]> cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
minor textual fix
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //un_comment to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return (ans == pType);
67 }
68
69 //by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen){
77 for (int bit=0; bit < pLen; bit++){
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 j--; // overwrite parity with next data
82 // if parity fails then return 0
83 switch (pType) {
84 case 3: if (BitStream[j]==1) return 0; break; //should be 0 spacer bit
85 case 2: if (BitStream[j]==0) return 0; break; //should be 1 spacer bit
86 default: //test parity
87 if (parityTest(parityWd, pLen, pType) == 0) return 0; break;
88 }
89 bitCnt+=(pLen-1);
90 parityWd = 0;
91 }
92 // if we got here then all the parities passed
93 //return ID start index and size
94 return bitCnt;
95 }
96
97 // by marshmellow
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
100 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
101 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
102 {
103 uint32_t parityWd = 0;
104 size_t j = 0, bitCnt = 0;
105 for (int word = 0; word < sourceLen; word+=pLen-1) {
106 for (int bit=0; bit < pLen-1; bit++){
107 parityWd = (parityWd << 1) | BitSource[word+bit];
108 dest[j++] = (BitSource[word+bit]);
109 }
110
111 // if parity fails then return 0
112 switch (pType) {
113 case 3: dest[j++]=0; break; // marker bit which should be a 0
114 case 2: dest[j++]=1; break; // marker bit which should be a 1
115 default:
116 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
117 break;
118 }
119 bitCnt += pLen;
120 parityWd = 0;
121 }
122 // if we got here then all the parities passed
123 //return ID start index and size
124 return bitCnt;
125 }
126
127 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
128 {
129 uint32_t num = 0;
130 for(int i = 0 ; i < numbits ; i++) {
131 num = (num << 1) | (*src);
132 src++;
133 }
134 return num;
135 }
136
137 //least significant bit first
138 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
139 {
140 uint32_t num = 0;
141 for(int i = 0 ; i < numbits ; i++) {
142 num = (num << 1) | *(src + (numbits-(i+1)));
143 }
144 return num;
145 }
146
147 //by marshmellow
148 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
149 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
150 {
151 uint8_t foundCnt=0;
152 for (int idx=0; idx < *size - pLen; idx++){
153 if (memcmp(BitStream+idx, preamble, pLen) == 0){
154 //first index found
155 foundCnt++;
156 if (foundCnt == 1){
157 *startIdx = idx;
158 }
159 if (foundCnt == 2){
160 *size = idx - *startIdx;
161 return 1;
162 }
163 }
164 }
165 return 0;
166 }
167
168 //by marshmellow
169 //takes 1s and 0s and searches for EM410x format - output EM ID
170 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
171 {
172 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
173 // otherwise could be a void with no arguments
174 //set defaults
175 uint32_t i = 0;
176 if (BitStream[1]>1) return 0; //allow only 1s and 0s
177
178 // 111111111 bit pattern represent start of frame
179 // include 0 in front to help get start pos
180 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
181 uint32_t idx = 0;
182 uint32_t parityBits = 0;
183 uint8_t errChk = 0;
184 uint8_t FmtLen = 10;
185 *startIdx = 0;
186 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
187 if (errChk == 0 || *size < 64) return 0;
188 if (*size > 64) FmtLen = 22;
189 *startIdx += 1; //get rid of 0 from preamble
190 idx = *startIdx + 9;
191 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
192 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
193 //check even parity - quit if failed
194 if (parityTest(parityBits, 5, 0) == 0) return 0;
195 //set uint64 with ID from BitStream
196 for (uint8_t ii=0; ii<4; ii++){
197 *hi = (*hi << 1) | (*lo >> 63);
198 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
199 }
200 }
201 if (errChk != 0) return 1;
202 //skip last 5 bit parity test for simplicity.
203 // *size = 64 | 128;
204 return 0;
205 }
206
207 //by marshmellow
208 //demodulates strong heavily clipped samples
209 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
210 {
211 size_t bitCnt=0, smplCnt=0, errCnt=0;
212 uint8_t waveHigh = 0;
213 for (size_t i=0; i < *size; i++){
214 if (BinStream[i] >= high && waveHigh){
215 smplCnt++;
216 } else if (BinStream[i] <= low && !waveHigh){
217 smplCnt++;
218 } else { //transition
219 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
220 if (smplCnt > clk-(clk/4)-1) { //full clock
221 if (smplCnt > clk + (clk/4)+1) { //too many samples
222 errCnt++;
223 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
224 BinStream[bitCnt++]=7;
225 } else if (waveHigh) {
226 BinStream[bitCnt++] = invert;
227 BinStream[bitCnt++] = invert;
228 } else if (!waveHigh) {
229 BinStream[bitCnt++] = invert ^ 1;
230 BinStream[bitCnt++] = invert ^ 1;
231 }
232 waveHigh ^= 1;
233 smplCnt = 0;
234 } else if (smplCnt > (clk/2) - (clk/4)-1) {
235 if (waveHigh) {
236 BinStream[bitCnt++] = invert;
237 } else if (!waveHigh) {
238 BinStream[bitCnt++] = invert ^ 1;
239 }
240 waveHigh ^= 1;
241 smplCnt = 0;
242 } else if (!bitCnt) {
243 //first bit
244 waveHigh = (BinStream[i] >= high);
245 smplCnt = 1;
246 } else {
247 smplCnt++;
248 //transition bit oops
249 }
250 } else { //haven't hit new high or new low yet
251 smplCnt++;
252 }
253 }
254 }
255 *size = bitCnt;
256 return errCnt;
257 }
258
259 //by marshmellow
260 void askAmp(uint8_t *BitStream, size_t size)
261 {
262 uint8_t last = 128;
263 for(size_t i = 1; i < size; ++i){
264 if (BitStream[i]-BitStream[i-1] >= 30) //large jump up
265 last = 255;
266 else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down
267 last = 0;
268
269 BitStream[i] = last;
270 }
271 }
272
273 //by marshmellow
274 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
