1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void ToSendReset(void)
52 void ToSendStuffBit(int b
)
56 ToSend
[ToSendMax
] = 0;
61 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
66 if(ToSendMax
>= sizeof(ToSend
)) {
68 DbpString("ToSendStuffBit overflowed!");
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
76 void DbpString(char *str
)
78 byte_t len
= strlen(str
);
79 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
83 void DbpIntegers(int x1
, int x2
, int x3
)
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
89 void Dbprintf(const char *fmt
, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string
[128];
95 kvsprintf(fmt
, output_string
, 10, ap
);
98 DbpString(output_string
);
101 // prints HEX & ASCII
102 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
115 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
118 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
120 Dbprintf("%*D",l
,d
," ");
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch
)
137 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
138 AT91C_BASE_ADC
->ADC_MR
=
139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
154 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
158 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
160 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
165 int AvgAdc(int ch
) // was static - merlok
170 for(i
= 0; i
< 32; i
++) {
174 return (a
+ 15) >> 5;
177 void MeasureAntennaTuning(void)
179 uint8_t LF_Results
[256];
180 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
181 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
196 for (i
=255; i
>=19; i
--) {
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
200 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
201 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
202 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
204 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results
[i
] > peak
) {
207 peak
= LF_Results
[i
];
213 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
220 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
222 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
229 void MeasureAntennaTuningHf(void)
231 int vHf
= 0; // in mV
233 DbpString("Measuring HF antenna, press button to exit");
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
243 Dbprintf("%d mV",vHf
);
244 if (BUTTON_PRESS()) break;
246 DbpString("cancelled");
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void SimulateTagHfListen(void)
255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
275 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
276 AT91C_BASE_SSC
->SSC_THR
= 0xff;
278 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
279 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
293 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
299 DbpString("simulate tag (now type bitsamples)");
302 void ReadMem(int addr
)
304 const uint8_t *data
= ((uint8_t *)addr
);
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
310 /* osimage version information is linked in */
311 extern struct version_information version_information
;
312 /* bootrom version information is pointed to from _bootphase1_version_pointer */
313 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
314 void SendVersion(void)
316 char temp
[512]; /* Limited data payload in USB packets */
317 DbpString("Prox/RFID mark3 RFID instrument");
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
323 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
324 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
325 DbpString("bootrom version information appears invalid");
327 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
331 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
334 FpgaGatherVersion(temp
, sizeof(temp
));
337 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
341 // samy's sniff and repeat routine
344 DbpString("Stand-alone mode! No PC necessary.");
345 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
347 // 3 possible options? no just 2 for now
350 int high
[OPTS
], low
[OPTS
];
352 // Oooh pretty -- notify user we're in elite samy mode now
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
358 LED(LED_ORANGE
, 200);
360 LED(LED_ORANGE
, 200);
367 // Turn on selected LED
368 LED(selected
+ 1, 0);
375 // Was our button held down or pressed?
376 int button_pressed
= BUTTON_HELD(1000);
379 // Button was held for a second, begin recording
380 if (button_pressed
> 0 && cardRead
== 0)
383 LED(selected
+ 1, 0);
387 DbpString("Starting recording");
389 // wait for button to be released
390 while(BUTTON_PRESS())
393 /* need this delay to prevent catching some weird data */
396 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
397 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
400 LED(selected
+ 1, 0);
401 // Finished recording
403 // If we were previously playing, set playing off
404 // so next button push begins playing what we recorded
411 else if (button_pressed
> 0 && cardRead
== 1)
414 LED(selected
+ 1, 0);
418 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
420 // wait for button to be released
421 while(BUTTON_PRESS())
424 /* need this delay to prevent catching some weird data */
427 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
428 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
431 LED(selected
+ 1, 0);
432 // Finished recording
434 // If we were previously playing, set playing off
435 // so next button push begins playing what we recorded
442 // Change where to record (or begin playing)
443 else if (button_pressed
)
445 // Next option if we were previously playing
447 selected
= (selected
+ 1) % OPTS
;
451 LED(selected
+ 1, 0);
453 // Begin transmitting
457 DbpString("Playing");
458 // wait for button to be released
459 while(BUTTON_PRESS())
461 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
462 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
463 DbpString("Done playing");
464 if (BUTTON_HELD(1000) > 0)
466 DbpString("Exiting");
471 /* We pressed a button so ignore it here with a delay */
474 // when done, we're done playing, move to next option
475 selected
= (selected
+ 1) % OPTS
;
478 LED(selected
+ 1, 0);
481 while(BUTTON_PRESS())
