1 //-----------------------------------------------------------------------------
2 // Miscellaneous routines for low frequency tag operations.
3 // Tags supported here so far are Texas Instruments (TI), HID
4 // Also routines for raw mode reading/simulating of LF waveform
6 //-----------------------------------------------------------------------------
12 void AcquireRawAdcSamples125k(BOOL at134khz
)
15 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
17 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
19 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
21 // Connect the A/D to the peak-detected low-frequency path.
22 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
24 // Give it a bit of time for the resonant antenna to settle.
27 // Now set up the SSC to get the ADC samples that are now streaming at us.
30 // Now call the acquisition routine
34 // split into two routines so we can avoid timing issues after sending commands //
35 void DoAcquisition125k(void)
37 BYTE
*dest
= (BYTE
*)BigBuf
;
38 int n
= sizeof(BigBuf
);
44 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
45 AT91C_BASE_SSC
->SSC_THR
= 0x43;
48 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
49 dest
[i
] = (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
55 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
56 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
59 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, BYTE
*command
)
63 /* Make sure the tag is reset */
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 // see if 'h' was specified
68 if (command
[strlen((char *) command
) - 1] == 'h')
74 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
78 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
80 // Give it a bit of time for the resonant antenna to settle.
82 // And a little more time for the tag to fully power up
85 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 // now modulate the reader field
89 while(*command
!= '\0' && *command
!= ' ') {
90 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
92 SpinDelayUs(delay_off
);
94 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
96 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
98 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
100 if(*(command
++) == '0')
101 SpinDelayUs(period_0
);
103 SpinDelayUs(period_1
);
105 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
107 SpinDelayUs(delay_off
);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
111 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
119 /* blank r/w tag data stream
120 ...0000000000000000 01111111
121 1010101010101010101010101010101010101010101010101010101010101010
124 101010101010101[0]000...
126 [5555fe852c5555555555555555fe0000]
130 // some hardcoded initial params
131 // when we read a TI tag we sample the zerocross line at 2Mhz
132 // TI tags modulate a 1 as 16 cycles of 123.2Khz
133 // TI tags modulate a 0 as 16 cycles of 134.2Khz
134 #define FSAMPLE 2000000
135 #define FREQLO 123200
136 #define FREQHI 134200
138 signed char *dest
= (signed char *)BigBuf
;
139 int n
= sizeof(BigBuf
);
140 // int *dest = GraphBuffer;
141 // int n = GraphTraceLen;
143 // 128 bit shift register [shift3:shift2:shift1:shift0]
144 DWORD shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
146 int i
, cycles
=0, samples
=0;
147 // how many sample points fit in 16 cycles of each frequency
148 DWORD sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
149 // when to tell if we're close enough to one freq or another
150 DWORD threshold
= (sampleslo
- sampleshi
+ 1)>>1;
152 // TI tags charge at 134.2Khz
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
155 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
156 // connects to SSP_DIN and the SSP_DOUT logic level controls
157 // whether we're modulating the antenna (high)
158 // or listening to the antenna (low)
159 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
161 // get TI tag data into the buffer
164 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
166 for (i
=0; i
<n
-1; i
++) {
167 // count cycles by looking for lo to hi zero crossings
168 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
170 // after 16 cycles, measure the frequency
173 samples
=i
-samples
; // number of samples in these 16 cycles
175 // TI bits are coming to us lsb first so shift them
176 // right through our 128 bit right shift register
177 shift0
= (shift0
>>1) | (shift1
<< 31);
178 shift1
= (shift1
>>1) | (shift2
<< 31);
179 shift2
= (shift2
>>1) | (shift3
<< 31);
182 // check if the cycles fall close to the number
183 // expected for either the low or high frequency
184 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
185 // low frequency represents a 1
187 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
188 // high frequency represents a 0
190 // probably detected a gay waveform or noise
191 // use this as gaydar or discard shift register and start again
192 shift3
= shift2
= shift1
= shift0
= 0;
196 // for each bit we receive, test if we've detected a valid tag
198 // if we see 17 zeroes followed by 6 ones, we might have a tag
199 // remember the bits are backwards
200 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
201 // if start and end bytes match, we have a tag so break out of the loop
202 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
203 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
211 // if flag is set we have a tag
213 DbpString("Info: No valid tag detected.");
215 // put 64 bit data into shift1 and shift0
216 shift0
= (shift0
>>24) | (shift1
<< 8);
217 shift1
= (shift1
>>24) | (shift2
<< 8);
219 // align 16 bit crc into lower half of shift2
220 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
222 // if r/w tag, check ident match
223 if ( shift3
&(1<<15) ) {
224 DbpString("Info: TI tag is rewriteable");
225 // only 15 bits compare, last bit of ident is not valid
226 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
227 DbpString("Error: Ident mismatch!");
