1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "../include/proxmark3.h" 
  14 #include "../common/crc16.h" 
  15 #include "../common/lfdemod.h" 
  18 #include "mifareutil.h"  
  19 #include "../include/hitag2.h" 
  21 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) 
  22 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz 
  23 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) 
  24 // T0 = TIMER_CLOCK1 / 125000 = 192 
  27 #define SHORT_COIL()    LOW(GPIO_SSC_DOUT) 
  28 #define OPEN_COIL()             HIGH(GPIO_SSC_DOUT) 
  30 void LFSetupFPGAForADC(int divisor
, bool lf_field
) 
  32         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  33         if ( (divisor 
== 1) || (divisor 
< 0) || (divisor 
> 255) ) 
  34                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
  35         else if (divisor 
== 0) 
  36                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
  38                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
); 
  40         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| (lf_field 
? FPGA_LF_ADC_READER_FIELD 
: 0)); 
  42         // Connect the A/D to the peak-detected low-frequency path. 
  43         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
  45         // Give it a bit of time for the resonant antenna to settle. 
  48         // Now set up the SSC to get the ADC samples that are now streaming at us. 
  52 void AcquireRawAdcSamples125k(int divisor
) 
  54         LFSetupFPGAForADC(divisor
, true); 
  58 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
) 
  60         LFSetupFPGAForADC(divisor
, false); 
  61         DoAcquisition125k_threshold(trigger_threshold
); 
  64 // split into two routines so we can avoid timing issues after sending commands // 
  65 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
) 
  67         uint8_t *dest 
= get_bigbufptr_recvrespbuf(); 
  69         memset(dest
, 0x00, FREE_BUFFER_SIZE
); 
  72                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
  73                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
  76                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
  77                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
  79                         if (trigger_threshold 
!= -1 && dest
[i
] < trigger_threshold
) 
  82                                 trigger_threshold 
= -1; 
  83                         if (++i 
>= FREE_BUFFER_SIZE
) break; 
  87                 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", 
  88                         dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]); 
  91 void DoAcquisition125k_threshold(int trigger_threshold
) { 
  92          DoAcquisition125k_internal(trigger_threshold
, true); 
  94 void DoAcquisition125k() { 
  95          DoAcquisition125k_internal(-1, true); 
  98 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
 100         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 102         /* Make sure the tag is reset */ 
 103         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 106         int divisor 
= 95; // 125 KHz 
 107         // see if 'h' was specified 
 108         if (command
[strlen((char *) command
) - 1] == 'h') 
 109                 divisor 
= 88; // 134.8 KHz 
 111         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);  
 112         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 113         // Give it a bit of time for the resonant antenna to settle. 
 116         // Now set up the SSC to get the ADC samples that are now streaming at us. 
 119         // now modulate the reader field 
 120         while(*command 
!= '\0' && *command 
!= ' ') { 
 121                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 123                 SpinDelayUs(delay_off
); 
 124                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);  
 126                 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 128                 if(*(command
++) == '0') 
 129                         SpinDelayUs(period_0
); 
 131                         SpinDelayUs(period_1
); 
 133         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 135         SpinDelayUs(delay_off
); 
 136         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);  
 137         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 140         DoAcquisition125k(-1); 
 143 /* blank r/w tag data stream 
 144 ...0000000000000000 01111111 
 145 1010101010101010101010101010101010101010101010101010101010101010 
 148 101010101010101[0]000... 
 150 [5555fe852c5555555555555555fe0000] 
 154         // some hardcoded initial params 
 155         // when we read a TI tag we sample the zerocross line at 2Mhz 
 156         // TI tags modulate a 1 as 16 cycles of 123.2Khz 
 157         // TI tags modulate a 0 as 16 cycles of 134.2Khz 
 158         #define FSAMPLE 2000000 
 159         #define FREQLO 123200 
 160         #define FREQHI 134200 
 162         signed char *dest 
= (signed char *)BigBuf
; 
 163         int n 
= sizeof(BigBuf
); 
 164 //      int *dest = GraphBuffer; 
 165 //      int n = GraphTraceLen; 
 167         // 128 bit shift register [shift3:shift2:shift1:shift0] 
 168         uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 170         int i
, cycles
=0, samples
=0; 
 171         // how many sample points fit in 16 cycles of each frequency 
 172         uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 173         // when to tell if we're close enough to one freq or another 
 174         uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 176         // TI tags charge at 134.2Khz 
 177         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 178         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 180         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 181         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 182         // whether we're modulating the antenna (high) 
 183         // or listening to the antenna (low) 
 184         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 186         // get TI tag data into the buffer 
 189         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 191         for (i
=0; i
<n
-1; i
++) { 
 192                 // count cycles by looking for lo to hi zero crossings 
 193                 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 195                         // after 16 cycles, measure the frequency 
 198                                 samples
=i
-samples
; // number of samples in these 16 cycles 
 200                                 // TI bits are coming to us lsb first so shift them 
 201                                 // right through our 128 bit right shift register 
 202                           shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 203                           shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 204                           shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 207                                 // check if the cycles fall close to the number 
 208                                 // expected for either the low or high frequency 
 209                                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 210                                         // low frequency represents a 1 
 212                                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 213                                         // high frequency represents a 0 
 215                                         // probably detected a gay waveform or noise 
 216                                         // use this as gaydar or discard shift register and start again 
 217                                         shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 221                                 // for each bit we receive, test if we've detected a valid tag 
 223                                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 224                                 // remember the bits are backwards 
 225                                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 226                                         // if start and end bytes match, we have a tag so break out of the loop 
 227                                         if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 228                                                 cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 236         // if flag is set we have a tag 
 238                 DbpString("Info: No valid tag detected."); 
 240           // put 64 bit data into shift1 and shift0 
 241           shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 242           shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 244                 // align 16 bit crc into lower half of shift2 