275 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
276 {
277 if (*size==0) return -1;
278 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
279 if (*clk==0 || start < 0) return -3;
280 if (*invert != 1) *invert = 0;
281 if (amp==1) askAmp(BinStream, *size);
282 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
283
284 uint8_t initLoopMax = 255;
285 if (initLoopMax > *size) initLoopMax = *size;
286 // Detect high and lows
287 //25% clip in case highs and lows aren't clipped [marshmellow]
288 int high, low;
289 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
290 return -2; //just noise
291
292 size_t errCnt = 0;
293 // if clean clipped waves detected run alternate demod
294 if (DetectCleanAskWave(BinStream, *size, high, low)) {
295 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
296 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
297 if (askType) //askman
298 return manrawdecode(BinStream, size, 0);
299 else //askraw
300 return errCnt;
301 }
302 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
303
304 int lastBit; //set first clock check - can go negative
305 size_t i, bitnum = 0; //output counter
306 uint8_t midBit = 0;
307 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
308 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
309 size_t MaxBits = 3072; //max bits to collect
310 lastBit = start - *clk;
311
312 for (i = start; i < *size; ++i) {
313 if (i-lastBit >= *clk-tol){
314 if (BinStream[i] >= high) {
315 BinStream[bitnum++] = *invert;
316 } else if (BinStream[i] <= low) {
317 BinStream[bitnum++] = *invert ^ 1;
318 } else if (i-lastBit >= *clk+tol) {
319 if (bitnum > 0) {
320 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
321 BinStream[bitnum++]=7;
322 errCnt++;
323 }
324 } else { //in tolerance - looking for peak
325 continue;
326 }
327 midBit = 0;
328 lastBit += *clk;
329 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
330 if (BinStream[i] >= high) {
331 BinStream[bitnum++] = *invert;
332 } else if (BinStream[i] <= low) {
333 BinStream[bitnum++] = *invert ^ 1;
334 } else if (i-lastBit >= *clk/2+tol) {
335 BinStream[bitnum] = BinStream[bitnum-1];
336 bitnum++;
337 } else { //in tolerance - looking for peak
338 continue;
339 }
340 midBit = 1;
341 }
342 if (bitnum >= MaxBits) break;
343 }
344 *size = bitnum;
345 return errCnt;
346 }
347
348 //by marshmellow
349 //take 10 and 01 and manchester decode
350 //run through 2 times and take least errCnt
351 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
352 {
353 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
354 size_t i, ii;
355 uint16_t bestErr = 1000, bestRun = 0;
356 if (*size < 16) return -1;
357 //find correct start position [alignment]
358 for (ii=0;ii<2;++ii){
359 for (i=ii; i<*size-3; i+=2)
360 if (BitStream[i]==BitStream[i+1])
361 errCnt++;
362
363 if (bestErr>errCnt){
364 bestErr=errCnt;
365 bestRun=ii;
366 }
367 errCnt=0;
368 }
369 //decode
370 for (i=bestRun; i < *size-3; i+=2){
371 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
372 BitStream[bitnum++]=invert;
373 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
374 BitStream[bitnum++]=invert^1;
375 } else {
376 BitStream[bitnum++]=7;
377 }
378 if(bitnum>MaxBits) break;
379 }
380 *size=bitnum;
381 return bestErr;
382 }
383
384 uint32_t manchesterEncode2Bytes(uint16_t datain) {
385 uint32_t output = 0;
386 uint8_t curBit = 0;
387 for (uint8_t i=0; i<16; i++) {
388 curBit = (datain >> (15-i) & 1);
389 output |= (1<<(((15-i)*2)+curBit));
390 }
391 return output;
392 }
393
394 //by marshmellow
395 //encode binary data into binary manchester
396 int ManchesterEncode(uint8_t *BitStream, size_t size)
397 {
398 size_t modIdx=20000, i=0;
399 if (size>modIdx) return -1;
400 for (size_t idx=0; idx < size; idx++){
401 BitStream[idx+modIdx++] = BitStream[idx];
402 BitStream[idx+modIdx++] = BitStream[idx]^1;
403 }
404 for (; i<(size*2); i++){
405 BitStream[i] = BitStream[i+20000];
406 }
407 return i;
408 }
409
410 //by marshmellow
411 //take 01 or 10 = 1 and 11 or 00 = 0
412 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
413 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
414 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
415 {
416 uint16_t bitnum = 0;
417 uint16_t errCnt = 0;
418 size_t i = offset;
419 uint16_t MaxBits=512;
420 //if not enough samples - error
421 if (*size < 51) return -1;
422 //check for phase change faults - skip one sample if faulty
423 uint8_t offsetA = 1, offsetB = 1;
424 for (; i<48; i+=2){
425 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
426 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
427 }
428 if (!offsetA && offsetB) offset++;
429 for (i=offset; i<*size-3; i+=2){
430 //check for phase error
431 if (BitStream[i+1]==BitStream[i+2]) {
432 BitStream[bitnum++]=7;
433 errCnt++;
434 }
435 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
436 BitStream[bitnum++]=1^invert;
437 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
438 BitStream[bitnum++]=invert;
439 } else {
440 BitStream[bitnum++]=7;
441 errCnt++;
442 }
443 if(bitnum>MaxBits) break;
444 }
445 *size=bitnum;
446 return errCnt;
447 }
448
449 // by marshmellow
450 // demod gProxIIDemod
451 // error returns as -x
452 // success returns start position in BitStream
453 // BitStream must contain previously askrawdemod and biphasedemoded data
454 int gProxII_Demod(uint8_t BitStream[], size_t *size)
455 {
456 size_t startIdx=0;
457 uint8_t preamble[] = {1,1,1,1,1,0};
458
459 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
460 if (errChk == 0) return -3; //preamble not found
461 if (*size != 96) return -2; //should have found 96 bits
462 //check first 6 spacer bits to verify format
463 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
464 //confirmed proper separator bits found
465 //return start position
466 return (int) startIdx;
467 }
