
.osimage_present
= 1;
1391 // The FPGA gets its clock from us from PCK0 output, so set that up.
1392 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1393 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1394 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1395 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1396 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1397 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1398 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1401 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1403 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1405 // Load the FPGA image, which we have stored in our flash.
1406 // (the HF version by default)
1407 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1415 byte_t rx
[sizeof(UsbCommand
)];
1420 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1422 UsbPacketReceived(rx
,rx_len
);
1428 #ifndef WITH_ISO14443a_StandAlone
1429 if (BUTTON_HELD(1000) > 0)
1433 #ifdef WITH_ISO14443a
1434 #ifdef WITH_ISO14443a_StandAlone
1435 if (BUTTON_HELD(1000) > 0)
1436 StandAloneMode14a();