 245           shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 247                 // if r/w tag, check ident match 
 248                 if ( shift3
&(1<<15) ) { 
 249                         DbpString("Info: TI tag is rewriteable"); 
 250                         // only 15 bits compare, last bit of ident is not valid 
 251                         if ( ((shift3
>>16)^shift0
)&0x7fff ) { 
 252                                 DbpString("Error: Ident mismatch!"); 
 254                                 DbpString("Info: TI tag ident is valid"); 
 257                         DbpString("Info: TI tag is readonly"); 
 260                 // WARNING the order of the bytes in which we calc crc below needs checking 
 261                 // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 262                 // bytes in reverse or something 
 266                 crc 
= update_crc16(crc
, (shift0
)&0xff); 
 267                 crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 268                 crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 269                 crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 270                 crc 
= update_crc16(crc
, (shift1
)&0xff); 
 271                 crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 272                 crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 273                 crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 275                 Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 276                         (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 277                 if (crc 
!= (shift2
&0xffff)) { 
 278                         Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 280                         DbpString("Info: CRC is good"); 
 285 void WriteTIbyte(uint8_t b
) 
 289         // modulate 8 bits out to the antenna 
 293                         // stop modulating antenna 
 300                         // stop modulating antenna 
 310 void AcquireTiType(void) 
 313         // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 314         // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 315         #define TIBUFLEN 1250 
 318         memset(BigBuf
,0,sizeof(BigBuf
)); 
 320         // Set up the synchronous serial port 
 321         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 322         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 324         // steal this pin from the SSP and use it to control the modulation 
 325         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 326         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 328         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 329         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 331         // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 332         // 48/2 = 24 MHz clock must be divided by 12 
 333         AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 335         AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 336         AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 337         AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 338         AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 345         // Charge TI tag for 50ms. 
 348         // stop modulating antenna and listen 
 355                 if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 356                         BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;    // store 32 bit values in buffer 
 357                         i
++; if(i 
>= TIBUFLEN
) break; 
 362         // return stolen pin to SSP 
 363         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 364         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 366         char *dest 
= (char *)BigBuf
; 
 369         for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 370                 for (j
=0; j
<32; j
++) { 
 371                         if(BigBuf
[i
] & (1 << j
)) { 
 380 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 381 // if crc provided, it will be written with the data verbatim (even if bogus) 
 382 // if not provided a valid crc will be computed from the data and written. 
 383 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 385         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);    
 387                 crc 
= update_crc16(crc
, (idlo
)&0xff); 
 388                 crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 389                 crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 390                 crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 391                 crc 
= update_crc16(crc
, (idhi
)&0xff); 
 392                 crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 393                 crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 394                 crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 396         Dbprintf("Writing to tag: %x%08x, crc=%x", 
 397                 (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 399         // TI tags charge at 134.2Khz 
 400         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 401         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 402         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 403         // whether we're modulating the antenna (high) 
 404         // or listening to the antenna (low) 
 405         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 408         // steal this pin from the SSP and use it to control the modulation 
 409         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 410         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 412         // writing algorithm: 
 413         // a high bit consists of a field off for 1ms and field on for 1ms 
 414         // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 415         // initiate a charge time of 50ms (field on) then immediately start writing bits 
 416         // start by writing 0xBB (keyword) and 0xEB (password) 
 417         // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 418         // finally end with 0x0300 (write frame) 
 419         // all data is sent lsb firts 
 420         // finish with 15ms programming time 
 424         SpinDelay(50);  // charge time 
 426         WriteTIbyte(0xbb); // keyword 
 427         WriteTIbyte(0xeb); // password 
 428         WriteTIbyte( (idlo    
)&0xff ); 
 429         WriteTIbyte( (idlo
>>8 )&0xff ); 
 430         WriteTIbyte( (idlo
>>16)&0xff ); 
 431         WriteTIbyte( (idlo
>>24)&0xff ); 
 432         WriteTIbyte( (idhi    
)&0xff ); 
 433         WriteTIbyte( (idhi
>>8 )&0xff ); 
 434         WriteTIbyte( (idhi
>>16)&0xff ); 
 435         WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 436         WriteTIbyte( (crc     
)&0xff ); // crc lo 
 437         WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 438         WriteTIbyte(0x00); // write frame lo 
 439         WriteTIbyte(0x03); // write frame hi 
 441         SpinDelay(50);  // programming time 
 445         // get TI tag data into the buffer 
 448         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 449         DbpString("Now use tiread to check"); 
 454 // PIO_CODR = Clear Output Data Register 
 455 // PIO_SODR = Set Output Data Register 
 456 //#define LOW(x)         AT91C_BASE_PIOA->PIO_CODR = (x) 
 457 //#define HIGH(x)        AT91C_BASE_PIOA->PIO_SODR = (x) 
 458 void SimulateTagLowFrequency( uint16_t period
, uint32_t gap
, uint8_t ledcontrol
) 
 466         uint8_t *buf 
= (uint8_t *)BigBuf
; 
 468         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 469         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT 
| FPGA_LF_EDGE_DETECT_READER_FIELD
);  
 470         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 471         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
 474         // Configure output pin that is connected to the FPGA (for modulating) 
 475         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 476         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 480         // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering 
 481         AT91C_BASE_PMC
->PMC_PCER 
= (1 << AT91C_ID_TC0
); 
 483         // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames 
 484         AT91C_BASE_PMC
->PMC_PCER 
= (1 << AT91C_ID_TC1
); 
 485         AT91C_BASE_PIOA
->PIO_BSR 
= GPIO_SSC_FRAME
; 
 487     // Disable timer during configuration        
 488         AT91C_BASE_TC1
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 490         // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, 
 491         // external trigger rising edge, load RA on rising edge of TIOA. 