468 return -5; //spacer bits not found - not a valid gproxII
469 }
470
471 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
472 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
473 {
474 size_t last_transition = 0;
475 size_t idx = 1;
476 //uint32_t maxVal=0;
477 if (fchigh==0) fchigh=10;
478 if (fclow==0) fclow=8;
479 //set the threshold close to 0 (graph) or 128 std to avoid static
480 uint8_t threshold_value = 123;
481 size_t preLastSample = 0;
482 size_t LastSample = 0;
483 size_t currSample = 0;
484 // sync to first lo-hi transition, and threshold
485
486 // Need to threshold first sample
487 // skip 160 samples to allow antenna/samples to settle
488 if(dest[160] < threshold_value) dest[0] = 0;
489 else dest[0] = 1;
490
491 size_t numBits = 0;
492 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
493 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
494 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
495 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
496 for(idx = 161; idx < size-20; idx++) {
497 // threshold current value
498
499 if (dest[idx] < threshold_value) dest[idx] = 0;
500 else dest[idx] = 1;
501
502 // Check for 0->1 transition
503 if (dest[idx-1] < dest[idx]) {
504 preLastSample = LastSample;
505 LastSample = currSample;
506 currSample = idx-last_transition;
507 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
508 //do nothing with extra garbage
509 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
510 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
511 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
512 dest[numBits-1]=1;
513 }
514 dest[numBits++]=1;
515
516 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
517 //do nothing with beginning garbage
518 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
519 dest[numBits++]=1;
520 } else { //9+ = 10 sample waves (or 6+ = 7)
521 dest[numBits++]=0;
522 }
523 last_transition = idx;
524 }
525 }
526 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
527 }
528
529 //translate 11111100000 to 10
530 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
531 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
532 uint8_t invert, uint8_t fchigh, uint8_t fclow)
533 {
534 uint8_t lastval=dest[0];
535 size_t idx=0;
536 size_t numBits=0;
537 uint32_t n=1;
538 for( idx=1; idx < size; idx++) {
539 n++;
540 if (dest[idx]==lastval) continue;
541
542 //find out how many bits (n) we collected
543 //if lastval was 1, we have a 1->0 crossing
544 if (dest[idx-1]==1) {
545 n = (n * fclow + rfLen/2) / rfLen;
546 } else {// 0->1 crossing
547 n = (n * fchigh + rfLen/2) / rfLen;
548 }
549 if (n == 0) n = 1;
550
551 //add to our destination the bits we collected
552 memset(dest+numBits, dest[idx-1]^invert , n);
553 numBits += n;
554 n=0;
555 lastval=dest[idx];
556 }//end for
557 // if valid extra bits at the end were all the same frequency - add them in
558 if (n > rfLen/fchigh) {
559 if (dest[idx-2]==1) {
560 n = (n * fclow + rfLen/2) / rfLen;
561 } else {
562 n = (n * fchigh + rfLen/2) / rfLen;
563 }
564 memset(dest+numBits, dest[idx-1]^invert , n);
565 numBits += n;
566 }
567 return numBits;
568 }
569
570 //by marshmellow (from holiman's base)
571 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
572 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
573 {
574 // FSK demodulator
575 size = fsk_wave_demod(dest, size, fchigh, fclow);
576 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
577 return size;
578 }
579
580 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
581 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
582 {
583 if (justNoise(dest, *size)) return -1;
584
585 size_t numStart=0, size2=*size, startIdx=0;
586 // FSK demodulator
587 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
588 if (*size < 96*2) return -2;
589 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
590 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
591 // find bitstring in array
592 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
593 if (errChk == 0) return -3; //preamble not found
594
595 numStart = startIdx + sizeof(preamble);
596 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
597 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
598 if (dest[idx] == dest[idx+1]){
599 return -4; //not manchester data
600 }
601 *hi2 = (*hi2<<1)|(*hi>>31);
602 *hi = (*hi<<1)|(*lo>>31);
603 //Then, shift in a 0 or one into low
604 if (dest[idx] && !dest[idx+1]) // 1 0
605 *lo=(*lo<<1)|1;
606 else // 0 1
607 *lo=(*lo<<1)|0;
608 }
609 return (int)startIdx;
610 }
611
612 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
613 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
614 {
615 if (justNoise(dest, *size)) return -1;
616
617 size_t numStart=0, size2=*size, startIdx=0;
618 // FSK demodulator
619 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
620 if (*size < 96) return -2;
621
622 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
623 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
624
625 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
626 if (errChk == 0) return -3; //preamble not found
627
628 numStart = startIdx + sizeof(preamble);
629 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
630 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
631 if (dest[idx] == dest[idx+1])
632 return -4; //not manchester data
633 *hi2 = (*hi2<<1)|(*hi>>31);
634 *hi = (*hi<<1)|(*lo>>31);
635 //Then, shift in a 0 or one into low
636 if (dest[idx] && !dest[idx+1]) // 1 0
637 *lo=(*lo<<1)|1;
638 else // 0 1
639 *lo=(*lo<<1)|0;
640 }
641 return (int)startIdx;
642 }
643
644 int IOdemodFSK(uint8_t *dest, size_t size)
645 {
646 if (justNoise(dest, size)) return -1;
647 //make sure buffer has data
648 if (size < 66*64) return -2;
649 // FSK demodulator
650 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
651 if (size < 65) return -3; //did we get a good demod?
