1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
39 // Craig Young - 14a stand-alone code
41 #include "iso14443a.h"
44 //=============================================================================
45 // A buffer where we can queue things up to be sent through the FPGA, for
46 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
47 // is the order in which they go out on the wire.
48 //=============================================================================
50 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
51 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
54 struct common_area common_area
__attribute__((section(".commonarea")));
56 void ToSendReset(void)
62 void ToSendStuffBit(int b
)
66 ToSend
[ToSendMax
] = 0;
71 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
76 if(ToSendMax
>= sizeof(ToSend
)) {
78 DbpString("ToSendStuffBit overflowed!");
82 //=============================================================================
83 // Debug print functions, to go out over USB, to the usual PC-side client.
84 //=============================================================================
86 void DbpString(char *str
)
88 byte_t len
= strlen(str
);
89 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
93 void DbpIntegers(int x1
, int x2
, int x3
)
95 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
99 void Dbprintf(const char *fmt
, ...) {
100 // should probably limit size here; oh well, let's just use a big buffer
101 char output_string
[128];
105 kvsprintf(fmt
, output_string
, 10, ap
);
108 DbpString(output_string
);
111 // prints HEX & ASCII
112 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
125 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
128 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
130 Dbprintf("%*D",l
,d
," ");
138 //-----------------------------------------------------------------------------
139 // Read an ADC channel and block till it completes, then return the result
140 // in ADC units (0 to 1023). Also a routine to average 32 samples and
142 //-----------------------------------------------------------------------------
143 static int ReadAdc(int ch
)
145 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
146 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
147 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
150 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
152 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
154 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
155 AT91C_BASE_ADC
->ADC_MR
=
156 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
157 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
158 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
161 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
163 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
165 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
168 int AvgAdc(int ch
) // was static - merlok
173 for(i
= 0; i
< 32; i
++) {
177 return (a
+ 15) >> 5;
180 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
182 int i
, adcval
= 0, peak
= 0;
185 * Sweeps the useful LF range of the proxmark from
186 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
187 * read the voltage in the antenna, the result left
188 * in the buffer is a graph which should clearly show
189 * the resonating frequency of your LF antenna
190 * ( hopefully around 95 if it is tuned to 125kHz!)
193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
194 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
197 for (i
=255; i
>=19; i
--) {
199 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
201 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
202 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
203 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
205 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
206 if(LF_Results
[i
] > peak
) {
208 peak
= LF_Results
[i
];
214 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
219 void MeasureAntennaTuningHfOnly(int *vHf
)
221 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
232 void MeasureAntennaTuning(int mode
)
234 uint8_t LF_Results
[256] = {0};
235 int peakv
= 0, peakf
= 0;
236 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
240 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
241 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
242 MeasureAntennaTuningHfOnly(&vHf
);
243 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
245 if (mode
& FLAG_TUNE_LF
) {
246 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
248 if (mode
& FLAG_TUNE_HF
) {
249 MeasureAntennaTuningHfOnly(&vHf
);
253 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void)
261 int vHf
= 0; // in mV
263 DbpString("Measuring HF antenna, press button to exit");
265 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
266 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
271 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
273 Dbprintf("%d mV",vHf
);
274 if (BUTTON_PRESS()) break;
276 DbpString("cancelled");
278 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
283 void ReadMem(int addr
)
285 const uint8_t *data
= ((uint8_t *)addr
);
287 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
288 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
291 /* osimage version information is linked in */
292 extern struct version_information version_information
;
293 /* bootrom version information is pointed to from _bootphase1_version_pointer */
294 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
296 void SendVersion(void)
298 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
299 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
301 /* Try to find the bootrom version information. Expect to find a pointer at
302 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
303 * pointer, then use it.
