]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Further implementation of iclass 'fullsim'. Moved protocol definitions to shared...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #ifdef WITH_LCD
29 #include "LCD.h"
30 #endif
31
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
39
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend[TOSEND_BUFFER_SIZE];
42 int ToSendMax;
43 static int ToSendBit;
44 struct common_area common_area __attribute__((section(".commonarea")));
45
46 void ToSendReset(void)
47 {
48 ToSendMax = -1;
49 ToSendBit = 8;
50 }
51
52 void ToSendStuffBit(int b)
53 {
54 if(ToSendBit >= 8) {
55 ToSendMax++;
56 ToSend[ToSendMax] = 0;
57 ToSendBit = 0;
58 }
59
60 if(b) {
61 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
62 }
63
64 ToSendBit++;
65
66 if(ToSendMax >= sizeof(ToSend)) {
67 ToSendBit = 0;
68 DbpString("ToSendStuffBit overflowed!");
69 }
70 }
71
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
75
76 void DbpString(char *str)
77 {
78 byte_t len = strlen(str);
79 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
80 }
81
82 #if 0
83 void DbpIntegers(int x1, int x2, int x3)
84 {
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
86 }
87 #endif
88
89 void Dbprintf(const char *fmt, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string[128];
92 va_list ap;
93
94 va_start(ap, fmt);
95 kvsprintf(fmt, output_string, 10, ap);
96 va_end(ap);
97
98 DbpString(output_string);
99 }
100
101 // prints HEX & ASCII
102 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
103 int l=0,i;
104 char ascii[9];
105
106 while (len>0) {
107 if (len>8) l=8;
108 else l=len;
109
110 memcpy(ascii,d,l);
111 ascii[l]=0;
112
113 // filter safe ascii
114 for (i=0;i<l;i++)
115 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
116
117 if (bAsci) {
118 Dbprintf("%-8s %*D",ascii,l,d," ");
119 } else {
120 Dbprintf("%*D",l,d," ");
121 }
122
123 len-=8;
124 d+=8;
125 }
126 }
127
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
131 // return that.
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch)
134 {
135 uint32_t d;
136
137 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
138 AT91C_BASE_ADC->ADC_MR =
139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
142
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
146 //
147 // The maths are:
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
149 //
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
151 //
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
153
154 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
157
158 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
159 ;
160 d = AT91C_BASE_ADC->ADC_CDR[ch];
161
162 return d;
163 }
164
165 int AvgAdc(int ch) // was static - merlok
166 {
167 int i;
168 int a = 0;
169
170 for(i = 0; i < 32; i++) {
171 a += ReadAdc(ch);
172 }
173
174 return (a + 15) >> 5;
175 }
176
177 void MeasureAntennaTuning(void)
178 {
179 uint8_t LF_Results[256];
180 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
181 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
182
183 LED_B_ON();
184
185 /*
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
192 */
193
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
196 for (i=255; i>=19; i--) {
197 WDT_HIT();
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
199 SpinDelay(20);
200 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
201 if (i==95) vLf125 = adcval; // voltage at 125Khz
202 if (i==89) vLf134 = adcval; // voltage at 134Khz
203
204 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results[i] > peak) {
206 peakv = adcval;
207 peak = LF_Results[i];
208 peakf = i;
209 //ptr = i;
210 }
211 }
212
213 for (i=18; i >= 0; i--) LF_Results[i] = 0;
214
215 LED_A_ON();
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
219 SpinDelay(20);
220 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
221
222 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
224 LED_A_OFF();
225 LED_B_OFF();
226 return;
227 }
228
229 void MeasureAntennaTuningHf(void)
230 {
231 int vHf = 0; // in mV
232
233 DbpString("Measuring HF antenna, press button to exit");
234
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
238
239 for (;;) {
240 SpinDelay(20);
241 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
242
243 Dbprintf("%d mV",vHf);
244 if (BUTTON_PRESS()) break;
245 }
246 DbpString("cancelled");
247
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249
250 }
251
252
253 void SimulateTagHfListen(void)
254 {
255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
259 uint8_t v = 0;
260 int i;
261 int p = 0;
262
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
267
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
270
271 FpgaSetupSsc();
272
273 i = 0;
274 for(;;) {
275 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
276 AT91C_BASE_SSC->SSC_THR = 0xff;
277 }