652 //Index map
653 //0 10 20 30 40 50 60
654 //| | | | | | |
655 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
656 //-----------------------------------------------------------------------------
657 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
658 //
659 //XSF(version)facility:codeone+codetwo
660 //Handle the data
661 size_t startIdx = 0;
662 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
663 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
664 if (errChk == 0) return -4; //preamble not found
665
666 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
667 //confirmed proper separator bits found
668 //return start position
669 return (int) startIdx;
670 }
671 return -5;
672 }
673
674 // by marshmellow
675 // find viking preamble 0xF200 in already demoded data
676 int VikingDemod_AM(uint8_t *dest, size_t *size) {
677 //make sure buffer has data
678 if (*size < 64*2) return -2;
679
680 size_t startIdx = 0;
681 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
682 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
683 if (errChk == 0) return -4; //preamble not found
684 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^
685 bytebits_to_byte(dest+startIdx+8,8) ^
686 bytebits_to_byte(dest+startIdx+16,8) ^
687 bytebits_to_byte(dest+startIdx+24,8) ^
688 bytebits_to_byte(dest+startIdx+32,8) ^
689 bytebits_to_byte(dest+startIdx+40,8) ^
690 bytebits_to_byte(dest+startIdx+48,8) ^
691 bytebits_to_byte(dest+startIdx+56,8);
692 if ( checkCalc != 0xA8 ) return -5;
693 if (*size != 64) return -6;
694 //return start position
695 return (int) startIdx;
696 }
697
698 // find presco preamble 0x10D in already demoded data
699 int PrescoDemod(uint8_t *dest, size_t *size) {
700 //make sure buffer has data
701 if (*size < 64*2) return -2;
702
703 size_t startIdx = 0;
704 uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
705 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
706 if (errChk == 0) return -4; //preamble not found
707 //return start position
708 return (int) startIdx;
709 }
710
711 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
712 // BitStream must contain previously askrawdemod and biphasedemoded data
713 int FDXBdemodBI(uint8_t *dest, size_t *size)
714 {
715 //make sure buffer has enough data
716 if (*size < 128) return -1;
717
718 size_t startIdx = 0;
719 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
720
721 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
722 if (errChk == 0) return -2; //preamble not found
723 return (int)startIdx;
724 }
725
726 // ASK/Diphase fc/64 (inverted Biphase)
727 // Note: this i s not a demod, this is only a detection
728 // the parameter *dest needs to be demoded before call
729 int JablotronDemod(uint8_t *dest, size_t *size){
730 //make sure buffer has enough data
731 if (*size < 64) return -1;
732
733 size_t startIdx = 0;
734 // 0xFFFF preamble, 64bits
735 uint8_t preamble[] = {
736 1,1,1,1,
737 1,1,1,1,
738 1,1,1,1,
739 1,1,1,1,
740 0
741 };
742
743 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
744 if (errChk == 0) return -4; //preamble not found
745 if (*size != 64) return -3;
746
747 uint8_t checkchksum = 0;
748 for (int i=16; i < 56; i += 8) {
749 checkchksum += bytebits_to_byte(dest+startIdx+i,8);
750 }
751 checkchksum ^= 0x3A;
752
753 uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8);
754
755 if ( checkchksum != crc ) return -5;
756 return (int)startIdx;
757 }
758
759 // by marshmellow
760 // FSK Demod then try to locate an AWID ID
761 int AWIDdemodFSK(uint8_t *dest, size_t *size)
762 {
763 //make sure buffer has enough data
764 if (*size < 96*50) return -1;
765
766 if (justNoise(dest, *size)) return -2;
767
768 // FSK demodulator
769 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
770 if (*size < 96) return -3; //did we get a good demod?
771
772 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
773 size_t startIdx = 0;
774 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
775 if (errChk == 0) return -4; //preamble not found
776 if (*size != 96) return -5;
777 return (int)startIdx;
778 }
779
780 // by marshmellow
781 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
782 int PyramiddemodFSK(uint8_t *dest, size_t *size)
783 {
784 //make sure buffer has data
785 if (*size < 128*50) return -5;
786
787 //test samples are not just noise
788 if (justNoise(dest, *size)) return -1;
789
790 // FSK demodulator
791 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
792 if (*size < 128) return -2; //did we get a good demod?
793
794 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
795 size_t startIdx = 0;
796 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
797 if (errChk == 0) return -4; //preamble not found
798 if (*size != 128) return -3;
799 return (int)startIdx;
800 }
801
802 // find nedap preamble in already demoded data
803 int NedapDemod(uint8_t *dest, size_t *size) {
804 //make sure buffer has data
805 if (*size < 128) return -3;
806
807 size_t startIdx = 0;
808 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
809 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0};
810 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
811 if (errChk == 0) return -4; //preamble not found
812 return (int) startIdx;
813 }
814
815 // by marshmellow
816 // to detect a wave that has heavily clipped (clean) samples
817 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
818 {
819 bool allArePeaks = true;
820 uint16_t cntPeaks=0;
821 size_t loopEnd = 512+160;
822 if (loopEnd > size) loopEnd = size;
823 for (size_t i=160; i<loopEnd; i++){
824 if (dest[i]>low && dest[i]<high)
825 allArePeaks = false;
826 else
827 cntPeaks++;
828 }
829 if (!allArePeaks){
830 if (cntPeaks > 300) return true;
831 }
832 return allArePeaks;
833 }
834 // by marshmellow
835 // to help detect clocks on heavily clipped samples
836 // based on count of low to low
837 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
838 {
839 uint8_t fndClk[] = {8,16,32,40,50,64,128};
840 size_t startwave;
841 size_t i = 100;
842 size_t minClk = 255;
843 // get to first full low to prime loop and skip incomplete first pulse
844 while ((dest[i] < high) && (i < size))
845 ++i;
846 while ((dest[i] > low) && (i < size))
847 ++i;
848
849 // loop through all samples
850 while (i < size) {
851 // measure from low to low
852 while ((dest[i] > low) && (i < size))
853 ++i;
854 startwave= i;
855 while ((dest[i] < high) && (i < size))
856 ++i;
857 while ((dest[i] > low) && (i < size))
858 ++i;
859 //get minimum measured distance
860 if (i-startwave < minClk && i < size)
861 minClk = i - startwave;
862 }
863 // set clock
864 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
865 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
866 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
867 return fndClk[clkCnt];
868 }
869 return 0;
870 }
871
872 // by marshmellow
873 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
874 // maybe somehow adjust peak trimming value based on samples to fix?
875 // return start index of best starting position for that clock and return clock (by reference)
876 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
877 {
878 size_t i=1;
879 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
880 uint8_t clkEnd = 9;
881 uint8_t loopCnt = 255; //don't need to loop through entire array...
882 if (size <= loopCnt+60) return -1; //not enough samples
883 size -= 60; //sometimes there is a strange end wave - filter out this....
884 //if we already have a valid clock
885 uint8_t clockFnd=0;
886 for (;i<clkEnd;++i)
887 if (clk[i] == *clock) clockFnd = i;
888 //clock found but continue to find best startpos
889
890 //get high and low peak
891 int peak, low;
892 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
893
894 //test for large clean peaks
895 if (!clockFnd){
896 if (DetectCleanAskWave(dest, size, peak, low)==1){
897 int ans = DetectStrongAskClock(dest, size, peak, low);
898 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
899 for (i=clkEnd-1; i>0; i--){
900 if (clk[i] == ans) {
901 *clock = ans;
902 //clockFnd = i;
903 return 0; // for strong waves i don't use the 'best start position' yet...