305 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
306 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
307 strcat(VersionString
, "bootrom version information appears invalid\n");
309 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
310 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
313 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
314 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
316 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
317 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
318 if (i
< fpga_bitstream_num
- 1) {
319 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
323 // Send Chip ID and used flash memory
324 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
325 uint32_t compressed_data_section_size
= common_area
.arg1
;
326 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
329 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
330 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
331 void printUSBSpeed(void)
333 Dbprintf("USB Speed:");
334 Dbprintf(" Sending USB packets to client...");
336 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
337 uint8_t *test_data
= BigBuf_get_addr();
340 uint32_t start_time
= end_time
= GetTickCount();
341 uint32_t bytes_transferred
= 0;
344 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
345 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
346 end_time
= GetTickCount();
347 bytes_transferred
+= USB_CMD_DATA_SIZE
;
351 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
352 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
353 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
354 1000 * bytes_transferred
/ (end_time
- start_time
));
359 * Prints runtime information about the PM3.
361 void SendStatus(void)
363 BigBuf_print_status();
365 #ifdef WITH_SMARTCARD
368 printConfig(); //LF Sampling config
371 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
372 Dbprintf(" ToSendMax..........%d", ToSendMax
);
373 Dbprintf(" ToSendBit..........%d", ToSendBit
);
375 cmd_send(CMD_ACK
,1,0,0,0,0);
378 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
382 void StandAloneMode()
384 DbpString("Stand-alone mode! No PC necessary.");
385 // Oooh pretty -- notify user we're in elite samy mode now
387 LED(LED_ORANGE
, 200);
389 LED(LED_ORANGE
, 200);
391 LED(LED_ORANGE
, 200);
393 LED(LED_ORANGE
, 200);
402 #ifdef WITH_ISO14443a_StandAlone
403 void StandAloneMode14a()
406 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
409 bool playing
= false, GotoRecord
= false, GotoClone
= false;
410 bool cardRead
[OPTS
] = {false};
411 uint8_t readUID
[10] = {0};
412 uint32_t uid_1st
[OPTS
]={0};
413 uint32_t uid_2nd
[OPTS
]={0};
414 uint32_t uid_tmp1
= 0;
415 uint32_t uid_tmp2
= 0;
416 iso14a_card_select_t hi14a_card
[OPTS
];
418 LED(selected
+ 1, 0);
426 if (GotoRecord
|| !cardRead
[selected
])
430 LED(selected
+ 1, 0);
434 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
435 /* need this delay to prevent catching some weird data */
437 /* Code for reading from 14a tag */
438 uint8_t uid
[10] ={0};
440 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
445 if (BUTTON_PRESS()) {
446 if (cardRead
[selected
]) {
447 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
450 else if (cardRead
[(selected
+1)%OPTS
]) {
451 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
452 selected
= (selected
+1)%OPTS
;
456 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
460 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
464 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
465 memcpy(readUID
,uid
,10*sizeof(uint8_t));
466 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
467 // Set UID byte order
468 for (int i
=0; i
<4; i
++)
470 dst
= (uint8_t *)&uid_tmp2
;
471 for (int i
=0; i
<4; i
++)
473 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
474 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
478 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
479 uid_1st
[selected
] = (uid_tmp1
)>>8;
480 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
483 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
484 uid_1st
[selected
] = uid_tmp1
;
485 uid_2nd
[selected
] = uid_tmp2
;
491 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
492 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
495 LED(LED_ORANGE
, 200);
497 LED(LED_ORANGE
, 200);
500 LED(selected
+ 1, 0);
502 // Next state is replay:
505 cardRead
[selected
] = true;
507 /* MF Classic UID clone */
512 LED(selected
+ 1, 0);
513 LED(LED_ORANGE
, 250);
517 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
519 // wait for button to be released
520 while(BUTTON_PRESS())
522 // Delay cloning until card is in place
525 Dbprintf("Starting clone. [Bank: %u]", selected
);
526 // need this delay to prevent catching some weird data
528 // Begin clone function here:
529 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
530 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
531 memcpy(c.d.asBytes, data, 16);