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
279 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
280
281 v <<= 1;
282 if(r & 1) {
283 v |= 1;
284 }
285 p++;
286
287 if(p >= 8) {
288 dest[i] = v;
289 v = 0;
290 p = 0;
291 i++;
292
293 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
294 break;
295 }
296 }
297 }
298 }
299 DbpString("simulate tag (now type bitsamples)");
300 }
301
302 void ReadMem(int addr)
303 {
304 const uint8_t *data = ((uint8_t *)addr);
305
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
308 }
309
310 /* osimage version information is linked in */
311 extern struct version_information version_information;
312 /* bootrom version information is pointed to from _bootphase1_version_pointer */
313 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
314 void SendVersion(void)
315 {
316 char temp[512]; /* Limited data payload in USB packets */
317 DbpString("Prox/RFID mark3 RFID instrument");
318
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
322 */
323 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
324 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
325 DbpString("bootrom version information appears invalid");
326 } else {
327 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
328 DbpString(temp);
329 }
330
331 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
332 DbpString(temp);
333
334 FpgaGatherVersion(temp, sizeof(temp));
335 DbpString(temp);
336 // Send Chip ID
337 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
338 }
339
340 #ifdef WITH_LF
341 // samy's sniff and repeat routine
342 void SamyRun()
343 {
344 DbpString("Stand-alone mode! No PC necessary.");
345 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
346
347 // 3 possible options? no just 2 for now
348 #define OPTS 2
349
350 int high[OPTS], low[OPTS];
351
352 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_RED, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_GREEN, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362
363 int selected = 0;
364 int playing = 0;
365 int cardRead = 0;
366
367 // Turn on selected LED
368 LED(selected + 1, 0);
369
370 for (;;)
371 {
372 usb_poll();
373 WDT_HIT();
374
375 // Was our button held down or pressed?
376 int button_pressed = BUTTON_HELD(1000);
377 SpinDelay(300);
378
379 // Button was held for a second, begin recording
380 if (button_pressed > 0 && cardRead == 0)
381 {
382 LEDsoff();
383 LED(selected + 1, 0);
384 LED(LED_RED2, 0);
385
386 // record
387 DbpString("Starting recording");
388
389 // wait for button to be released
390 while(BUTTON_PRESS())
391 WDT_HIT();
392
393 /* need this delay to prevent catching some weird data */
394 SpinDelay(500);
395
396 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
397 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
398
399 LEDsoff();
400 LED(selected + 1, 0);
401 // Finished recording
402
403 // If we were previously playing, set playing off
404 // so next button push begins playing what we recorded
405 playing = 0;
406
407 cardRead = 1;
408
409 }
410
411 else if (button_pressed > 0 && cardRead == 1)
412 {
413 LEDsoff();
414 LED(selected + 1, 0);
415 LED(LED_ORANGE, 0);
416
417 // record
418 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
419
420 // wait for button to be released
421 while(BUTTON_PRESS())
422 WDT_HIT();
423
424 /* need this delay to prevent catching some weird data */
425 SpinDelay(500);
426
427 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
428 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
429
430 LEDsoff();
431 LED(selected + 1, 0);
432 // Finished recording
433
434 // If we were previously playing, set playing off
435 // so next button push begins playing what we recorded
436 playing = 0;
437
438 cardRead = 0;
439
440 }
441
442 // Change where to record (or begin playing)
443 else if (button_pressed)
444 {
445 // Next option if we were previously playing
446 if (playing)
447 selected = (selected + 1) % OPTS;
448 playing = !playing;
449
450 LEDsoff();
451 LED(selected + 1, 0);
452
453 // Begin transmitting
454 if (playing)
455 {
456 LED(LED_GREEN, 0);
457 DbpString("Playing");
458 // wait for button to be released
459 while(BUTTON_PRESS())
460 WDT_HIT();
461 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
462 CmdHIDsimTAG(high[selected], low[selected], 0);
463 DbpString("Done playing");
464 if (BUTTON_HELD(1000) > 0)
465 {
466 DbpString("Exiting");
467 LEDsoff();
468 return;
469 }
470
471 /* We pressed a button so ignore it here with a delay */
472 SpinDelay(300);
473
474 // when done, we're done playing, move to next option
475 selected = (selected + 1) % OPTS;
476 playing = !playing;
477 LEDsoff();
478 LED(selected + 1, 0);
479 }
480 else
481 while(BUTTON_PRESS())
482 WDT_HIT();
483 }
484 }
485 }
486 #endif
487
488 /*
489 OBJECTIVE
490 Listen and detect an external reader. Determine the best location
491 for the antenna.