904 //break; //clock found but continue to find best startpos [not yet]
905 }
906 }
907 }
908 }
909 uint8_t ii;
910 uint8_t clkCnt, tol = 0;
911 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
912 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
913 size_t errCnt = 0;
914 size_t arrLoc, loopEnd;
915
916 if (clockFnd>0) {
917 clkCnt = clockFnd;
918 clkEnd = clockFnd+1;
919 }
920 else clkCnt=1;
921
922 //test each valid clock from smallest to greatest to see which lines up
923 for(; clkCnt < clkEnd; clkCnt++){
924 if (clk[clkCnt] <= 32){
925 tol=1;
926 }else{
927 tol=0;
928 }
929 //if no errors allowed - keep start within the first clock
930 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
931 bestErr[clkCnt]=1000;
932 //try lining up the peaks by moving starting point (try first few clocks)
933 for (ii=0; ii < loopCnt; ii++){
934 if (dest[ii] < peak && dest[ii] > low) continue;
935
936 errCnt=0;
937 // now that we have the first one lined up test rest of wave array
938 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
939 for (i=0; i < loopEnd; ++i){
940 arrLoc = ii + (i * clk[clkCnt]);
941 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
942 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
943 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
944 }else{ //error no peak detected
945 errCnt++;
946 }
947 }
948 //if we found no errors then we can stop here and a low clock (common clocks)
949 // this is correct one - return this clock
950 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
951 if(errCnt==0 && clkCnt<7) {
952 if (!clockFnd) *clock = clk[clkCnt];
953 return ii;
954 }
955 //if we found errors see if it is lowest so far and save it as best run
956 if(errCnt<bestErr[clkCnt]){
957 bestErr[clkCnt]=errCnt;
958 bestStart[clkCnt]=ii;
959 }
960 }
961 }
962 uint8_t iii;
963 uint8_t best=0;
964 for (iii=1; iii<clkEnd; ++iii){
965 if (bestErr[iii] < bestErr[best]){
966 if (bestErr[iii] == 0) bestErr[iii]=1;
967 // current best bit to error ratio vs new bit to error ratio
968 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
969 best = iii;
970 }
971 }
972 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
973 }
974 if (!clockFnd) *clock = clk[best];
975 return bestStart[best];
976 }
977
978 //by marshmellow
979 //detect psk clock by reading each phase shift
980 // a phase shift is determined by measuring the sample length of each wave
981 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
982 {
983 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
984 uint16_t loopCnt = 4096; //don't need to loop through entire array...
985 if (size == 0) return 0;
986 if (size<loopCnt) loopCnt = size-20;
987
988 //if we already have a valid clock quit
989 size_t i=1;
990 for (; i < 8; ++i)
991 if (clk[i] == clock) return clock;
992
993 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
994 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
995 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
996 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
997 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
998 fc = countFC(dest, size, 0);
999 if (fc!=2 && fc!=4 && fc!=8) return -1;
1000 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
1001
1002 //find first full wave
1003 for (i=160; i<loopCnt; i++){
1004 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1005 if (waveStart == 0) {
1006 waveStart = i+1;
1007 //prnt("DEBUG: waveStart: %d",waveStart);
1008 } else {
1009 waveEnd = i+1;
1010 //prnt("DEBUG: waveEnd: %d",waveEnd);
1011 waveLenCnt = waveEnd-waveStart;
1012 if (waveLenCnt > fc){
1013 firstFullWave = waveStart;
1014 fullWaveLen=waveLenCnt;
1015 break;
1016 }
1017 waveStart=0;
1018 }
1019 }
1020 }
1021 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1022
1023 //test each valid clock from greatest to smallest to see which lines up
1024 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
1025 lastClkBit = firstFullWave; //set end of wave as clock align
1026 waveStart = 0;
1027 errCnt=0;
1028 peakcnt=0;
1029 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1030
1031 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
1032 //top edge of wave = start of new wave
1033 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1034 if (waveStart == 0) {
1035 waveStart = i+1;
1036 waveLenCnt=0;
1037 } else { //waveEnd
1038 waveEnd = i+1;
1039 waveLenCnt = waveEnd-waveStart;
1040 if (waveLenCnt > fc){
1041 //if this wave is a phase shift
1042 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
1043 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
1044 peakcnt++;
1045 lastClkBit+=clk[clkCnt];
1046 } else if (i<lastClkBit+8){
1047 //noise after a phase shift - ignore
1048 } else { //phase shift before supposed to based on clock
1049 errCnt++;
1050 }
1051 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1052 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1053 }
1054 waveStart=i+1;
1055 }
1056 }
1057 }
1058 if (errCnt == 0){
1059 return clk[clkCnt];
1060 }
1061 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1062 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1063 }
1064 //all tested with errors
1065 //return the highest clk with the most peaks found
1066 uint8_t best=7;
1067 for (i=7; i>=1; i--){
1068 if (peaksdet[i] > peaksdet[best]) {
1069 best = i;
1070 }
1071 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1072 }
1073 return clk[best];
1074 }
1075
1076 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1077 //find shortest transition from high to low
1078 size_t i = 0;
1079 size_t transition1 = 0;
1080 int lowestTransition = 255;
1081 bool lastWasHigh = false;
1082
1083 //find first valid beginning of a high or low wave
1084 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1085 ++i;
1086 while ((dest[i] < peak && dest[i] > low) && (i < size))
1087 ++i;
1088 lastWasHigh = (dest[i] >= peak);
1089
1090 if (i==size) return 0;
1091 transition1 = i;
1092
1093 for (;i < size; i++) {
1094 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1095 lastWasHigh = (dest[i] >= peak);
1096 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1097 transition1 = i;
1098 }
1099 }
1100 if (lowestTransition == 255) lowestTransition = 0;
1101 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1102 return lowestTransition;
1103 }
1104
1105 //by marshmellow
1106 //detect nrz clock by reading #peaks vs no peaks(or errors)
1107 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1108 {
1109 size_t i=0;
1110 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1111 size_t loopCnt = 4096; //don't need to loop through entire array...