 492         AT91C_BASE_TC1
->TC_CMR 
= AT91C_TC_CLKS_TIMER_DIV1_CLOCK 
| AT91C_TC_ETRGEDG_RISING 
| AT91C_TC_ABETRG 
| AT91C_TC_LDRA_RISING
; 
 494         // Enable and reset counter 
 495         //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
 496         AT91C_BASE_TC1
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 498         while(!BUTTON_PRESS()) {  
 501                 // Receive frame, watch for at most T0*EOF periods 
 502                 while (AT91C_BASE_TC1
->TC_CV 
< T0 
* 55) { 
 504                 // Check if rising edge in modulation is detected 
 505                         if(AT91C_BASE_TC1
->TC_SR 
& AT91C_TC_LDRAS
) { 
 506                                 // Retrieve the new timing values  
 507                                 //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow; 
 508                                 //Dbprintf("Timing value - %d  %d", ra, overflow); 
 511                                 // Reset timer every frame, we have to capture the last edge for timing 
 512                                 AT91C_BASE_TC0
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 520                         // Disable timer 1 with external trigger to avoid triggers during our own modulation 
 521                         AT91C_BASE_TC1
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 523                         // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit, 
 524                         // not that since the clock counts since the rising edge, but T_Wait1 is 
 525                         // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low) 
 526                         // periods. The gap time T_Low varies (4..10). All timer values are in  
 528                         while(AT91C_BASE_TC0
->TC_CV 
< T0 
* 16  ); 
 530                         // datat kommer in som 1 bit för varje position i arrayn 
 531                         for(i 
= 0; i 
< period
; ++i
) { 
 533                                 // Reset clock for the next bit  
 534                                 AT91C_BASE_TC0
->TC_CCR 
= AT91C_TC_SWTRG
; 
 541                                 while(AT91C_BASE_TC0
->TC_CV 
< T0 
* 1 ); 
 546                         // Enable and reset external trigger in timer for capturing future frames 
 547                         AT91C_BASE_TC1
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 553                 // Save the timer overflow, will be 0 when frame was received 
 554                 //overflow += (AT91C_BASE_TC1->TC_CV/T0); 
 556                 // Reset the timer to restart while-loop that receives frames 
 557                 AT91C_BASE_TC1
->TC_CCR 
= AT91C_TC_SWTRG
; 
 562         AT91C_BASE_TC1
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 563         AT91C_BASE_TC0
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 564         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 566         DbpString("Sim Stopped"); 
 570 void SimulateTagLowFrequencyA(int len
, int gap
) 
 572         //Dbprintf("LEN %d || Gap %d",len, gap); 
 574         uint8_t *buf 
= (uint8_t *)BigBuf
; 
 576         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 577         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 578         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT 
| FPGA_LF_EDGE_DETECT_TOGGLE_MODE
); // new izsh toggle mode! 
 580         // Connect the A/D to the peak-detected low-frequency path. 
 581         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
 583         // Now set up the SSC to get the ADC samples that are now streaming at us. 
 587         AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
 590         while(!BUTTON_PRESS()) {  
 592                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
 595                                 AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
 597                                 AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
 606                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 607                         volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
 612         DbpString("lf simulate stopped"); 
 613         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 616 #define DEBUG_FRAME_CONTENTS 1 
 617 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 621 // compose fc/8 fc/10 waveform 
 622 static void fc(int c
, uint16_t *n
) { 
 623         uint8_t *dest 
= (uint8_t *)BigBuf
; 
 626         // for when we want an fc8 pattern every 4 logical bits 
 637         //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples 
 639                 for (idx
=0; idx
<6; idx
++) { 
 651         //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples 
 653                 for (idx
=0; idx
<5; idx
++) { 
 668 // prepare a waveform pattern in the buffer based on the ID given then 
 669 // simulate a HID tag until the button is pressed 
 670 void CmdHIDsimTAG(int hi
, int lo
, uint8_t ledcontrol
) 
 674          HID tag bitstream format 
 675          The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 676          A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 677          A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 678          A fc8 is inserted before every 4 bits 
 679          A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 680          nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 684                 DbpString("Tags can only have 44 bits."); 
 688         // special start of frame marker containing invalid bit sequences 
 689         fc(8,  &n
);     fc(8,  &n
);     // invalid 
 690         fc(8,  &n
);     fc(10, &n
); // logical 0 
 691         fc(10, &n
);     fc(10, &n
); // invalid 
 692         fc(8,  &n
);     fc(10, &n
); // logical 0 
 695         // manchester encode bits 43 to 32 
 696         for (i
=11; i
>=0; i
--) { 
 697                 if ((i%4
)==3) fc(0,&n
); 
 699                         fc(10, &n
);     fc(8,  &n
);             // low-high transition 
 701                         fc(8,  &n
);     fc(10, &n
);             // high-low transition 
 706         // manchester encode bits 31 to 0 
 707         for (i
=31; i
>=0; i
--) { 
 708                 if ((i%4
)==3) fc(0,&n
); 
 710                         fc(10, &n
);     fc(8,  &n
);             // low-high transition 
 712                         fc(8,  &n
);     fc(10, &n
);             // high-low transition 
 719         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 725 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 726 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 728         uint8_t *dest 
= get_bigbufptr_recvrespbuf(); 
 730         size_t size
=0; //, found=0; 
 731         uint32_t hi2
=0, hi
=0, lo
=0; 
 733         // Configure to go in 125Khz listen mode 
 734         LFSetupFPGAForADC(0, true); 
 736         while(!BUTTON_PRESS()) { 
 739                 if (ledcontrol
) LED_A_ON(); 
 741                 DoAcquisition125k_internal(-1,true); 
 742                 size  
= sizeof(BigBuf
); 
 743     if (size 
< 2000) continue;  
 746                 int bitLen 
= HIDdemodFSK(dest
,size
,&hi2
,&hi
,&lo
); 
 750                 if (bitLen
>0 && lo
>0){ 
 751                 // final loop, go over previously decoded manchester data and decode into usable tag ID 