534 Block read is similar:
535 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
536 We need to imitate that call with blockNo 0 to set a uid.
538 The get and set commands are handled in this file:
539 // Work with "magic Chinese" card
540 case CMD_MIFARE_CSETBLOCK:
541 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
543 case CMD_MIFARE_CGETBLOCK:
544 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
547 mfCSetUID provides example logic for UID set workflow:
548 -Read block0 from card in field with MifareCGetBlock()
549 -Configure new values without replacing reserved bytes
550 memcpy(block0, uid, 4); // Copy UID bytes from byte array
552 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
553 Bytes 5-7 are reserved SAK and ATQA for mifare classic
554 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
556 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
557 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
558 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
559 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
560 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
564 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
565 memcpy(newBlock0
,oldBlock0
,16);
566 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
568 newBlock0
[0] = uid_1st
[selected
]>>24;
569 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
570 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
571 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
572 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
573 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
574 MifareCSetBlock(0, 0xFF,0, newBlock0
);
575 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
576 if (memcmp(testBlock0
,newBlock0
,16)==0)
578 DbpString("Cloned successfull!");
579 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
582 selected
= (selected
+1) % OPTS
;
585 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
590 LED(selected
+ 1, 0);
593 // Change where to record (or begin playing)
594 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
597 LED(selected
+ 1, 0);
599 // Begin transmitting
601 DbpString("Playing");
604 int button_action
= BUTTON_HELD(1000);
605 if (button_action
== 0) { // No button action, proceed with sim
606 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
607 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
608 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
609 DbpString("Mifare Classic");
610 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
612 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
613 DbpString("Mifare Ultralight");
614 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
616 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
617 DbpString("Mifare DESFire");
618 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
621 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
622 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
625 else if (button_action
== BUTTON_SINGLE_CLICK
) {
626 selected
= (selected
+ 1) % OPTS
;
627 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
631 else if (button_action
== BUTTON_HOLD
) {
632 Dbprintf("Playtime over. Begin cloning...");
639 /* We pressed a button so ignore it here with a delay */
642 LED(selected
+ 1, 0);
646 #elif WITH_LF_StandAlone
647 // samy's sniff and repeat routine
651 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
653 int high
[OPTS
], low
[OPTS
];
658 // Turn on selected LED
659 LED(selected
+ 1, 0);
666 // Was our button held down or pressed?
667 int button_pressed
= BUTTON_HELD(1000);
670 // Button was held for a second, begin recording
671 if (button_pressed
> 0 && cardRead
== 0)
674 LED(selected
+ 1, 0);
678 DbpString("Starting recording");
680 // wait for button to be released
681 while(BUTTON_PRESS())
684 /* need this delay to prevent catching some weird data */
687 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
688 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
691 LED(selected
+ 1, 0);
692 // Finished recording
694 // If we were previously playing, set playing off
695 // so next button push begins playing what we recorded
702 else if (button_pressed
> 0 && cardRead
== 1)
705 LED(selected
+ 1, 0);
709 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
711 // wait for button to be released
712 while(BUTTON_PRESS())
715 /* need this delay to prevent catching some weird data */
718 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
719 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
722 LED(selected
+ 1, 0);
723 // Finished recording
725 // If we were previously playing, set playing off
726 // so next button push begins playing what we recorded
733 // Change where to record (or begin playing)
734 else if (button_pressed
)
736 // Next option if we were previously playing
738 selected
= (selected
+ 1) % OPTS
;
742 LED(selected
+ 1, 0);
744 // Begin transmitting
748 DbpString("Playing");
749 // wait for button to be released
750 while(BUTTON_PRESS())
752 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
753 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
754 DbpString("Done playing");
755 if (BUTTON_HELD(1000) > 0)
757 DbpString("Exiting");
762 /* We pressed a button so ignore it here with a delay */
765 // when done, we're done playing, move to next option
766 selected
= (selected
+ 1) % OPTS
;
769 LED(selected
+ 1, 0);
772 while(BUTTON_PRESS())