229 DbpString("Info: TI tag ident is valid");
232 DbpString("Info: TI tag is readonly");
235 // WARNING the order of the bytes in which we calc crc below needs checking
236 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
237 // bytes in reverse or something
241 crc
= update_crc16(crc
, (shift0
)&0xff);
242 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
243 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
244 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
245 crc
= update_crc16(crc
, (shift1
)&0xff);
246 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
247 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
248 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
250 Dbprintf("Info: Tag data: %x%08x, crc=%x",
251 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
252 if (crc
!= (shift2
&0xffff)) {
253 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
255 DbpString("Info: CRC is good");
260 void WriteTIbyte(BYTE b
)
264 // modulate 8 bits out to the antenna
268 // stop modulating antenna
275 // stop modulating antenna
285 void AcquireTiType(void)
288 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
289 // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
290 #define TIBUFLEN 1250
293 memset(BigBuf
,0,sizeof(BigBuf
));
295 // Set up the synchronous serial port
296 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
297 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
299 // steal this pin from the SSP and use it to control the modulation
300 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
301 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
303 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
304 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
306 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
307 // 48/2 = 24 MHz clock must be divided by 12
308 AT91C_BASE_SSC
->SSC_CMR
= 12;
310 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
311 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
312 AT91C_BASE_SSC
->SSC_TCMR
= 0;
313 AT91C_BASE_SSC
->SSC_TFMR
= 0;
320 // Charge TI tag for 50ms.
323 // stop modulating antenna and listen
330 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
331 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
332 i
++; if(i
>= TIBUFLEN
) break;
337 // return stolen pin to SSP
338 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
339 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
341 char *dest
= (char *)BigBuf
;
344 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
345 for (j
=0; j
<32; j
++) {
346 if(BigBuf
[i
] & (1 << j
)) {
355 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
356 // if crc provided, it will be written with the data verbatim (even if bogus)
357 // if not provided a valid crc will be computed from the data and written.
358 void WriteTItag(DWORD idhi
, DWORD idlo
, WORD crc
)
361 crc
= update_crc16(crc
, (idlo
)&0xff);
362 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
363 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
364 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
365 crc
= update_crc16(crc
, (idhi
)&0xff);
366 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
367 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
368 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
370 Dbprintf("Writing to tag: %x%08x, crc=%x",
371 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
373 // TI tags charge at 134.2Khz
374 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
375 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
376 // connects to SSP_DIN and the SSP_DOUT logic level controls
377 // whether we're modulating the antenna (high)
378 // or listening to the antenna (low)
379 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
382 // steal this pin from the SSP and use it to control the modulation
383 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
384 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
386 // writing algorithm:
387 // a high bit consists of a field off for 1ms and field on for 1ms
388 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
389 // initiate a charge time of 50ms (field on) then immediately start writing bits
390 // start by writing 0xBB (keyword) and 0xEB (password)
391 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
392 // finally end with 0x0300 (write frame)
393 // all data is sent lsb firts
394 // finish with 15ms programming time
398 SpinDelay(50); // charge time
400 WriteTIbyte(0xbb); // keyword
401 WriteTIbyte(0xeb); // password
402 WriteTIbyte( (idlo
)&0xff );
403 WriteTIbyte( (idlo
>>8 )&0xff );
404 WriteTIbyte( (idlo
>>16)&0xff );
405 WriteTIbyte( (idlo
>>24)&0xff );
406 WriteTIbyte( (idhi
)&0xff );
407 WriteTIbyte( (idhi
>>8 )&0xff );
408 WriteTIbyte( (idhi
>>16)&0xff );
409 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
410 WriteTIbyte( (crc
)&0xff ); // crc lo
411 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
412 WriteTIbyte(0x00); // write frame lo
413 WriteTIbyte(0x03); // write frame hi
415 SpinDelay(50); // programming time
419 // get TI tag data into the buffer
422 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
423 DbpString("Now use tiread to check");
426 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
429 BYTE
*tab
= (BYTE
*)BigBuf
;
431 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
433 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
435 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
436 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
438 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
439 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
443 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
445 DbpString("Stopped");
462 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
464 DbpString("Stopped");
481 /* Provides a framework for bidirectional LF tag communication
482 * Encoding is currently Hitag2, but the general idea can probably
483 * be transferred to other encodings.