 752                 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 753                                                 if (hi2 
!= 0){ //extra large HID tags 
 754                                                         Dbprintf("TAG ID: %x%08x%08x (%d)", 
 755                                                                  (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 756                         }else {  //standard HID tags <38 bits 
 757                                                         //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 760                                                         uint32_t cardnum 
= 0; 
 761                                                         if (((hi
>>5)&1)==1){//if bit 38 is set then < 37 bit format is used 
 763                                                                 lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 765                                                                 while(lo2
>1){ //find last bit set to 1 (format len bit) 
 773                                                                         cardnum 
= (lo
>>1)&0xFFFF; 
 777                                                                         cardnum 
= (lo
>>1)&0x7FFFF; 
 778                                                                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 781                                                                         cardnum 
= (lo
>>1)&0xFFFF; 
 782                                                                         fc
= ((hi
&1)<<15)|(lo
>>17); 
 785                                                                         cardnum 
= (lo
>>1)&0xFFFFF; 
 786                                                                         fc 
= ((hi
&1)<<11)|(lo
>>21); 
 789                                                         else { //if bit 38 is not set then 37 bit format is used 
 794                                                                         cardnum 
= (lo
>>1)&0x7FFFF; 
 795                                                                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 798                                                                         //Dbprintf("TAG ID: %x%08x (%d)", 
 799                                                         // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);                               
 800                                                         Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 801                                                                 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 802                                                                 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 805                                                         if (ledcontrol
) LED_A_OFF(); 
 814         DbpString("Stopped"); 
 815         if (ledcontrol
) LED_A_OFF(); 
 818 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 820         uint8_t *dest 
= (uint8_t *)BigBuf
; 
 822         size_t size
=0; //, found=0; 
 824         int clk
=0, invert
=0, errCnt
=0; 
 826         // Configure to go in 125Khz listen mode 
 827         LFSetupFPGAForADC(95, true); 
 829         while(!BUTTON_PRESS()) { 
 832                 if (ledcontrol
) LED_A_ON(); 
 834                 DoAcquisition125k_internal(-1,true); 
 835                 size  
= sizeof(BigBuf
); 
 836     if (size 
< 2000) continue;  
 838      //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert); 
 840     //Dbprintf("DEBUG: Buffer got"); 
 841     errCnt 
= askmandemod(dest
,&bitLen
,&clk
,&invert
); //HIDdemodFSK(dest,size,&hi2,&hi,&lo); 
 842                 //Dbprintf("DEBUG: ASK Got"); 
 846                         lo 
= Em410xDecode(dest
,bitLen
); 
 847                         //Dbprintf("DEBUG: EM GOT"); 
 850                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo
>>32),(uint32_t)lo
,(uint32_t)(lo
&0xFFFF),(uint32_t)((lo
>>16LL) & 0xFF),(uint32_t)(lo 
& 0xFFFFFF)); 
 853                                 if (ledcontrol
) LED_A_OFF(); 
 857                         //Dbprintf("DEBUG: No Tag"); 
 867         DbpString("Stopped"); 
 868         if (ledcontrol
) LED_A_OFF(); 
 871 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 873         uint8_t *dest 
= (uint8_t *)BigBuf
; 
 876         uint32_t code
=0, code2
=0; 
 878   uint8_t facilitycode
=0; 
 880         // Configure to go in 125Khz listen mode 
 881         LFSetupFPGAForADC(0, true); 
 883         while(!BUTTON_PRESS()) { 
 887                 if (ledcontrol
) LED_A_ON(); 
 889                 DoAcquisition125k_internal(-1,true); 
 890                 size  
= sizeof(BigBuf
); 
 891                 //make sure buffer has data 
 892                 if (size 
< 2000) continue; 
 893                 //fskdemod and get start index 
 895                 idx 
= IOdemodFSK(dest
,size
); 
 900                 //0 10 20 30 40 50 60 
 902                 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 903                 //----------------------------------------------------------------------------- 
 904                 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
 906                 //XSF(version)facility:codeone+codetwo 
 908                                 if(findone
){ //only print binary if we are doing one 
 909                                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
 910                                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
 911                                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
 912                                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
 913                                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
 914                                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
 915                                         Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 917                                 code 
= bytebits_to_byte(dest
+idx
,32); 
 918                                 code2 
= bytebits_to_byte(dest
+idx
+32,32); 
 919             version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
 920             facilitycode 
= bytebits_to_byte(dest
+idx
+18,8) ; 
 921             number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
 923             Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);                    
 924                                 // if we're only looking for one tag 
 926                                         if (ledcontrol
) LED_A_OFF(); 
 930                         version
=facilitycode
=0; 
 936         DbpString("Stopped"); 
 937         if (ledcontrol
) LED_A_OFF(); 
 940 /*------------------------------ 
 941  * T5555/T5557/T5567 routines 
 942  *------------------------------ 
 945 /* T55x7 configuration register definitions */ 
 946 #define T55x7_POR_DELAY                         0x00000001 
 947 #define T55x7_ST_TERMINATOR                     0x00000008 
 948 #define T55x7_PWD                                       0x00000010 
 949 #define T55x7_MAXBLOCK_SHIFT            5 
 950 #define T55x7_AOR                                       0x00000200 
 951 #define T55x7_PSKCF_RF_2                        0 
 952 #define T55x7_PSKCF_RF_4                        0x00000400 
 953 #define T55x7_PSKCF_RF_8                        0x00000800 