781 Listen and detect an external reader. Determine the best location
785 Inside the ListenReaderField() function, there is two mode.
786 By default, when you call the function, you will enter mode 1.
787 If you press the PM3 button one time, you will enter mode 2.
788 If you press the PM3 button a second time, you will exit the function.
790 DESCRIPTION OF MODE 1:
791 This mode just listens for an external reader field and lights up green
792 for HF and/or red for LF. This is the original mode of the detectreader
795 DESCRIPTION OF MODE 2:
796 This mode will visually represent, using the LEDs, the actual strength of the
797 current compared to the maximum current detected. Basically, once you know
798 what kind of external reader is present, it will help you spot the best location to place
799 your antenna. You will probably not get some good results if there is a LF and a HF reader
800 at the same place! :-)
804 static const char LIGHT_SCHEME
[] = {
805 0x0, /* ---- | No field detected */
806 0x1, /* X--- | 14% of maximum current detected */
807 0x2, /* -X-- | 29% of maximum current detected */
808 0x4, /* --X- | 43% of maximum current detected */
809 0x8, /* ---X | 57% of maximum current detected */
810 0xC, /* --XX | 71% of maximum current detected */
811 0xE, /* -XXX | 86% of maximum current detected */
812 0xF, /* XXXX | 100% of maximum current detected */
814 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
816 void ListenReaderField(int limit
)
818 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
819 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
820 int mode
=1, display_val
, display_max
, i
;
824 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
827 // switch off FPGA - we don't want to measure our own signal
828 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
829 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
833 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
835 if(limit
!= HF_ONLY
) {
836 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
840 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
842 if (limit
!= LF_ONLY
) {
843 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
848 if (BUTTON_PRESS()) {
853 DbpString("Signal Strength Mode");
857 DbpString("Stopped");
865 if (limit
!= HF_ONLY
) {
867 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
873 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
874 // see if there's a significant change
875 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
876 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
883 if (limit
!= LF_ONLY
) {
885 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
891 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
892 // see if there's a significant change
893 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
894 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
902 if (limit
== LF_ONLY
) {
904 display_max
= lf_max
;
905 } else if (limit
== HF_ONLY
) {
907 display_max
= hf_max
;
908 } else { /* Pick one at random */
909 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
911 display_max
= hf_max
;
914 display_max
= lf_max
;
917 for (i
=0; i
<LIGHT_LEN
; i
++) {
918 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
919 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
920 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
921 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
922 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
930 void UsbPacketReceived(uint8_t *packet
, int len
)
932 UsbCommand
*c
= (UsbCommand
*)packet
;
934 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
938 case CMD_SET_LF_SAMPLING_CONFIG
:
939 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
941 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
942 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
944 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
945 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
947 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
948 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
950 case CMD_HID_DEMOD_FSK
:
951 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
953 case CMD_HID_SIM_TAG
:
954 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
956 case CMD_FSK_SIM_TAG
:
957 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
959 case CMD_ASK_SIM_TAG
:
960 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
962 case CMD_PSK_SIM_TAG
:
963 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
965 case CMD_HID_CLONE_TAG
:
966 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
968 case CMD_IO_DEMOD_FSK
:
969 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
971 case CMD_IO_CLONE_TAG
:
972 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
974 case CMD_EM410X_DEMOD
:
975 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
977 case CMD_EM410X_WRITE_TAG
:
978 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
980 case CMD_READ_TI_TYPE
:
983 case CMD_WRITE_TI_TYPE
:
984 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
986 case CMD_SIMULATE_TAG_125K
:
988 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
991 case CMD_LF_SIMULATE_BIDIR
:
992 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
994 case CMD_INDALA_CLONE_TAG
:
995 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
997 case CMD_INDALA_CLONE_TAG_L
:
998 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1000 case CMD_T55XX_READ_BLOCK
:
1001 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1003 case CMD_T55XX_WRITE_BLOCK
:
1004 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1006 case CMD_T55XX_WAKEUP
:
1007 T55xxWakeUp(c
->arg
[0]);
1009 case CMD_T55XX_RESET_READ
:
1012 case CMD_PCF7931_READ
:
1015 case CMD_PCF7931_WRITE
:
1016 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1018 case CMD_EM4X_READ_WORD
:
1019 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1021 case CMD_EM4X_WRITE_WORD
:
1022 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1024 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1025 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1027 case CMD_VIKING_CLONE_TAG
:
1028 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1036 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1037 SnoopHitag(c
->arg
[0]);
1039 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1040 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1042 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1043 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1045 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1046 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1048 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1049 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1051 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1052 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1054 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1055 if ((hitag_function
)c
->arg
[0] < 10) {
1056 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1058 else if ((hitag_function
)c
->arg
[0] >= 10) {
1059 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1064 #ifdef WITH_ISO15693
1065 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1066 AcquireRawAdcSamplesIso15693();
1068 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1069 RecordRawAdcSamplesIso15693();
1072 case CMD_ISO_15693_COMMAND
:
1073 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1076 case CMD_ISO_15693_FIND_AFI
:
1077 BruteforceIso15693Afi(c
->arg
[0]);
1080 case CMD_ISO_15693_DEBUG
:
1081 SetDebugIso15693(c
->arg
[0]);
1084 case CMD_READER_ISO_15693
:
1085 ReaderIso15693(c
->arg
[0]);
1087 case CMD_SIMTAG_ISO_15693
:
1088 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1093 case CMD_SIMULATE_TAG_LEGIC_RF
:
1094 LegicRfSimulate(c
->arg
[0]);
1097 case CMD_WRITER_LEGIC_RF
:
1098 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1101 case CMD_READER_LEGIC_RF
:
1102 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1106 #ifdef WITH_ISO14443b
1107 case CMD_READ_SRI512_TAG
:
1108 ReadSTMemoryIso14443b(0x0F);
1110 case CMD_READ_SRIX4K_TAG
:
1111 ReadSTMemoryIso14443b(0x7F);
1113 case CMD_SNOOP_ISO_14443B
:
1116 case CMD_SIMULATE_TAG_ISO_14443B
:
1117 SimulateIso14443bTag();
1119 case CMD_ISO_14443B_COMMAND
:
1120 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1124 #ifdef WITH_ISO14443a
1125 case CMD_SNOOP_ISO_14443a
:
1126 SnoopIso14443a(c
->arg
[0]);
1128 case CMD_READER_ISO_14443a
:
1131 case CMD_SIMULATE_TAG_ISO_14443a
:
1132 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1135 case CMD_EPA_PACE_COLLECT_NONCE
:
1136 EPA_PACE_Collect_Nonce(c
);
1138 case CMD_EPA_PACE_REPLAY
:
1142 case CMD_READER_MIFARE
:
1143 ReaderMifare(c
->arg
[0]);
1145 case CMD_MIFARE_READBL
:
1146 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFAREU_READBL
:
1149 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1151 case CMD_MIFAREUC_AUTH
:
1152 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1154 case CMD_MIFAREU_READCARD
:
1155 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_MIFAREUC_SETPWD
:
1158 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1160 case CMD_MIFARE_READSC
:
1161 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1163 case CMD_MIFARE_WRITEBL
:
1164 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1166 //case CMD_MIFAREU_WRITEBL_COMPAT:
1167 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1169 case CMD_MIFAREU_WRITEBL
:
1170 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1172 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1173 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1175 case CMD_MIFARE_NESTED
:
1176 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1178 case CMD_MIFARE_CHKKEYS
:
1179 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1181 case CMD_SIMULATE_MIFARE_CARD
:
1182 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1186 case CMD_MIFARE_SET_DBGMODE
:
1187 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1189 case CMD_MIFARE_EML_MEMCLR
:
1190 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1192 case CMD_MIFARE_EML_MEMSET
:
1193 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1195 case CMD_MIFARE_EML_MEMGET
:
1196 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_MIFARE_EML_CARDLOAD
:
1199 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1202 // Work with "magic Chinese" card
1203 case CMD_MIFARE_CWIPE
:
1204 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1206 case CMD_MIFARE_CSETBLOCK
:
1207 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1209 case CMD_MIFARE_CGETBLOCK
:
1210 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1212 case CMD_MIFARE_CIDENT
:
1217 case CMD_MIFARE_SNIFFER
:
1218 SniffMifare(c
