1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
24 #include "../include/hitag2.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void ToSendReset(void)
51 void ToSendStuffBit(int b
)
55 ToSend
[ToSendMax
] = 0;
60 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
65 if(ToSendMax
>= sizeof(ToSend
)) {
67 DbpString("ToSendStuffBit overflowed!");
71 //=============================================================================
72 // Debug print functions, to go out over USB, to the usual PC-side client.
73 //=============================================================================
75 void DbpString(char *str
)
77 byte_t len
= strlen(str
);
78 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
82 void DbpIntegers(int x1
, int x2
, int x3
)
84 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
88 void Dbprintf(const char *fmt
, ...) {
89 // should probably limit size here; oh well, let's just use a big buffer
90 char output_string
[128];
94 kvsprintf(fmt
, output_string
, 10, ap
);
97 DbpString(output_string
);
100 // prints HEX & ASCII
101 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
114 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
117 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
119 Dbprintf("%*D",l
,d
," ");
127 //-----------------------------------------------------------------------------
128 // Read an ADC channel and block till it completes, then return the result
129 // in ADC units (0 to 1023). Also a routine to average 32 samples and
131 //-----------------------------------------------------------------------------
132 static int ReadAdc(int ch
)
136 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
137 AT91C_BASE_ADC
->ADC_MR
=
138 ADC_MODE_PRESCALE(32) |
139 ADC_MODE_STARTUP_TIME(16) |
140 ADC_MODE_SAMPLE_HOLD_TIME(8);
141 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
144 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
146 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
151 int AvgAdc(int ch
) // was static - merlok
156 for(i
= 0; i
< 32; i
++) {
160 return (a
+ 15) >> 5;
163 void MeasureAntennaTuning(void)
165 uint8_t LF_Results
[256];
166 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
167 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
172 * Sweeps the useful LF range of the proxmark from
173 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
174 * read the voltage in the antenna, the result left
175 * in the buffer is a graph which should clearly show
176 * the resonating frequency of your LF antenna
177 * ( hopefully around 95 if it is tuned to 125kHz!)
180 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
181 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
182 for (i
=255; i
>=19; i
--) {
184 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
186 // Vref = 3.3V, and a 10000:240 voltage divider on the input
187 // can measure voltages up to 137500 mV
188 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
189 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
190 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
192 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
193 if(LF_Results
[i
] > peak
) {
195 peak
= LF_Results
[i
];
201 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
204 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
205 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
208 // Vref = 3300mV, and an 10:1 voltage divider on the input
209 // can measure voltages up to 33000 mV
210 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
212 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
219 void MeasureAntennaTuningHf(void)
221 int vHf
= 0; // in mV
223 DbpString("Measuring HF antenna, press button to exit");
226 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
227 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
230 // Vref = 3300mV, and an 10:1 voltage divider on the input
231 // can measure voltages up to 33000 mV
232 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
234 Dbprintf("%d mV",vHf
);
235 if (BUTTON_PRESS()) break;
237 DbpString("cancelled");
241 void SimulateTagHfListen(void)
243 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
244 // There might be a better size to be defined:
245 #define HF_14B_SNOOP_BUFFER_SIZE 2744
246 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
251 // We're using this mode just so that I can test it out; the simulated
252 // tag mode would work just as well and be simpler.
253 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
256 // We need to listen to the high-frequency, peak-detected path.
257 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
263 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
264 AT91C_BASE_SSC
->SSC_THR
= 0xff;
266 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
267 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
281 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
287 DbpString("simulate tag (now type bitsamples)");
290 void ReadMem(int addr
)
292 const uint8_t *data
= ((uint8_t *)addr
);
294 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
295 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
298 /* osimage version information is linked in */
299 extern struct version_information version_information
;
300 /* bootrom version information is pointed to from _bootphase1_version_pointer */
301 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
302 void SendVersion(void)
304 char temp
[512]; /* Limited data payload in USB packets */
305 DbpString("Prox/RFID mark3 RFID instrument");
307 /* Try to find the bootrom version information. Expect to find a pointer at
308 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
309 * pointer, then use it.
311 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
312 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
313 DbpString("bootrom version information appears invalid");
315 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
319 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
322 FpgaGatherVersion(temp
, sizeof(temp
));
325 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
329 // samy's sniff and repeat routine
332 DbpString("Stand-alone mode! No PC necessary.");
333 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
335 // 3 possible options? no just 2 for now
338 int high
[OPTS
], low
[OPTS
];
340 // Oooh pretty -- notify user we're in elite samy mode now
342 LED(LED_ORANGE
, 200);
344 LED(LED_ORANGE
, 200);
346 LED(LED_ORANGE
, 200);
348 LED(LED_ORANGE
, 200);
355 // Turn on selected LED
356 LED(selected
+ 1, 0);
363 // Was our button held down or pressed?