485 * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
486 * (PA15) a thresholded version of the signal from the ADC. Setting the
487 * ADC path to the low frequency peak detection signal, will enable a
488 * somewhat reasonable receiver for modulation on the carrier signal
489 * that is generated by the reader. The signal is low when the reader
490 * field is switched off, and high when the reader field is active. Due
491 * to the way that the signal looks like, mostly only the rising edge is
492 * useful, your mileage may vary.
494 * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
495 * TIOA1, which can be used as the capture input for timer 1. This should
496 * make it possible to measure the exact edge-to-edge time, without processor
499 * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
500 * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
502 * The following defines are in carrier periods:
504 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
505 #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
506 #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
507 #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
509 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
);
510 //#define DEBUG_RA_VALUES 1
511 #define DEBUG_FRAME_CONTENTS 1
512 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
514 #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
520 DbpString("Starting Hitag2 emulator, press button to end");
523 /* Set up simulator mode, frequency divisor which will drive the FPGA
524 * and analog mux selection.
526 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
527 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
528 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
532 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
533 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
534 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
537 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
538 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
539 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
540 AT91C_BASE_TC1
->TC_CMR
= TC_CMR_TCCLKS_TIMER_CLOCK1
|
541 AT91C_TC_ETRGEDG_RISING
|
543 AT91C_TC_LDRA_RISING
|
544 AT91C_TC_LDRB_RISING
;
545 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
|
548 /* calculate the new value for the carrier period in terms of TC1 values */
552 while(!BUTTON_PRESS()) {
554 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
555 int ra
= AT91C_BASE_TC1
->TC_RA
;
556 if((ra
> t0
*HITAG_T_EOF
) | overflow
) ra
= t0
*HITAG_T_EOF
+1;
558 if(ra
> 255 || overflow
) ra
= 255;
559 ((char*)BigBuf
)[i
] = ra
;
563 if(overflow
|| (ra
> t0
*HITAG_T_EOF
) || (ra
< t0
*HITAG_T_0_MIN
)) {
565 } else if(ra
>= t0
*HITAG_T_1_MIN
) {
567 if(frame_pos
< 8*sizeof(frame
)) {
568 frame
[frame_pos
/ 8] |= 1<<( 7-(frame_pos
%8) );
571 } else if(ra
>= t0
*HITAG_T_0_MIN
) {
573 if(frame_pos
< 8*sizeof(frame
)) {
574 frame
[frame_pos
/ 8] |= 0<<( 7-(frame_pos
%8) );
582 if(AT91C_BASE_TC1
->TC_CV
> t0
*HITAG_T_EOF
) {
583 /* Minor nuisance: In Capture mode, the timer can not be
584 * stopped by a Compare C. There's no way to stop the clock
585 * in software, so we'll just have to note the fact that an
586 * overflow happened and the next loaded timer value might
587 * have wrapped. Also, this marks the end of frame, and the
588 * still running counter can be used to determine the correct
589 * time for the start of the reply.
594 /* Have a frame, do something with it */
595 #if DEBUG_FRAME_CONTENTS
596 ((char*)BigBuf
)[i
++] = frame_pos
;
597 memcpy( ((char*)BigBuf
)+i
, frame
, 7);
599 i
= i
% sizeof(BigBuf
);
601 hitag_handle_frame(t0
, frame_pos
, frame
);
602 memset(frame
, 0, sizeof(frame
));
610 DbpString("All done");
613 static void hitag_send_bit(int t0
, int bit
) {
615 /* Manchester: Loaded, then unloaded */
618 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
620 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
622 } else if(bit
== 0) {
623 /* Manchester: Unloaded, then loaded */
626 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
628 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
631 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset clock for the next bit */
634 static void hitag_send_frame(int t0
, int frame_len
, const char const * frame
, int fdt
)
637 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
639 /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
640 * not that since the clock counts since the rising edge, but T_wresp is
641 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
642 * periods. The gap time T_g varies (4..10).