1112 if (size == 0) return 0;
1113 if (size<loopCnt) loopCnt = size-20;
1114 //if we already have a valid clock quit
1115 for (; i < 8; ++i)
1116 if (clk[i] == clock) return clock;
1117
1118 //get high and low peak
1119 int peak, low;
1120 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1121
1122 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1123 size_t ii;
1124 uint8_t clkCnt;
1125 uint8_t tol = 0;
1126 uint16_t smplCnt = 0;
1127 int16_t peakcnt = 0;
1128 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1129 uint16_t maxPeak = 255;
1130 bool firstpeak = false;
1131 //test for large clipped waves
1132 for (i=0; i<loopCnt; i++){
1133 if (dest[i] >= peak || dest[i] <= low){
1134 if (!firstpeak) continue;
1135 smplCnt++;
1136 } else {
1137 firstpeak=true;
1138 if (smplCnt > 6 ){
1139 if (maxPeak > smplCnt){
1140 maxPeak = smplCnt;
1141 //prnt("maxPk: %d",maxPeak);
1142 }
1143 peakcnt++;
1144 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1145 smplCnt=0;
1146 }
1147 }
1148 }
1149 bool errBitHigh = 0;
1150 bool bitHigh = 0;
1151 uint8_t ignoreCnt = 0;
1152 uint8_t ignoreWindow = 4;
1153 bool lastPeakHigh = 0;
1154 int lastBit = 0;
1155 peakcnt=0;
1156 //test each valid clock from smallest to greatest to see which lines up
1157 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1158 //ignore clocks smaller than smallest peak
1159 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1160 //try lining up the peaks by moving starting point (try first 256)
1161 for (ii=20; ii < loopCnt; ++ii){
1162 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1163 peakcnt=0;
1164 bitHigh = false;
1165 ignoreCnt = 0;
1166 lastBit = ii-clk[clkCnt];
1167 //loop through to see if this start location works
1168 for (i = ii; i < size-20; ++i) {
1169 //if we are at a clock bit
1170 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1171 //test high/low
1172 if (dest[i] >= peak || dest[i] <= low) {
1173 //if same peak don't count it
1174 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1175 peakcnt++;
1176 }
1177 lastPeakHigh = (dest[i] >= peak);
1178 bitHigh = true;
1179 errBitHigh = false;
1180 ignoreCnt = ignoreWindow;
1181 lastBit += clk[clkCnt];
1182 } else if (i == lastBit + clk[clkCnt] + tol) {
1183 lastBit += clk[clkCnt];
1184 }
1185 //else if not a clock bit and no peaks
1186 } else if (dest[i] < peak && dest[i] > low){
1187 if (ignoreCnt==0){
1188 bitHigh=false;
1189 if (errBitHigh==true) peakcnt--;
1190 errBitHigh=false;
1191 } else {
1192 ignoreCnt--;
1193 }
1194 // else if not a clock bit but we have a peak
1195 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1196 //error bar found no clock...
1197 errBitHigh=true;
1198 }
1199 }
1200 if(peakcnt>peaksdet[clkCnt]) {
1201 peaksdet[clkCnt]=peakcnt;
1202 }
1203 }
1204 }
1205 }
1206 int iii=7;
1207 uint8_t best=0;
1208 for (iii=7; iii > 0; iii--){
1209 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1210 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1211 best = iii;
1212 }
1213 } else if (peaksdet[iii] > peaksdet[best]){
1214 best = iii;
1215 }
1216 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1217 }
1218
1219 return clk[best];
1220 }
1221
1222 // by marshmellow
1223 // convert psk1 demod to psk2 demod
1224 // only transition waves are 1s
1225 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1226 {
1227 size_t i=1;
1228 uint8_t lastBit=BitStream[0];
1229 for (; i<size; i++){
1230 if (BitStream[i]==7){
1231 //ignore errors
1232 } else if (lastBit!=BitStream[i]){
1233 lastBit=BitStream[i];
1234 BitStream[i]=1;
1235 } else {
1236 BitStream[i]=0;
1237 }
1238 }
1239 return;
1240 }
1241
1242 // by marshmellow
1243 // convert psk2 demod to psk1 demod
1244 // from only transition waves are 1s to phase shifts change bit
1245 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1246 {
1247 uint8_t phase=0;
1248 for (size_t i=0; i<size; i++){
1249 if (BitStream[i]==1){
1250 phase ^=1;
1251 }
1252 BitStream[i]=phase;
1253 }
1254 return;
1255 }
1256
1257 // redesigned by marshmellow adjusted from existing decode functions
1258 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1259 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1260 {
1261 //26 bit 40134 format (don't know other formats)
1262 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1263 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1264 size_t startidx = 0;
1265 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1266 // if didn't find preamble try again inverting
1267 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1268 *invert ^= 1;
1269 }
1270 if (*size != 64 && *size != 224) return -2;
1271 if (*invert==1)
1272 for (size_t i = startidx; i < *size; i++)
1273 bitStream[i] ^= 1;
1274
1275 return (int) startidx;
1276 }
1277
1278 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1279 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1280 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1281 if (justNoise(dest, *size)) return -1;
1282 *clk = DetectNRZClock(dest, *size, *clk);
1283 if (*clk==0) return -2;
1284 size_t i, gLen = 4096;
1285 if (gLen>*size) gLen = *size-20;
1286 int high, low;
1287 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1288
1289 uint8_t bit=0;
1290 //convert wave samples to 1's and 0's
1291 for(i=20; i < *size-20; i++){
1292 if (dest[i] >= high) bit = 1;
1293 if (dest[i] <= low) bit = 0;
1294 dest[i] = bit;
1295 }
1296 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1297 size_t lastBit = 0;
1298 size_t numBits = 0;
1299 for(i=21; i < *size-20; i++) {
1300 //if transition detected or large number of same bits - store the passed bits
1301 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1302 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1303 numBits += (i - lastBit + (*clk/4)) / *clk;
1304 lastBit = i-1;
1305 }
1306 }
1307 *size = numBits;
1308 return 0;
1309 }
1310
1311 //by marshmellow
1312 //detects the bit clock for FSK given the high and low Field Clocks
1313 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1314 {
1315 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1316 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1317 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1318 uint8_t rfLensFnd = 0;
1319 uint8_t lastFCcnt = 0;
1320 uint16_t fcCounter = 0;
1321 uint16_t rfCounter = 0;
1322 uint8_t firstBitFnd = 0;
1323 size_t i;
1324 if (size == 0) return 0;
1325
1326 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1327 rfLensFnd=0;
1328 fcCounter=0;
1329 rfCounter=0;
1330 firstBitFnd=0;
1331 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1332 // prime i to first peak / up transition
1333 for (i = 160; i < size-20; i++)
1334 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1335 break;
1336
1337 for (; i < size-20; i++){
1338 fcCounter++;
1339 rfCounter++;
1340
1341 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1342 continue;
1343 // else new peak
1344 // if we got less than the small fc + tolerance then set it to the small fc
1345 if (fcCounter < fcLow+fcTol)
1346 fcCounter = fcLow;
1347 else //set it to the large fc
1348 fcCounter = fcHigh;
1349
1350 //look for bit clock (rf/xx)
1351 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1352 //not the same size as the last wave - start of new bit sequence
1353 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1354 for (int ii=0; ii<15; ii++){
1355 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1356 rfCnts[ii]++;
1357 rfCounter = 0;
1358 break;
1359 }
1360 }
1361 if (rfCounter > 0 && rfLensFnd < 15){
1362 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1363 rfCnts[rfLensFnd]++;
1364 rfLens[rfLensFnd++] = rfCounter;
1365 }
1366 } else {
1367 firstBitFnd++;
1368 }
1369 rfCounter=0;
1370 lastFCcnt=fcCounter;
1371 }
1372 fcCounter=0;
1373 }
1374 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1375
1376 for (i=0; i<15; i++){
1377 //get highest 2 RF values (might need to get more values to compare or compare all?)