492
493 INSTRUCTIONS:
494 Inside the ListenReaderField() function, there is two mode.
495 By default, when you call the function, you will enter mode 1.
496 If you press the PM3 button one time, you will enter mode 2.
497 If you press the PM3 button a second time, you will exit the function.
498
499 DESCRIPTION OF MODE 1:
500 This mode just listens for an external reader field and lights up green
501 for HF and/or red for LF. This is the original mode of the detectreader
502 function.
503
504 DESCRIPTION OF MODE 2:
505 This mode will visually represent, using the LEDs, the actual strength of the
506 current compared to the maximum current detected. Basically, once you know
507 what kind of external reader is present, it will help you spot the best location to place
508 your antenna. You will probably not get some good results if there is a LF and a HF reader
509 at the same place! :-)
510
511 LIGHT SCHEME USED:
512 */
513 static const char LIGHT_SCHEME[] = {
514 0x0, /* ---- | No field detected */
515 0x1, /* X--- | 14% of maximum current detected */
516 0x2, /* -X-- | 29% of maximum current detected */
517 0x4, /* --X- | 43% of maximum current detected */
518 0x8, /* ---X | 57% of maximum current detected */
519 0xC, /* --XX | 71% of maximum current detected */
520 0xE, /* -XXX | 86% of maximum current detected */
521 0xF, /* XXXX | 100% of maximum current detected */
522 };
523 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
524
525 void ListenReaderField(int limit)
526 {
527 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
528 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
529 int mode=1, display_val, display_max, i;
530
531 #define LF_ONLY 1
532 #define HF_ONLY 2
533 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
534
535
536 // switch off FPGA - we don't want to measure our own signal
537 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
538 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
539
540 LEDsoff();
541
542 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
543
544 if(limit != HF_ONLY) {
545 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
546 lf_baseline = lf_av;
547 }
548
549 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
550
551 if (limit != LF_ONLY) {
552 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
553 hf_baseline = hf_av;
554 }
555
556 for(;;) {
557 if (BUTTON_PRESS()) {
558 SpinDelay(500);
559 switch (mode) {
560 case 1:
561 mode=2;
562 DbpString("Signal Strength Mode");
563 break;
564 case 2:
565 default:
566 DbpString("Stopped");
567 LEDsoff();
568 return;
569 break;
570 }
571 }
572 WDT_HIT();
573
574 if (limit != HF_ONLY) {
575 if(mode == 1) {
576 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
577 LED_D_ON();
578 else
579 LED_D_OFF();
580 }
581
582 lf_av_new = AvgAdc(ADC_CHAN_LF);
583 // see if there's a significant change
584 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
585 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
586 lf_av = lf_av_new;
587 if (lf_av > lf_max)
588 lf_max = lf_av;
589 }
590 }
591
592 if (limit != LF_ONLY) {
593 if (mode == 1){
594 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
595 LED_B_ON();
596 else
597 LED_B_OFF();
598 }
599
600 hf_av_new = AvgAdc(ADC_CHAN_HF);
601 // see if there's a significant change
602 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
603 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
604 hf_av = hf_av_new;
605 if (hf_av > hf_max)
606 hf_max = hf_av;
607 }
608 }
609
610 if(mode == 2) {
611 if (limit == LF_ONLY) {
612 display_val = lf_av;
613 display_max = lf_max;
614 } else if (limit == HF_ONLY) {
615 display_val = hf_av;
616 display_max = hf_max;
617 } else { /* Pick one at random */
618 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
619 display_val = hf_av;
620 display_max = hf_max;
621 } else {
622 display_val = lf_av;
623 display_max = lf_max;
624 }
625 }
626 for (i=0; i<LIGHT_LEN; i++) {
627 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
628 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
629 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