 954 #define T55x7_MODULATION_DIRECT         0 
 955 #define T55x7_MODULATION_PSK1           0x00001000 
 956 #define T55x7_MODULATION_PSK2           0x00002000 
 957 #define T55x7_MODULATION_PSK3           0x00003000 
 958 #define T55x7_MODULATION_FSK1           0x00004000 
 959 #define T55x7_MODULATION_FSK2           0x00005000 
 960 #define T55x7_MODULATION_FSK1a          0x00006000 
 961 #define T55x7_MODULATION_FSK2a          0x00007000 
 962 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 963 #define T55x7_MODULATION_BIPHASE        0x00010000 
 964 #define T55x7_BITRATE_RF_8                      0 
 965 #define T55x7_BITRATE_RF_16                     0x00040000 
 966 #define T55x7_BITRATE_RF_32                     0x00080000 
 967 #define T55x7_BITRATE_RF_40                     0x000C0000 
 968 #define T55x7_BITRATE_RF_50                     0x00100000 
 969 #define T55x7_BITRATE_RF_64                     0x00140000 
 970 #define T55x7_BITRATE_RF_100            0x00180000 
 971 #define T55x7_BITRATE_RF_128            0x001C0000 
 973 /* T5555 (Q5) configuration register definitions */ 
 974 #define T5555_ST_TERMINATOR                     0x00000001 
 975 #define T5555_MAXBLOCK_SHIFT            0x00000001 
 976 #define T5555_MODULATION_MANCHESTER     0 
 977 #define T5555_MODULATION_PSK1           0x00000010 
 978 #define T5555_MODULATION_PSK2           0x00000020 
 979 #define T5555_MODULATION_PSK3           0x00000030 
 980 #define T5555_MODULATION_FSK1           0x00000040 
 981 #define T5555_MODULATION_FSK2           0x00000050 
 982 #define T5555_MODULATION_BIPHASE        0x00000060 
 983 #define T5555_MODULATION_DIRECT         0x00000070 
 984 #define T5555_INVERT_OUTPUT                     0x00000080 
 985 #define T5555_PSK_RF_2                          0 
 986 #define T5555_PSK_RF_4                          0x00000100 
 987 #define T5555_PSK_RF_8                          0x00000200 
 988 #define T5555_USE_PWD                           0x00000400 
 989 #define T5555_USE_AOR                           0x00000800 
 990 #define T5555_BITRATE_SHIFT                     12 
 991 #define T5555_FAST_WRITE                        0x00004000 
 992 #define T5555_PAGE_SELECT                       0x00008000 
 995  * Relevant times in microsecond 
 996  * To compensate antenna falling times shorten the write times 
 997  * and enlarge the gap ones. 
 999 #define START_GAP 30*8 // 10 - 50fc 250 
1000 #define WRITE_GAP 20*8 //  8 - 30fc 
1001 #define WRITE_0   24*8 // 16 - 31fc 24fc 192 
1002 #define WRITE_1   54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 
1004 //  VALUES TAKEN FROM EM4x function: SendForward 
1005 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
1006 //  WRITE_GAP = 128;       (16*8) 
1007 //  WRITE_1   = 256 32*8;  (32*8)  
1009 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
1010 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
1012 #define T55xx_SAMPLES_SIZE              12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..) 
1014 // Write one bit to card 
1015 void T55xxWriteBit(int bit
) 
1017         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1018         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1019         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1021                 SpinDelayUs(WRITE_0
); 
1023                 SpinDelayUs(WRITE_1
); 
1024         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1025         SpinDelayUs(WRITE_GAP
); 
1028 // Write one card block in page 0, no lock 
1029 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1033         // Set up FPGA, 125kHz 
1034         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1035         LFSetupFPGAForADC(0, true); 
1037         // Now start writting 
1038         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1039         SpinDelayUs(START_GAP
); 
1043         T55xxWriteBit(0); //Page 0 
1046                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1047                         T55xxWriteBit(Pwd 
& i
); 
1053         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1054                 T55xxWriteBit(Data 
& i
); 
1057         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1058                 T55xxWriteBit(Block 
& i
); 
1060         // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1061         // so wait a little more) 
1062         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1063         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1065         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1068 // Read one card block in page 0 
1069 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1071         uint8_t *dest 
=  get_bigbufptr_recvrespbuf(); 
1072         uint16_t bufferlength 
= T55xx_SAMPLES_SIZE
; 
1075         // Clear destination buffer before sending the command  0x80 = average. 
1076         memset(dest
, 0x80, bufferlength
); 
1078         // Set up FPGA, 125kHz 
1079         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1080         LFSetupFPGAForADC(0, true); 
1082         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1083         SpinDelayUs(START_GAP
); 
1087         T55xxWriteBit(0); //Page 0 
1090                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1091                         T55xxWriteBit(Pwd 
& i
); 
1096         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1097                 T55xxWriteBit(Block 
& i
); 
1099         // Turn field on to read the response 
1102         // Now do the acquisition 
1105                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1106                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1107                         //AT91C_BASE_SSC->SSC_THR = 0xff; 
1110                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1111                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1114                         if (i 
>= bufferlength
) break; 
1118         cmd_send(CMD_ACK
,0,0,0,0,0); 
1119     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1123 // Read card traceability data (page 1) 
1124 void T55xxReadTrace(void){ 
1125         uint8_t *dest 
=  get_bigbufptr_recvrespbuf(); 
1126         uint16_t bufferlength 
= T55xx_SAMPLES_SIZE
; 
1129         // Clear destination buffer before sending the command 0x80 = average 
1130         memset(dest
, 0x80, bufferlength
);   
1132         LFSetupFPGAForADC(0, true); 
1134         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1135         SpinDelayUs(START_GAP
); 
1139         T55xxWriteBit(1); //Page 1 
1141         // Turn field on to read the response 
1144         // Now do the acquisition 
1146                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1147                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1150                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1151                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1155                         if (i 
>= bufferlength
) break; 
1159         cmd_send(CMD_ACK
,0,0,0,0,0); 
1160         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1164 void TurnReadLFOn(){ 
1165         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1166         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1167         // Give it a bit of time for the resonant antenna to settle. 