644 while(AT91C_BASE_TC1
->TC_CV
< t0
*(fdt
-8));
646 int saved_cmr
= AT91C_BASE_TC1
->TC_CMR
;
647 AT91C_BASE_TC1
->TC_CMR
&= ~AT91C_TC_ETRGEDG
; /* Disable external trigger for the clock */
648 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset the clock and use it for response timing */
652 hitag_send_bit(t0
, 1); /* Start of frame */
654 for(i
=0; i
<frame_len
; i
++) {
655 hitag_send_bit(t0
, !!(frame
[i
/ 8] & (1<<( 7-(i
%8) ))) );
659 AT91C_BASE_TC1
->TC_CMR
= saved_cmr
;
662 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
663 static int hitag_cb(const char* response_data
, const int response_length
, const int fdt
, void *cb_cookie
)
665 hitag_send_frame(*(int*)cb_cookie
, response_length
, response_data
, fdt
);
668 /* Frame length in bits, frame contents in MSBit first format */
669 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
)
671 hitag2_handle_command(frame
, frame_len
, hitag_cb
, &t0
);
674 // compose fc/8 fc/10 waveform
675 static void fc(int c
, int *n
) {
676 BYTE
*dest
= (BYTE
*)BigBuf
;
679 // for when we want an fc8 pattern every 4 logical bits
690 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
692 for (idx
=0; idx
<6; idx
++) {
704 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
706 for (idx
=0; idx
<5; idx
++) {
721 // prepare a waveform pattern in the buffer based on the ID given then
722 // simulate a HID tag until the button is pressed
723 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
727 HID tag bitstream format
728 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
729 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
730 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
731 A fc8 is inserted before every 4 bits
732 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
733 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
737 DbpString("Tags can only have 44 bits.");
741 // special start of frame marker containing invalid bit sequences
742 fc(8, &n
); fc(8, &n
); // invalid
743 fc(8, &n
); fc(10, &n
); // logical 0
744 fc(10, &n
); fc(10, &n
); // invalid
745 fc(8, &n
); fc(10, &n
); // logical 0
748 // manchester encode bits 43 to 32
749 for (i
=11; i
>=0; i
--) {
750 if ((i
%4)==3) fc(0,&n
);
752 fc(10, &n
); fc(8, &n
); // low-high transition
754 fc(8, &n
); fc(10, &n
); // high-low transition
759 // manchester encode bits 31 to 0
760 for (i
=31; i
>=0; i
--) {
761 if ((i
%4)==3) fc(0,&n
);
763 fc(10, &n
); fc(8, &n
); // low-high transition
765 fc(8, &n
); fc(10, &n
); // high-low transition
771 SimulateTagLowFrequency(n
, 0, ledcontrol
);
778 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
779 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
781 BYTE
*dest
= (BYTE
*)BigBuf
;
782 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
785 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
786 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
788 // Connect the A/D to the peak-detected low-frequency path.
789 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
791 // Give it a bit of time for the resonant antenna to settle.
794 // Now set up the SSC to get the ADC samples that are now streaming at us.
802 DbpString("Stopped");
812 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
813 AT91C_BASE_SSC
->SSC_THR
= 0x43;
817 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
818 dest
[i
] = (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
819 // we don't care about actual value, only if it's more or less than a
820 // threshold essentially we capture zero crossings for later analysis
821 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
833 // sync to first lo-hi transition
834 for( idx
=1; idx
<m
; idx
++) {
835 if (dest
[idx
-1]<dest
[idx
])
841 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
842 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
843 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
844 for( i
=0; idx
<m
; idx
++) {
845 if (dest
[idx
-1]<dest
[idx
]) {
860 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
865 for( idx
=0; idx
<m
; idx
++) {
866 if (dest
[idx
]==lastval
) {
869 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
870 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
871 // swallowed up by rounding
872 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
873 // special start of frame markers use invalid manchester states (no transitions) by using sequences
876 n
=(n
+1)/6; // fc/8 in sets of 6
878 n
=(n
+1)/5; // fc/10 in sets of 5
880 switch (n
) { // stuff appropriate bits in buffer
883 dest
[i
++]=dest
[idx
-1];
886 dest
[i
++]=dest
[idx
-1];
887 dest
[i
++]=dest
[idx
-1];
889 case 3: // 3 bit start of frame markers
890 dest
[i
++]=dest
[idx
-1];
891 dest
[i
++]=dest
[idx
-1];
892 dest
[i
++]=dest
[idx
-1];
894 // When a logic 0 is immediately followed by the start of the next transmisson
895 // (special pattern) a pattern of 4 bit duration lengths is created.
897 dest
[i
++]=dest
[idx
-1];
898 dest
[i
++]=dest
[idx
-1];
899 dest
[i
++]=dest
[idx
-1];
900 dest
[i
++]=dest
[idx
-1];
902 default: // this shouldn't happen, don't stuff any bits
912 // final loop, go over previously decoded manchester data and decode into usable tag ID
913 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
914 for( idx
=0; idx
<m
-6; idx
++) {
915 // search for a start of frame marker
916 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
920 if (found
&& (hi
|lo
)) {
921 Dbprintf("TAG ID: %x%08x (%d)",
922 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
923 /* if we're only looking for one tag */
936 if (dest
[idx
] && (!dest
[idx
+1]) ) {
939 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
949 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
953 if (found
&& (hi
|lo
)) {
954 Dbprintf("TAG ID: %x%08x (%d)",
955 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
956 /* if we're only looking for one tag */