630 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
631 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
632 break;
633 }
634 }
635 }
636 }
637 }
638
639 void UsbPacketReceived(uint8_t *packet, int len)
640 {
641 UsbCommand *c = (UsbCommand *)packet;
642
643 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
644
645 switch(c->cmd) {
646 #ifdef WITH_LF
647 case CMD_SET_LF_SAMPLING_CONFIG:
648 setSamplingConfig((sample_config *) c->d.asBytes);
649 break;
650 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
651 cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
652 break;
653 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
654 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
655 break;
656 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
657 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
658 break;
659 case CMD_HID_DEMOD_FSK:
660 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
661 break;
662 case CMD_HID_SIM_TAG:
663 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
664 break;
665 case CMD_HID_CLONE_TAG:
666 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
667 break;
668 case CMD_IO_DEMOD_FSK:
669 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
670 break;
671 case CMD_IO_CLONE_TAG:
672 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
673 break;
674 case CMD_EM410X_DEMOD:
675 CmdEM410xdemod(c->arg[0], 0, 0, 1);
676 break;
677 case CMD_EM410X_WRITE_TAG:
678 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
679 break;
680 case CMD_READ_TI_TYPE:
681 ReadTItag();
682 break;
683 case CMD_WRITE_TI_TYPE:
684 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
685 break;
686 case CMD_SIMULATE_TAG_125K:
687 LED_A_ON();
688 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
689 LED_A_OFF();
690 break;
691 case CMD_LF_SIMULATE_BIDIR:
692 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
693 break;
694 case CMD_INDALA_CLONE_TAG:
695 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
696 break;
697 case CMD_INDALA_CLONE_TAG_L:
698 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
699 break;
700 case CMD_T55XX_READ_BLOCK:
701 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
702 break;
703 case CMD_T55XX_WRITE_BLOCK:
704 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
705 break;
706 case CMD_T55XX_READ_TRACE:
707 T55xxReadTrace();
708 break;
709 case CMD_PCF7931_READ:
710 ReadPCF7931();
711 cmd_send(CMD_ACK,0,0,0,0,0);
712 break;
713 case CMD_EM4X_READ_WORD:
714 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
715 break;
716 case CMD_EM4X_WRITE_WORD:
717 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
718 break;
719 #endif
720
721 #ifdef WITH_HITAG
722 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
723 SnoopHitag(c->arg[0]);
724 break;
725 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
726 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
727 break;
728 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
729 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
730 break;
731 #endif
732
733 #ifdef WITH_ISO15693
734 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
735 AcquireRawAdcSamplesIso15693();
736 break;
737 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
738 RecordRawAdcSamplesIso15693();
739 break;
740
741 case CMD_ISO_15693_COMMAND:
742 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
743 break;
744
745 case CMD_ISO_15693_FIND_AFI:
746 BruteforceIso15693Afi(c->arg[0]);
747 break;
748
749 case CMD_ISO_15693_DEBUG:
750 SetDebugIso15693(c->arg[0]);
751 break;
752
753 case CMD_READER_ISO_15693:
754 ReaderIso15693(c->arg[0]);
755 break;
756 case CMD_SIMTAG_ISO_15693:
757 SimTagIso15693(c->arg[0], c->d.asBytes);
758 break;
759 #endif
760
761 #ifdef WITH_LEGICRF
762 case CMD_SIMULATE_TAG_LEGIC_RF:
763 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
764 break;
765
766 case CMD_WRITER_LEGIC_RF:
767 LegicRfWriter(c->arg[1], c->arg[0]);
768 break;
769
770 case CMD_READER_LEGIC_RF:
771 LegicRfReader(c->arg[0], c->arg[1]);
772 break;
773 #endif
774
775 #ifdef WITH_ISO14443b