1172 /*-------------- Cloning routines -----------*/ 
1173 // Copy HID id to card and setup block 0 config 
1174 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1176         int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1180           // Ensure no more than 84 bits supplied 
1182                   DbpString("Tags can only have 84 bits."); 
1185     // Build the 6 data blocks for supplied 84bit ID 
1187     data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1188           for (int i
=0;i
<4;i
++) { 
1189                   if (hi2 
& (1<<(19-i
))) 
1190                           data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1192                           data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1196         for (int i
=0;i
<16;i
++) { 
1197                 if (hi2 
& (1<<(15-i
))) 
1198                         data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1200                         data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1204         for (int i
=0;i
<16;i
++) { 
1205                 if (hi 
& (1<<(31-i
))) 
1206                         data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1208                         data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1212         for (int i
=0;i
<16;i
++) { 
1213                 if (hi 
& (1<<(15-i
))) 
1214                         data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1216                         data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1220         for (int i
=0;i
<16;i
++) { 
1221                 if (lo 
& (1<<(31-i
))) 
1222                         data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1224                         data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1228         for (int i
=0;i
<16;i
++) { 
1229                 if (lo 
& (1<<(15-i
))) 
1230                         data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1232                         data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1236           // Ensure no more than 44 bits supplied 
1238                   DbpString("Tags can only have 44 bits."); 
1242         // Build the 3 data blocks for supplied 44bit ID 
1245         data1 
= 0x1D000000; // load preamble 
1247     for (int i
=0;i
<12;i
++) { 
1248       if (hi 
& (1<<(11-i
))) 
1249         data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1251         data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1255         for (int i
=0;i
<16;i
++) { 
1256                 if (lo 
& (1<<(31-i
))) 
1257                         data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1259                         data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1263         for (int i
=0;i
<16;i
++) { 
1264                 if (lo 
& (1<<(15-i
))) 
1265                         data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1267                         data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1272         // Program the data blocks for supplied ID 
1273         // and the block 0 for HID format 
1274         T55xxWriteBlock(data1
,1,0,0); 
1275         T55xxWriteBlock(data2
,2,0,0); 
1276         T55xxWriteBlock(data3
,3,0,0); 
1278         if (longFMT
) { // if long format there are 6 blocks 
1279           T55xxWriteBlock(data4
,4,0,0); 
1280           T55xxWriteBlock(data5
,5,0,0); 
1281           T55xxWriteBlock(data6
,6,0,0); 
1284         // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1285         T55xxWriteBlock(T55x7_BITRATE_RF_50  
| 
1286                   T55x7_MODULATION_FSK2a 
| 
1287                   last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1295 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1297    int data1
=0, data2
=0; //up to six blocks for long format 
1299     data1 
= hi
;  // load preamble 
1303     // Program the data blocks for supplied ID 
1304     // and the block 0 for HID format 
1305     T55xxWriteBlock(data1
,1,0,0); 
1306     T55xxWriteBlock(data2
,2,0,0); 
1309     T55xxWriteBlock(0x00147040,0,0,0); 
1315 // Define 9bit header for EM410x tags 
1316 #define EM410X_HEADER           0x1FF 
1317 #define EM410X_ID_LENGTH        40 
1319 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1322         uint64_t id 
= EM410X_HEADER
; 
1323         uint64_t rev_id 
= 0;    // reversed ID 
1324         int c_parity
[4];        // column parity 
1325         int r_parity 
= 0;       // row parity 
1328         // Reverse ID bits given as parameter (for simpler operations) 
1329         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1331                         rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1334                         rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1339         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1340                 id_bit 
= rev_id 
& 1; 
1343                         // Don't write row parity bit at start of parsing 
1345                                 id 
= (id 
<< 1) | r_parity
; 
1346                         // Start counting parity for new row 
1353                 // First elements in column? 