490 Listen and detect an external reader. Determine the best location
494 Inside the ListenReaderField() function, there is two mode.
495 By default, when you call the function, you will enter mode 1.
496 If you press the PM3 button one time, you will enter mode 2.
497 If you press the PM3 button a second time, you will exit the function.
499 DESCRIPTION OF MODE 1:
500 This mode just listens for an external reader field and lights up green
501 for HF and/or red for LF. This is the original mode of the detectreader
504 DESCRIPTION OF MODE 2:
505 This mode will visually represent, using the LEDs, the actual strength of the
506 current compared to the maximum current detected. Basically, once you know
507 what kind of external reader is present, it will help you spot the best location to place
508 your antenna. You will probably not get some good results if there is a LF and a HF reader
509 at the same place! :-)
513 static const char LIGHT_SCHEME
[] = {
514 0x0, /* ---- | No field detected */
515 0x1, /* X--- | 14% of maximum current detected */
516 0x2, /* -X-- | 29% of maximum current detected */
517 0x4, /* --X- | 43% of maximum current detected */
518 0x8, /* ---X | 57% of maximum current detected */
519 0xC, /* --XX | 71% of maximum current detected */
520 0xE, /* -XXX | 86% of maximum current detected */
521 0xF, /* XXXX | 100% of maximum current detected */
523 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
525 void ListenReaderField(int limit
)
527 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
528 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
529 int mode
=1, display_val
, display_max
, i
;
533 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
536 // switch off FPGA - we don't want to measure our own signal
537 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
538 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
542 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
544 if(limit
!= HF_ONLY
) {
545 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
549 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
551 if (limit
!= LF_ONLY
) {
552 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
557 if (BUTTON_PRESS()) {
562 DbpString("Signal Strength Mode");
566 DbpString("Stopped");
574 if (limit
!= HF_ONLY
) {
576 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
582 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
583 // see if there's a significant change
584 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
585 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
592 if (limit
!= LF_ONLY
) {
594 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
600 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
601 // see if there's a significant change
602 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
603 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
611 if (limit
== LF_ONLY
) {
613 display_max
= lf_max
;
614 } else if (limit
== HF_ONLY
) {
616 display_max
= hf_max
;
617 } else { /* Pick one at random */
618 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
620 display_max
= hf_max
;
623 display_max
= lf_max
;
626 for (i
=0; i
<LIGHT_LEN
; i
++) {
627 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
628 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
629 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
630 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
631 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
639 void UsbPacketReceived(uint8_t *packet
, int len
)
641 UsbCommand
*c
= (UsbCommand
*)packet
;
643 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
647 case CMD_SET_LF_SAMPLING_CONFIG
:
648 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
650 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
651 cmd_send(CMD_ACK
,SampleLF(),0,0,0,0);
653 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
654 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
656 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
657 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
659 case CMD_HID_DEMOD_FSK
:
660 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
662 case CMD_HID_SIM_TAG
:
663 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
665 case CMD_FSK_SIM_TAG
:
666 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
668 case CMD_ASK_SIM_TAG
:
669 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
671 case CMD_HID_CLONE_TAG
:
672 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
674 case CMD_IO_DEMOD_FSK
:
675 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
677 case CMD_IO_CLONE_TAG
:
678 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
680 case CMD_EM410X_DEMOD
:
681 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
683 case CMD_EM410X_WRITE_TAG
:
684 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
686 case CMD_READ_TI_TYPE
:
689 case CMD_WRITE_TI_TYPE
:
690 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
692 case CMD_SIMULATE_TAG_125K
:
694 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
697 case CMD_LF_SIMULATE_BIDIR
:
698 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
700 case CMD_INDALA_CLONE_TAG
:
701 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
703 case CMD_INDALA_CLONE_TAG_L
:
704 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
706 case CMD_T55XX_READ_BLOCK
:
707 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
709 case CMD_T55XX_WRITE_BLOCK
:
710 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
712 case CMD_T55XX_READ_TRACE
:
715 case CMD_PCF7931_READ
:
717 cmd_send(CMD_ACK
,0,0,0,0,0);
719 case CMD_EM4X_READ_WORD
:
720 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
722 case CMD_EM4X_WRITE_WORD
:
723 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
728 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
729 SnoopHitag(c
->arg
[0]);
731 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
732 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
734 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
735 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
740 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
741 AcquireRawAdcSamplesIso15693();
743 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
744 RecordRawAdcSamplesIso15693();
747 case CMD_ISO_15693_COMMAND
:
748 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
751 case CMD_ISO_15693_FIND_AFI
:
752 BruteforceIso15693Afi(c
->arg
[0]);
755 case CMD_ISO_15693_DEBUG
:
756 SetDebugIso15693(c
->arg
[0]);
759 case CMD_READER_ISO_15693
:
760 ReaderIso15693(c
->arg
[0]);
762 case CMD_SIMTAG_ISO_15693
:
763 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