776 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
777 AcquireRawAdcSamplesIso14443(c->arg[0]);
778 break;
779 case CMD_READ_SRI512_TAG:
780 ReadSTMemoryIso14443(0x0F);
781 break;
782 case CMD_READ_SRIX4K_TAG:
783 ReadSTMemoryIso14443(0x7F);
784 break;
785 case CMD_SNOOP_ISO_14443:
786 SnoopIso14443();
787 break;
788 case CMD_SIMULATE_TAG_ISO_14443:
789 SimulateIso14443Tag();
790 break;
791 case CMD_ISO_14443B_COMMAND:
792 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
793 break;
794 #endif
795
796 #ifdef WITH_ISO14443a
797 case CMD_SNOOP_ISO_14443a:
798 SnoopIso14443a(c->arg[0]);
799 break;
800 case CMD_READER_ISO_14443a:
801 ReaderIso14443a(c);
802 break;
803 case CMD_SIMULATE_TAG_ISO_14443a:
804 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
805 break;
806
807 case CMD_EPA_PACE_COLLECT_NONCE:
808 EPA_PACE_Collect_Nonce(c);
809 break;
810
811 case CMD_READER_MIFARE:
812 ReaderMifare(c->arg[0]);
813 break;
814 case CMD_MIFARE_READBL:
815 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
816 break;
817 case CMD_MIFAREU_READBL:
818 MifareUReadBlock(c->arg[0],c->d.asBytes);
819 break;
820 case CMD_MIFAREUC_AUTH1:
821 MifareUC_Auth1(c->arg[0],c->d.asBytes);
822 break;
823 case CMD_MIFAREUC_AUTH2:
824 MifareUC_Auth2(c->arg[0],c->d.asBytes);
825 break;
826 case CMD_MIFAREU_READCARD:
827 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
828 break;
829 case CMD_MIFAREUC_READCARD:
830 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
831 break;
832 case CMD_MIFARE_READSC:
833 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
834 break;
835 case CMD_MIFARE_WRITEBL:
836 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
837 break;
838 case CMD_MIFAREU_WRITEBL_COMPAT:
839 MifareUWriteBlock(c->arg[0], c->d.asBytes);
840 break;
841 case CMD_MIFAREU_WRITEBL:
842 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
843 break;
844 case CMD_MIFARE_NESTED:
845 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
846 break;
847 case CMD_MIFARE_CHKKEYS:
848 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
849 break;
850 case CMD_SIMULATE_MIFARE_CARD:
851 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
852 break;
853
854 // emulator
855 case CMD_MIFARE_SET_DBGMODE:
856 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
857 break;
858 case CMD_MIFARE_EML_MEMCLR:
859 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
860 break;
861 case CMD_MIFARE_EML_MEMSET:
862 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
863 break;
864 case CMD_MIFARE_EML_MEMGET:
865 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
866 break;
867 case CMD_MIFARE_EML_CARDLOAD:
868 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
869 break;
870
871 // Work with "magic Chinese" card
872 case CMD_MIFARE_CSETBLOCK:
873 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
874 break;
875 case CMD_MIFARE_CGETBLOCK:
876 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
877 break;
878 case CMD_MIFARE_CIDENT:
879 MifareCIdent();
880 break;
881
882 // mifare sniffer
883 case CMD_MIFARE_SNIFFER:
884 SniffMifare(c->arg[0]);
885 break;
886
887 #endif
888
889 #ifdef WITH_ICLASS
890 // Makes use of ISO14443a FPGA Firmware
891 case CMD_SNOOP_ICLASS:
892 SnoopIClass();
893 break;
894 case CMD_SIMULATE_TAG_ICLASS:
895 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
896 break;
897 case CMD_READER_ICLASS:
898 ReaderIClass(c->arg[0]);
899 break;
900 case CMD_READER_ICLASS_REPLAY:
901 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
902 break;
903 case CMD_ICLASS_EML_MEMSET:
904 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
905 break;
906 #endif
907
908 case CMD_SIMULATE_TAG_HF_LISTEN:
909 SimulateTagHfListen();
910 break;
911
912 case CMD_BUFF_CLEAR:
913 BigBuf_Clear();
914 break;
915
916 case CMD_MEASURE_ANTENNA_TUNING:
917 MeasureAntennaTuning();
918 break;
919
920 case CMD_MEASURE_ANTENNA_TUNING_HF:
921 MeasureAntennaTuningHf();
922 break;
923
924 case CMD_LISTEN_READER_FIELD:
925 ListenReaderField(c->arg[0]);
926 break;
927
928 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