1355                         // Fill out first elements 
1356                         c_parity
[i
] = id_bit
; 
1358                         // Count column parity 
1359                         c_parity
[i 
% 4] ^= id_bit
; 
1362                 id 
= (id 
<< 1) | id_bit
; 
1366         // Insert parity bit of last row 
1367         id 
= (id 
<< 1) | r_parity
; 
1369         // Fill out column parity at the end of tag 
1370         for (i 
= 0; i 
< 4; ++i
) 
1371                 id 
= (id 
<< 1) | c_parity
[i
]; 
1376         Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1380         T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1381         T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1383         // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1385                 // Clock rate is stored in bits 8-15 of the card value 
1386                 clock 
= (card 
& 0xFF00) >> 8; 
1387                 Dbprintf("Clock rate: %d", clock
); 
1391                                 clock 
= T55x7_BITRATE_RF_32
; 
1394                                 clock 
= T55x7_BITRATE_RF_16
; 
1397                                 // A value of 0 is assumed to be 64 for backwards-compatibility 
1400                                 clock 
= T55x7_BITRATE_RF_64
; 
1403                                 Dbprintf("Invalid clock rate: %d", clock
); 
1407                 // Writing configuration for T55x7 tag 
1408                 T55xxWriteBlock(clock       
| 
1409                                 T55x7_MODULATION_MANCHESTER 
| 
1410                                 2 << T55x7_MAXBLOCK_SHIFT
, 
1414                 // Writing configuration for T5555(Q5) tag 
1415                 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1416                                 T5555_MODULATION_MANCHESTER   
| 
1417                                 2 << T5555_MAXBLOCK_SHIFT
, 
1421         Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1422                                         (uint32_t)(id 
>> 32), (uint32_t)id
); 
1425 // Clone Indala 64-bit tag by UID to T55x7 
1426 void CopyIndala64toT55x7(int hi
, int lo
) 
1428         //Program the 2 data blocks for supplied 64bit UID 
1429         // and the block 0 for Indala64 format 
1430         T55xxWriteBlock(hi
,1,0,0); 
1431         T55xxWriteBlock(lo
,2,0,0); 
1432         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1433         T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1434                         T55x7_MODULATION_PSK1 
| 
1435                         2 << T55x7_MAXBLOCK_SHIFT
, 
1437         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1438         //      T5567WriteBlock(0x603E1042,0); 
1443 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1445         //Program the 7 data blocks for supplied 224bit UID 
1446         // and the block 0 for Indala224 format 
1447         T55xxWriteBlock(uid1
,1,0,0); 
1448         T55xxWriteBlock(uid2
,2,0,0); 
1449         T55xxWriteBlock(uid3
,3,0,0); 
1450         T55xxWriteBlock(uid4
,4,0,0); 
1451         T55xxWriteBlock(uid5
,5,0,0); 
1452         T55xxWriteBlock(uid6
,6,0,0); 
1453         T55xxWriteBlock(uid7
,7,0,0); 
1454         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1455         T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1456                         T55x7_MODULATION_PSK1 
| 
1457                         7 << T55x7_MAXBLOCK_SHIFT
, 
1459         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1460         //      T5567WriteBlock(0x603E10E2,0); 
1466 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1467 #define max(x,y) ( x<y ? y:x) 
1469 int DemodPCF7931(uint8_t **outBlocks
) { 
1470         uint8_t BitStream
[256]; 
1471         uint8_t Blocks
[8][16]; 
1472         uint8_t *GraphBuffer 
= (uint8_t *)BigBuf
; 
1473         int GraphTraceLen 
= sizeof(BigBuf
); 
1474         int i
, j
, lastval
, bitidx
, half_switch
; 
1476         int tolerance 
= clock 
/ 8; 
1477         int pmc
, block_done
; 
1478         int lc
, warnings 
= 0; 
1480         int lmin
=128, lmax
=128; 
1483         AcquireRawAdcSamples125k(0); 
1490         /* Find first local max/min */ 
1491         if(GraphBuffer
[1] > GraphBuffer
[0]) { 
1492     while(i 
< GraphTraceLen
) { 
1493       if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
) 
1500     while(i 
< GraphTraceLen
) { 
1501       if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
) 
1513         for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1515     if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir 
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir 
== 0 && GraphBuffer
[i
] < lmin
)) 
1520       // Switch depending on lc length: 
1521       // Tolerance is 1/8 of clock rate (arbitrary) 
1522       if (abs(lc
-clock
/4) < tolerance
) { 
1524         if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1526           i 
+= (128+127+16+32+33+16)-1; 
1534       } else if (abs(lc
-clock
/2) < tolerance
) { 
1536         if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1538           i 
+= (128+127+16+32+33)-1; 
1543         else if(half_switch 
== 1) { 
1544           BitStream
[bitidx
++] = 0; 
1549       } else if (abs(lc
-clock
) < tolerance
) { 
1551         BitStream
[bitidx
++] = 1; 
1557           Dbprintf("Error: too many detection errors, aborting."); 
1562       if(block_done 
== 1) { 
1564           for(j
=0; j
<16; j
++) { 
1565             Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1566             64*BitStream
[j
*8+6]+ 
1567             32*BitStream
[j
*8+5]+ 
1568             16*BitStream
[j
*8+4]+ 
1580               if(i 
< GraphTraceLen
) 
1582       if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0; 
1589     if(num_blocks 
== 4) break; 
1591         memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1595 int IsBlock0PCF7931(uint8_t *Block
) { 
1596         // Assume RFU means 0 :) 
1597         if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1599         if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1604 int IsBlock1PCF7931(uint8_t *Block
) { 
1605         // Assume RFU means 0 :) 
1606         if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1607     if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1614 void ReadPCF7931() { 
1615         uint8_t Blocks
[8][17]; 
1616         uint8_t tmpBlocks
[4][16]; 
1617         int i
, j
, ind
, ind2
, n
; 
1624         memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1627     memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1628     n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1631     if(error
==10 && num_blocks 
== 0) { 
1632       Dbprintf("Error, no tag or bad tag"); 
1635     else if (tries
==20 || error
==10) { 
1636       Dbprintf("Error reading the tag"); 
1637       Dbprintf("Here is the partial content"); 
1642       Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1643                tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1644                tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1646       for(i
=0; i
<n
; i
++) { 
1647         if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1649           if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1653             memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1654             Blocks
[0][ALLOC
] = 1; 
1655             memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1656             Blocks
[1][ALLOC
] = 1; 
1657             max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1659             Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1661             // Handle following blocks 
1662             for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1665               memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1666               Blocks
[ind2
][ALLOC
] = 1; 
1674       for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1675         if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1676           for(j
=0; j
<max_blocks
; j
++) { 
1677             if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1678               // Found an identical block 