768 case CMD_SIMULATE_TAG_LEGIC_RF
:
769 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
772 case CMD_WRITER_LEGIC_RF
:
773 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
776 case CMD_READER_LEGIC_RF
:
777 LegicRfReader(c
->arg
[0], c
->arg
[1]);
781 #ifdef WITH_ISO14443b
782 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
783 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
785 case CMD_READ_SRI512_TAG
:
786 ReadSTMemoryIso14443(0x0F);
788 case CMD_READ_SRIX4K_TAG
:
789 ReadSTMemoryIso14443(0x7F);
791 case CMD_SNOOP_ISO_14443
:
794 case CMD_SIMULATE_TAG_ISO_14443
:
795 SimulateIso14443Tag();
797 case CMD_ISO_14443B_COMMAND
:
798 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
802 #ifdef WITH_ISO14443a
803 case CMD_SNOOP_ISO_14443a
:
804 SnoopIso14443a(c
->arg
[0]);
806 case CMD_READER_ISO_14443a
:
809 case CMD_SIMULATE_TAG_ISO_14443a
:
810 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
813 case CMD_EPA_PACE_COLLECT_NONCE
:
814 EPA_PACE_Collect_Nonce(c
);
817 case CMD_READER_MIFARE
:
818 ReaderMifare(c
->arg
[0]);
820 case CMD_MIFARE_READBL
:
821 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 case CMD_MIFAREU_READBL
:
824 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
826 case CMD_MIFAREUC_AUTH1
:
827 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
829 case CMD_MIFAREUC_AUTH2
:
830 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
832 case CMD_MIFAREU_READCARD
:
833 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
835 case CMD_MIFAREUC_READCARD
:
836 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
838 case CMD_MIFARE_READSC
:
839 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
841 case CMD_MIFARE_WRITEBL
:
842 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
844 case CMD_MIFAREU_WRITEBL_COMPAT
:
845 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
847 case CMD_MIFAREU_WRITEBL
:
848 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
850 case CMD_MIFARE_NESTED
:
851 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
853 case CMD_MIFARE_CHKKEYS
:
854 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
856 case CMD_SIMULATE_MIFARE_CARD
:
857 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
861 case CMD_MIFARE_SET_DBGMODE
:
862 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
864 case CMD_MIFARE_EML_MEMCLR
:
865 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
867 case CMD_MIFARE_EML_MEMSET
:
868 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
870 case CMD_MIFARE_EML_MEMGET
:
871 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
873 case CMD_MIFARE_EML_CARDLOAD
:
874 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
877 // Work with "magic Chinese" card
878 case CMD_MIFARE_CSETBLOCK
:
879 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
881 case CMD_MIFARE_CGETBLOCK
:
882 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
884 case CMD_MIFARE_CIDENT
:
889 case CMD_MIFARE_SNIFFER
:
890 SniffMifare(c
->arg
[0]);
896 // Makes use of ISO14443a FPGA Firmware
897 case CMD_SNOOP_ICLASS
:
900 case CMD_SIMULATE_TAG_ICLASS
:
901 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
903 case CMD_READER_ICLASS
:
904 ReaderIClass(c
->arg
[0]);
906 case CMD_READER_ICLASS_REPLAY
:
907 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
909 case CMD_ICLASS_EML_MEMSET
:
910 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
914 case CMD_SIMULATE_TAG_HF_LISTEN
:
915 SimulateTagHfListen();
922 case CMD_MEASURE_ANTENNA_TUNING
:
923 MeasureAntennaTuning();
926 case CMD_MEASURE_ANTENNA_TUNING_HF
:
927 MeasureAntennaTuningHf();
930 case CMD_LISTEN_READER_FIELD
:
931 ListenReaderField(c
->arg
[0]);
934 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
935 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
937 LED_D_OFF(); // LED D indicates field ON or OFF
940 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
943 uint8_t *BigBuf
= BigBuf_get_addr();
944 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
945 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
946 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
948 // Trigger a finish downloading signal with an ACK frame
949 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
953 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
954 uint8_t *b
= BigBuf_get_addr();
955 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
956 cmd_send(CMD_ACK
,0,0,0,0,0);
963 case CMD_SET_LF_DIVISOR
:
964 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
965 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
968 case CMD_SET_ADC_MUX
:
970 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
971 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
972 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
973 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
989 case CMD_SETUP_WRITE
:
990 case CMD_FINISH_WRITE
:
991 case CMD_HARDWARE_RESET
:
995 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
997 // We're going to reset, and the bootrom will take control.
1001 case CMD_START_FLASH
:
1002 if(common_area
.flags
.bootrom_present
) {
1003 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1006 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1010 case CMD_DEVICE_INFO
: {
1011 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1012 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1013 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1017 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1022 void __attribute__((noreturn
)) AppMain(void)
1026 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1027 /* Initialize common area */
1028 memset(&common_area
, 0, sizeof(common_area
));
1029 common_area
.magic
= COMMON_AREA_MAGIC
;
1030 common_area
.version
= 1;
1032 common_area
.flags
.osimage_present
= 1;
1042 // The FPGA gets its clock from us from PCK0 output, so set that up.
1043 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1044 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1045 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1046 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1047 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1048 AT91C_PMC_PRES_CLK_4
;
1049 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1052 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1054 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1056 // Load the FPGA image, which we have stored in our flash.
1057 // (the HF version by default)
1058 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1066 byte_t rx
[sizeof(UsbCommand
)];
1071 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1073 UsbPacketReceived(rx
,rx_len
);
1079 if (BUTTON_HELD(1000) > 0)