->arg
[0]);
1224 // Makes use of ISO14443a FPGA Firmware
1225 case CMD_SNOOP_ICLASS
:
1228 case CMD_SIMULATE_TAG_ICLASS
:
1229 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1231 case CMD_READER_ICLASS
:
1232 ReaderIClass(c
->arg
[0]);
1234 case CMD_READER_ICLASS_REPLAY
:
1235 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1237 case CMD_ICLASS_EML_MEMSET
:
1238 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1240 case CMD_ICLASS_WRITEBLOCK
:
1241 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1243 case CMD_ICLASS_READCHECK
: // auth step 1
1244 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1246 case CMD_ICLASS_READBLOCK
:
1247 iClass_ReadBlk(c
->arg
[0]);
1249 case CMD_ICLASS_AUTHENTICATION
: //check
1250 iClass_Authentication(c
->d
.asBytes
);
1252 case CMD_ICLASS_DUMP
:
1253 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1255 case CMD_ICLASS_CLONE
:
1256 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1260 case CMD_HF_SNIFFER
:
1261 HfSnoop(c
->arg
[0], c
->arg
[1]);
1264 #ifdef WITH_SMARTCARD
1265 case CMD_SMART_ATR
: {
1269 case CMD_SMART_SETCLOCK
:{
1270 SmartCardSetClock(c
->arg
[0]);
1273 case CMD_SMART_RAW
: {
1274 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1277 case CMD_SMART_UPLOAD
: {
1278 // upload file from client
1279 uint8_t *mem
= BigBuf_get_addr();
1280 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1281 cmd_send(CMD_ACK
,1,0,0,0,0);
1284 case CMD_SMART_UPGRADE
: {
1285 SmartCardUpgrade(c
->arg
[0]);
1290 case CMD_BUFF_CLEAR
:
1294 case CMD_MEASURE_ANTENNA_TUNING
:
1295 MeasureAntennaTuning(c
->arg
[0]);
1298 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1299 MeasureAntennaTuningHf();
1302 case CMD_LISTEN_READER_FIELD
:
1303 ListenReaderField(c
->arg
[0]);
1306 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1307 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1309 LED_D_OFF(); // LED D indicates field ON or OFF
1312 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1315 uint8_t *BigBuf
= BigBuf_get_addr();
1316 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1317 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1318 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1320 // Trigger a finish downloading signal with an ACK frame
1321 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1325 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1326 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1327 // to be able to use this one for uploading data to device
1328 // arg1 = 0 upload for LF usage
1329 // 1 upload for HF usage
1331 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1333 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1335 uint8_t *b
= BigBuf_get_addr();
1336 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1337 cmd_send(CMD_ACK
,0,0,0,0,0);
1344 case CMD_SET_LF_DIVISOR
:
1345 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1346 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1349 case CMD_SET_ADC_MUX
:
1351 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1352 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1353 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1354 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1365 cmd_send(CMD_ACK
,0,0,0,0,0);
1375 case CMD_SETUP_WRITE
:
1376 case CMD_FINISH_WRITE
:
1377 case CMD_HARDWARE_RESET
:
1381 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1383 // We're going to reset, and the bootrom will take control.
1387 case CMD_START_FLASH
:
1388 if(common_area
.flags
.bootrom_present
) {
1389 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1392 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1396 case CMD_DEVICE_INFO
: {
1397 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1398 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1399 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1403 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1408 void __attribute__((noreturn
)) AppMain(void)
1412 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1413 /* Initialize common area */
1414 memset(&common_area
, 0, sizeof(common_area
));
1415 common_area
.magic
= COMMON_AREA_MAGIC
;
1416 common_area
.version
= 1;
1418 common_area
.flags
.osimage_present
= 1;
1428 // The FPGA gets its clock from us from PCK0 output, so set that up.
1429 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1430 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1431 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1432 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1433 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1434 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1435 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1438 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1440 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1442 // Load the FPGA image, which we have stored in our flash.
1443 // (the HF version by default)
1444 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1452 byte_t rx
[sizeof(UsbCommand
)];
1457 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1459 UsbPacketReceived(rx
,rx_len
);
1464 #ifdef WITH_LF_StandAlone
1465 #ifndef WITH_ISO14443a_StandAlone
1466 if (BUTTON_HELD(1000) > 0)
1470 #ifdef WITH_ISO14443a
1471 #ifdef WITH_ISO14443a_StandAlone
1472 if (BUTTON_HELD(1000) > 0)
1473 StandAloneMode14a();