1679               for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1682                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1683                   // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1684                   memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1685                   Blocks
[ind2
][ALLOC
] = 1; 
1687                   if(num_blocks 
== max_blocks
) goto end
; 
1690               for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1691                 if(ind2 
> max_blocks
) 
1693                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1694                   // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1695                   memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1696                   Blocks
[ind2
][ALLOC
] = 1; 
1698                   if(num_blocks 
== max_blocks
) goto end
; 
1707     if (BUTTON_PRESS()) return; 
1708         } while (num_blocks 
!= max_blocks
); 
1710         Dbprintf("-----------------------------------------"); 
1711         Dbprintf("Memory content:"); 
1712         Dbprintf("-----------------------------------------"); 
1713         for(i
=0; i
<max_blocks
; i
++) { 
1714     if(Blocks
[i
][ALLOC
]==1) 
1715       Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1716                Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1717                Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1719       Dbprintf("<missing block %d>", i
); 
1721         Dbprintf("-----------------------------------------"); 
1727 //----------------------------------- 
1728 // EM4469 / EM4305 routines 
1729 //----------------------------------- 
1730 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1731 #define FWD_CMD_WRITE 0xA 
1732 #define FWD_CMD_READ 0x9 
1733 #define FWD_CMD_DISABLE 0x5 
1736 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1737 uint8_t * forward_ptr
; //ptr for forward message preparation 
1738 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1739 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1741 //==================================================================== 
1742 // prepares command bits 
1744 //==================================================================== 
1745 //-------------------------------------------------------------------- 
1746 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1747   //-------------------------------------------------------------------- 
1749   *forward_ptr
++ = 0; //start bit 
1750   *forward_ptr
++ = 0; //second pause for 4050 code 
1752   *forward_ptr
++ = cmd
; 
1754   *forward_ptr
++ = cmd
; 
1756   *forward_ptr
++ = cmd
; 
1758   *forward_ptr
++ = cmd
; 
1760   return 6; //return number of emited bits 
1763 //==================================================================== 
1764 // prepares address bits 
1766 //==================================================================== 
1768 //-------------------------------------------------------------------- 
1769 uint8_t Prepare_Addr( uint8_t addr 
) { 
1770   //-------------------------------------------------------------------- 
1772   register uint8_t line_parity
; 
1777     *forward_ptr
++ = addr
; 
1778     line_parity 
^= addr
; 
1782   *forward_ptr
++ = (line_parity 
& 1); 
1784   return 7; //return number of emited bits 
1787 //==================================================================== 
1788 // prepares data bits intreleaved with parity bits 
1790 //==================================================================== 
1792 //-------------------------------------------------------------------- 
1793 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1794   //-------------------------------------------------------------------- 
1796   register uint8_t line_parity
; 
1797   register uint8_t column_parity
; 
1798   register uint8_t i
, j
; 
1799   register uint16_t data
; 
1804   for(i
=0; i
<4; i
++) { 
1806     for(j
=0; j
<8; j
++) { 
1807       line_parity 
^= data
; 
1808       column_parity 
^= (data 
& 1) << j
; 
1809       *forward_ptr
++ = data
; 
1812     *forward_ptr
++ = line_parity
; 
1817   for(j
=0; j
<8; j
++) { 
1818     *forward_ptr
++ = column_parity
; 
1819     column_parity 
>>= 1; 
1823   return 45; //return number of emited bits 
1826 //==================================================================== 
1827 // Forward Link send function 
1828 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1829 // fwd_bit_count set with number of bits to be sent 
1830 //==================================================================== 
1831 void SendForward(uint8_t fwd_bit_count
) { 
1833   fwd_write_ptr 
= forwardLink_data
; 
1834   fwd_bit_sz 
= fwd_bit_count
; 
1839   FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1840   FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1841   FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1843   // Give it a bit of time for the resonant antenna to settle. 
1844   // And for the tag to fully power up 
1847   // force 1st mod pulse (start gap must be longer for 4305) 
1848   fwd_bit_sz
--; //prepare next bit modulation 
1850   FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1851   SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1852   FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1853   FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1854   SpinDelayUs(16*8); //16 cycles on (8us each) 
1856   // now start writting 
1857   while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1858     if(((*fwd_write_ptr
++) & 1) == 1) 
1859       SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1861       //These timings work for 4469/4269/4305 (with the 55*8 above) 
1862       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1863       SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1864       FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1865       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1866       SpinDelayUs(9*8); //16 cycles on (8us each) 
1872 void EM4xLogin(uint32_t Password
) { 
1874   uint8_t fwd_bit_count
; 
1876   forward_ptr 
= forwardLink_data
; 
1877   fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1878   fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1880   SendForward(fwd_bit_count
); 
1882   //Wait for command to complete 
1887 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1889         uint8_t *dest 
=  get_bigbufptr_recvrespbuf(); 
1890         uint16_t bufferlength 
= 12000; 
1893         // Clear destination buffer before sending the command  0x80 = average. 
1894         memset(dest
, 0x80, bufferlength
); 
1896         uint8_t fwd_bit_count
; 
1898         //If password mode do login 
1899         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1901         forward_ptr 
= forwardLink_data
; 
1902         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1903         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1905         // Connect the A/D to the peak-detected low-frequency path. 
1906         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1907         // Now set up the SSC to get the ADC samples that are now streaming at us. 
1910         SendForward(fwd_bit_count
); 
1912         // // Turn field on to read the response 
1915         // Now do the acquisition 
1918                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1919                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1921                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1922                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1924                         if (i 
>= bufferlength
) break; 
1928         cmd_send(CMD_ACK
,0,0,0,0,0); 
1929         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1933 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1935   uint8_t fwd_bit_count
; 
1937   //If password mode do login 
1938   if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1940   forward_ptr 
= forwardLink_data
; 
1941   fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1942   fwd_bit_count 
+= Prepare_Addr( Address 
); 
1943   fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1945   SendForward(fwd_bit_count
); 
1947   //Wait for write to complete 
1949   FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off