1378 if (rfCnts[i]>rfCnts[rfHighest]){
1379 rfHighest3=rfHighest2;
1380 rfHighest2=rfHighest;
1381 rfHighest=i;
1382 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1383 rfHighest3=rfHighest2;
1384 rfHighest2=i;
1385 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1386 rfHighest3=i;
1387 }
1388 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1389 }
1390 // set allowed clock remainder tolerance to be 1 large field clock length+1
1391 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1392 uint8_t tol1 = fcHigh+1;
1393
1394 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1395
1396 // loop to find the highest clock that has a remainder less than the tolerance
1397 // compare samples counted divided by
1398 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1399 int ii=7;
1400 for (; ii>=2; ii--){
1401 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1402 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1403 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1404 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if (ii<0) return 0; // oops we went too far
1412
1413 return clk[ii];
1414 }
1415
1416 //by marshmellow
1417 //countFC is to detect the field clock lengths.
1418 //counts and returns the 2 most common wave lengths
1419 //mainly used for FSK field clock detection
1420 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1421 {
1422 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1423 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1424 uint8_t fcLensFnd = 0;
1425 uint8_t lastFCcnt=0;
1426 uint8_t fcCounter = 0;
1427 size_t i;
1428 if (size == 0) return 0;
1429
1430 // prime i to first up transition
1431 for (i = 160; i < size-20; i++)
1432 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1433 break;
1434
1435 for (; i < size-20; i++){
1436 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1437 // new up transition
1438 fcCounter++;
1439 if (fskAdj){
1440 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1441 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1442 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1443 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1444 // save last field clock count (fc/xx)
1445 lastFCcnt = fcCounter;
1446 }
1447 // find which fcLens to save it to:
1448 for (int ii=0; ii<15; ii++){
1449 if (fcLens[ii]==fcCounter){
1450 fcCnts[ii]++;
1451 fcCounter=0;
1452 break;
1453 }
1454 }
1455 if (fcCounter>0 && fcLensFnd<15){
1456 //add new fc length
1457 fcCnts[fcLensFnd]++;
1458 fcLens[fcLensFnd++]=fcCounter;
1459 }
1460 fcCounter=0;
1461 } else {
1462 // count sample
1463 fcCounter++;
1464 }
1465 }
1466
1467 uint8_t best1=14, best2=14, best3=14;
1468 uint16_t maxCnt1=0;
1469 // go through fclens and find which ones are bigest 2
1470 for (i=0; i<15; i++){
1471 // get the 3 best FC values
1472 if (fcCnts[i]>maxCnt1) {
1473 best3=best2;
1474 best2=best1;
1475 maxCnt1=fcCnts[i];
1476 best1=i;
1477 } else if(fcCnts[i]>fcCnts[best2]){
1478 best3=best2;
1479 best2=i;
1480 } else if(fcCnts[i]>fcCnts[best3]){
1481 best3=i;
1482 }
1483 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1484 }
1485 if (fcLens[best1]==0) return 0;
1486 uint8_t fcH=0, fcL=0;
1487 if (fcLens[best1]>fcLens[best2]){
1488 fcH=fcLens[best1];
1489 fcL=fcLens[best2];
1490 } else{
1491 fcH=fcLens[best2];
1492 fcL=fcLens[best1];
1493 }
1494 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1495 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1496 return 0; //lots of waves not psk or fsk
1497 }
1498 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1499
1500 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1501 if (fskAdj) return fcs;
1502 return fcLens[best1];
1503 }
1504
1505 //by marshmellow - demodulate PSK1 wave
1506 //uses wave lengths (# Samples)
1507 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1508 {
1509 if (size == 0) return -1;
1510 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1511 if (*size<loopCnt) loopCnt = *size;
1512
1513 size_t numBits=0;
1514 uint8_t curPhase = *invert;
1515 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1516 uint8_t fc=0, fullWaveLen=0, tol=1;
1517 uint16_t errCnt=0, waveLenCnt=0;
1518 fc = countFC(dest, *size, 0);
1519 if (fc!=2 && fc!=4 && fc!=8) return -1;
1520 //PrintAndLog("DEBUG: FC: %d",fc);
1521 *clock = DetectPSKClock(dest, *size, *clock);
1522 if (*clock == 0) return -1;
1523 int avgWaveVal=0, lastAvgWaveVal=0;
1524 //find first phase shift
1525 for (i=0; i<loopCnt; i++){
1526 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1527 waveEnd = i+1;
1528 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1529 waveLenCnt = waveEnd-waveStart;
1530 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1531 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1532 firstFullWave = waveStart;
1533 fullWaveLen=waveLenCnt;
1534 //if average wave value is > graph 0 then it is an up wave or a 1
1535 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1536 break;
1537 }
1538 waveStart = i+1;
1539 avgWaveVal = 0;
1540 }
1541 avgWaveVal += dest[i+2];
1542 }
1543 if (firstFullWave == 0) {
1544 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1545 // so skip a little to ensure we are past any Start Signal
1546 firstFullWave = 160;
1547 memset(dest, curPhase, firstFullWave / *clock);
1548 } else {
1549 memset(dest, curPhase^1, firstFullWave / *clock);
1550 }
1551 //advance bits
1552 numBits += (firstFullWave / *clock);
1553 //set start of wave as clock align
1554 lastClkBit = firstFullWave;
1555 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1556 if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1557 waveStart = 0;
1558 dest[numBits++] = curPhase; //set first read bit
1559 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1560 //top edge of wave = start of new wave
1561 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1562 if (waveStart == 0) {