929 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
930 SpinDelay(200);
931 LED_D_OFF(); // LED D indicates field ON or OFF
932 break;
933
934 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
935
936 LED_B_ON();
937 uint8_t *BigBuf = BigBuf_get_addr();
938 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
939 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
940 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
941 }
942 // Trigger a finish downloading signal with an ACK frame
943 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
944 LED_B_OFF();
945 break;
946
947 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
948 uint8_t *b = BigBuf_get_addr();
949 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
950 cmd_send(CMD_ACK,0,0,0,0,0);
951 break;
952 }
953 case CMD_READ_MEM:
954 ReadMem(c->arg[0]);
955 break;
956
957 case CMD_SET_LF_DIVISOR:
958 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
959 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
960 break;
961
962 case CMD_SET_ADC_MUX:
963 switch(c->arg[0]) {
964 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
965 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
966 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
967 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
968 }
969 break;
970
971 case CMD_VERSION:
972 SendVersion();
973 break;
974
975 #ifdef WITH_LCD
976 case CMD_LCD_RESET:
977 LCDReset();
978 break;
979 case CMD_LCD:
980 LCDSend(c->arg[0]);
981 break;
982 #endif
983 case CMD_SETUP_WRITE:
984 case CMD_FINISH_WRITE:
985 case CMD_HARDWARE_RESET:
986 usb_disable();
987 SpinDelay(1000);
988 SpinDelay(1000);
989 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
990 for(;;) {
991 // We're going to reset, and the bootrom will take control.
992 }
993 break;
994
995 case CMD_START_FLASH:
996 if(common_area.flags.bootrom_present) {
997 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
998 }
999 usb_disable();
1000 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1001 for(;;);
1002 break;
1003
1004 case CMD_DEVICE_INFO: {
1005 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1006 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1007 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1008 break;
1009 }
1010 default:
1011 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1012 break;
1013 }
1014 }
1015
1016 void __attribute__((noreturn)) AppMain(void)
1017 {
1018 SpinDelay(100);
1019 clear_trace();
1020 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1021 /* Initialize common area */
1022 memset(&common_area, 0, sizeof(common_area));
1023 common_area.magic = COMMON_AREA_MAGIC;
1024 common_area.version = 1;
1025 }
1026 common_area.flags.osimage_present = 1;
1027
1028 LED_D_OFF();
1029 LED_C_OFF();
1030 LED_B_OFF();
1031 LED_A_OFF();
1032
1033 // Init USB device
1034 usb_enable();
1035
1036 // The FPGA gets its clock from us from PCK0 output, so set that up.
1037 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1038 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1039 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1040 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1041 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1042 AT91C_PMC_PRES_CLK_4;
1043 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1044
1045 // Reset SPI
1046 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1047 // Reset SSC
1048 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1049
1050 // Load the FPGA image, which we have stored in our flash.
1051 // (the HF version by default)
1052 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1053
1054 StartTickCount();
1055
1056 #ifdef WITH_LCD
1057 LCDInit();
1058 #endif
1059
1060 byte_t rx[sizeof(UsbCommand)];
1061 size_t rx_len;
1062
1063 for(;;) {
1064 if (usb_poll()) {
1065 rx_len = usb_read(rx,sizeof(UsbCommand));
1066 if (rx_len) {
1067 UsbPacketReceived(rx,rx_len);
1068 }
1069 }
1070 WDT_HIT();
1071
1072 #ifdef WITH_LF
1073 if (BUTTON_HELD(1000) > 0)
1074 SamyRun();
1075 #endif
1076 }
1077 }
Impressum, Datenschutz