1563 waveStart = i+1;
1564 waveLenCnt = 0;
1565 avgWaveVal = dest[i+1];
1566 } else { //waveEnd
1567 waveEnd = i+1;
1568 waveLenCnt = waveEnd-waveStart;
1569 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1570 if (waveLenCnt > fc){
1571 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1572 //this wave is a phase shift
1573 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1574 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1575 curPhase ^= 1;
1576 dest[numBits++] = curPhase;
1577 lastClkBit += *clock;
1578 } else if (i < lastClkBit+10+fc){
1579 //noise after a phase shift - ignore
1580 } else { //phase shift before supposed to based on clock
1581 errCnt++;
1582 dest[numBits++] = 7;
1583 }
1584 } else if (i+1 > lastClkBit + *clock + tol + fc){
1585 lastClkBit += *clock; //no phase shift but clock bit
1586 dest[numBits++] = curPhase;
1587 }
1588 avgWaveVal = 0;
1589 waveStart = i+1;
1590 }
1591 }
1592 avgWaveVal += dest[i+1];
1593 }
1594 *size = numBits;
1595 return errCnt;
1596 }
1597
1598 //by marshmellow
1599 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1600 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1601 size_t bufsize = *size;
1602 //need to loop through all samples and identify our clock, look for the ST pattern
1603 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1604 int clk = 0;
1605 int tol = 0;
1606 int i, j, skip, start, end, low, high, minClk, waveStart;
1607 bool complete = false;
1608 int tmpbuff[bufsize / 64];
1609 int waveLen[bufsize / 64];
1610 size_t testsize = (bufsize < 512) ? bufsize : 512;
1611 int phaseoff = 0;
1612 high = low = 128;
1613 memset(tmpbuff, 0, sizeof(tmpbuff));
1614
1615 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1616 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1617 return false; //just noise
1618 }
1619 i = 0;
1620 j = 0;
1621 minClk = 255;
1622 // get to first full low to prime loop and skip incomplete first pulse
1623 while ((buffer[i] < high) && (i < bufsize))
1624 ++i;
1625 while ((buffer[i] > low) && (i < bufsize))
1626 ++i;
1627 skip = i;
1628
1629 // populate tmpbuff buffer with pulse lengths
1630 while (i < bufsize) {
1631 // measure from low to low
1632 while ((buffer[i] > low) && (i < bufsize))
1633 ++i;
1634 start= i;
1635 while ((buffer[i] < high) && (i < bufsize))
1636 ++i;
1637 //first high point for this wave
1638 waveStart = i;
1639 while ((buffer[i] > low) && (i < bufsize))
1640 ++i;
1641 if (j >= (bufsize/64)) {
1642 break;
1643 }
1644 waveLen[j] = i - waveStart; //first high to first low
1645 tmpbuff[j++] = i - start;
1646 if (i-start < minClk && i < bufsize) {
1647 minClk = i - start;
1648 }
1649 }
1650 // set clock - might be able to get this externally and remove this work...
1651 if (!clk) {
1652 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1653 tol = fndClk[clkCnt]/8;
1654 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1655 clk=fndClk[clkCnt];
1656 break;
1657 }
1658 }
1659 // clock not found - ERROR
1660 if (!clk) {
1661 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1662 return false;
1663 }
1664 } else tol = clk/8;
1665
1666 *foundclock = clk;
1667
1668 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1669 start = -1;
1670 for (i = 0; i < j - 4; ++i) {
1671 skip += tmpbuff[i];
1672 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1673 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1674 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1675 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1676 start = i + 3;
1677 break;
1678 }
1679 }
1680 }
1681 }
1682 }
1683 // first ST not found - ERROR
1684 if (start < 0) {
1685 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1686 return false;
1687 }
1688 if (waveLen[i+2] > clk*1+tol)
1689 phaseoff = 0;
1690 else
1691 phaseoff = clk/2;
1692
1693 // skip over the remainder of ST
1694 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1695
1696 // now do it again to find the end
1697 end = skip;
1698 for (i += 3; i < j - 4; ++i) {
1699 end += tmpbuff[i];
1700 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
1701 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1702 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1703 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1704 complete = true;
1705 break;
1706 }
1707 }
1708 }
1709 }
1710 }
1711 end -= phaseoff;
1712 //didn't find second ST - ERROR
1713 if (!complete) {
1714 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1715 return false;
1716 }
1717 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1718 //now begin to trim out ST so we can use normal demod cmds
1719 start = skip;
1720 size_t datalen = end - start;
1721 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1722 if (datalen % clk > clk/8) {
1723 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1724 return false;
1725 } else {
1726 // padd the amount off - could be problematic... but shouldn't happen often
1727 datalen += datalen % clk;
1728 }
1729 // if datalen is less than one t55xx block - ERROR
1730 if (datalen/clk < 8*4) {
1731 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1732 return false;
1733 }
1734 size_t dataloc = start;
1735 size_t newloc = 0;
1736 i=0;
1737 // warning - overwriting buffer given with raw wave data with ST removed...
1738 while ( dataloc < bufsize-(clk/2) ) {
1739 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1740 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1741 for(i=0; i < clk/2-tol; ++i) {
1742 buffer[dataloc+i] = high+5;
1743 }
1744 }
1745 for (i=0; i<datalen; ++i) {
1746 if (i+newloc < bufsize) {
1747 if (i+newloc < dataloc)
1748 buffer[i+newloc] = buffer[dataloc];
1749
1750 dataloc++;
1751 }
1752 }
1753 newloc += i;
1754 //skip next ST - we just assume it will be there from now on...
1755 dataloc += clk*4;
1756 }
1757 *size = newloc;
1758 return true;
1759 }
Impressum, Datenschutz