364 int button_pressed
= BUTTON_HELD(1000);
367 // Button was held for a second, begin recording
368 if (button_pressed
> 0 && cardRead
== 0)
371 LED(selected
+ 1, 0);
375 DbpString("Starting recording");
377 // wait for button to be released
378 while(BUTTON_PRESS())
381 /* need this delay to prevent catching some weird data */
384 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
385 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
388 LED(selected
+ 1, 0);
389 // Finished recording
391 // If we were previously playing, set playing off
392 // so next button push begins playing what we recorded
399 else if (button_pressed
> 0 && cardRead
== 1)
402 LED(selected
+ 1, 0);
406 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
408 // wait for button to be released
409 while(BUTTON_PRESS())
412 /* need this delay to prevent catching some weird data */
415 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
416 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
419 LED(selected
+ 1, 0);
420 // Finished recording
422 // If we were previously playing, set playing off
423 // so next button push begins playing what we recorded
430 // Change where to record (or begin playing)
431 else if (button_pressed
)
433 // Next option if we were previously playing
435 selected
= (selected
+ 1) % OPTS
;
439 LED(selected
+ 1, 0);
441 // Begin transmitting
445 DbpString("Playing");
446 // wait for button to be released
447 while(BUTTON_PRESS())
449 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
450 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
451 DbpString("Done playing");
452 if (BUTTON_HELD(1000) > 0)
454 DbpString("Exiting");
459 /* We pressed a button so ignore it here with a delay */
462 // when done, we're done playing, move to next option
463 selected
= (selected
+ 1) % OPTS
;
466 LED(selected
+ 1, 0);
469 while(BUTTON_PRESS())
478 Listen and detect an external reader. Determine the best location
482 Inside the ListenReaderField() function, there is two mode.
483 By default, when you call the function, you will enter mode 1.
484 If you press the PM3 button one time, you will enter mode 2.
485 If you press the PM3 button a second time, you will exit the function.
487 DESCRIPTION OF MODE 1:
488 This mode just listens for an external reader field and lights up green
489 for HF and/or red for LF. This is the original mode of the detectreader
492 DESCRIPTION OF MODE 2:
493 This mode will visually represent, using the LEDs, the actual strength of the
494 current compared to the maximum current detected. Basically, once you know
495 what kind of external reader is present, it will help you spot the best location to place
496 your antenna. You will probably not get some good results if there is a LF and a HF reader
497 at the same place! :-)
501 static const char LIGHT_SCHEME
[] = {
502 0x0, /* ---- | No field detected */
503 0x1, /* X--- | 14% of maximum current detected */
504 0x2, /* -X-- | 29% of maximum current detected */
505 0x4, /* --X- | 43% of maximum current detected */
506 0x8, /* ---X | 57% of maximum current detected */
507 0xC, /* --XX | 71% of maximum current detected */
508 0xE, /* -XXX | 86% of maximum current detected */
509 0xF, /* XXXX | 100% of maximum current detected */
511 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
513 void ListenReaderField(int limit
)
515 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
516 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
517 int mode
=1, display_val
, display_max
, i
;
524 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
526 if(limit
!= HF_ONLY
) {
527 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
531 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
533 if (limit
!= LF_ONLY
) {
534 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
539 if (BUTTON_PRESS()) {
544 DbpString("Signal Strength Mode");
548 DbpString("Stopped");
556 if (limit
!= HF_ONLY
) {
558 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
563 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
564 // see if there's a significant change
565 if(abs(lf_av
- lf_av_new
) > 10) {
566 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
574 if (limit
!= LF_ONLY
) {
576 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
581 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
582 // see if there's a significant change
583 if(abs(hf_av
- hf_av_new
) > 10) {
584 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
593 if (limit
== LF_ONLY
) {
595 display_max
= lf_max
;
596 } else if (limit
== HF_ONLY
) {
598 display_max
= hf_max
;
599 } else { /* Pick one at random */
600 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
602 display_max
= hf_max
;
605 display_max
= lf_max
;
608 for (i
=0; i
<LIGHT_LEN
; i
++) {
609 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
610 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
611 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
612 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
613 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
621 void UsbPacketReceived(uint8_t *packet
, int len
)
623 UsbCommand
*c
= (UsbCommand
*)packet
;
625 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
629 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
630 AcquireRawAdcSamples125k(c
->arg
[0]);
631 cmd_send(CMD_ACK
,0,0,0,0,0);
633 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
634 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
636 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
637 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
638 cmd_send(CMD_ACK
,0,0,0,0,0);
640 case CMD_HID_DEMOD_FSK
:
641 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
643 case CMD_HID_SIM_TAG
:
644 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
646 case CMD_HID_CLONE_TAG
:
647 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
649 case CMD_IO_DEMOD_FSK
:
650 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
652 case CMD_IO_CLONE_TAG
:
653 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
655 case CMD_EM410X_DEMOD
:
656 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
658 case CMD_EM410X_WRITE_TAG
:
659 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
661 case CMD_READ_TI_TYPE
:
664 case CMD_WRITE_TI_TYPE
:
665 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
667 case CMD_SIMULATE_TAG_125K
:
668 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
669 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
671 case CMD_LF_SIMULATE_BIDIR
:
672 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
674 case CMD_INDALA_CLONE_TAG
:
675 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
677 case CMD_INDALA_CLONE_TAG_L
:
678 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
680 case CMD_T55XX_READ_BLOCK
:
681 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
683 case CMD_T55XX_WRITE_BLOCK
:
684 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
686 case CMD_T55XX_READ_TRACE
:
689 case CMD_PCF7931_READ
:
691 cmd_send(CMD_ACK
,0,0,0,0,0);
693 case CMD_EM4X_READ_WORD
:
694 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
696 case CMD_EM4X_WRITE_WORD
:
697 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
702 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
703 SnoopHitag(c
->arg
[0]);
705 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
706 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
708 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
709 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
714 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
715 AcquireRawAdcSamplesIso15693();
717 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
718 RecordRawAdcSamplesIso15693();
721 case CMD_ISO_15693_COMMAND
:
722 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
725 case CMD_ISO_15693_FIND_AFI
:
726 BruteforceIso15693Afi(c
->arg
[0]);
729 case CMD_ISO_15693_DEBUG
:
730 SetDebugIso15693(c
->arg
[0]);
733 case CMD_READER_ISO_15693
:
734 ReaderIso15693(c
->arg
[0]);
736 case CMD_SIMTAG_ISO_15693
:
737 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
742 case CMD_SIMULATE_TAG_LEGIC_RF
:
743 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
746 case CMD_WRITER_LEGIC_RF
:
747 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
750 case CMD_READER_LEGIC_RF
:
751 LegicRfReader(c
->arg
[0], c
->arg
[1]);
755 #ifdef WITH_ISO14443b
756 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
757 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
759 case CMD_READ_SRI512_TAG
:
760 ReadSTMemoryIso14443(0x0F);
762 case CMD_READ_SRIX4K_TAG
:
763 ReadSTMemoryIso14443(0x7F);
765 case CMD_SNOOP_ISO_14443
:
768 case CMD_SIMULATE_TAG_ISO_14443
:
769 SimulateIso14443Tag();
771 case CMD_ISO_14443B_COMMAND
:
772 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
776 #ifdef WITH_ISO14443a
777 case CMD_SNOOP_ISO_14443a
:
778 SnoopIso14443a(c
->arg
[0]);
780 case CMD_READER_ISO_14443a
:
783 case CMD_SIMULATE_TAG_ISO_14443a
:
784 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
787 case CMD_EPA_PACE_COLLECT_NONCE
:
788 EPA_PACE_Collect_Nonce(c
);
795 case CMD_READER_MIFARE
:
796 ReaderMifare(c
->arg
[0]);
798 case CMD_MIFARE_READBL
:
799 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
801 case CMD_MIFAREU_READBL
:
802 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
804 case CMD_MIFAREUC_AUTH1
:
805 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
807 case CMD_MIFAREUC_AUTH2
:
808 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
810 case CMD_MIFAREU_READCARD
:
811 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
813 case CMD_MIFAREUC_READCARD
:
814 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
816 case CMD_MIFARE_READSC
:
817 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
819 case CMD_MIFARE_WRITEBL
:
820 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
822 case CMD_MIFAREU_WRITEBL_COMPAT
:
823 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
825 case CMD_MIFAREU_WRITEBL
:
826 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
828 case CMD_MIFARE_NESTED
:
829 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
831 case CMD_MIFARE_CHKKEYS
:
832 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
834 case CMD_SIMULATE_MIFARE_CARD
:
835 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
839 case CMD_MIFARE_SET_DBGMODE
:
840 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
842 case CMD_MIFARE_EML_MEMCLR
:
843 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
845 case CMD_MIFARE_EML_MEMSET
:
846 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
848 case CMD_MIFARE_EML_MEMGET
:
849 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
851 case CMD_MIFARE_EML_CARDLOAD
:
852 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
855 // Work with "magic Chinese" card
856 case CMD_MIFARE_CSETBLOCK
:
857 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 case CMD_MIFARE_CGETBLOCK
:
860 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
862 case CMD_MIFARE_CIDENT
:
867 case CMD_MIFARE_SNIFFER
:
868 SniffMifare(c
->arg
[0]);
874 // Makes use of ISO14443a FPGA Firmware
875 case CMD_SNOOP_ICLASS
:
878 case CMD_SIMULATE_TAG_ICLASS
:
879 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
881 case CMD_READER_ICLASS
:
882 ReaderIClass(c
->arg
[0]);
884 case CMD_READER_ICLASS_REPLAY
:
885 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
889 case CMD_SIMULATE_TAG_HF_LISTEN
:
890 SimulateTagHfListen();
897 case CMD_MEASURE_ANTENNA_TUNING
:
898 MeasureAntennaTuning();
901 case CMD_MEASURE_ANTENNA_TUNING_HF
:
902 MeasureAntennaTuningHf();
905 case CMD_LISTEN_READER_FIELD
:
906 ListenReaderField(c
->arg
[0]);
909 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
910 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
912 LED_D_OFF(); // LED D indicates field ON or OFF
915 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
918 uint8_t *BigBuf
= BigBuf_get_addr();
919 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
920 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
921 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,traceLen
,BigBuf
+c
->arg
[0]+i
,len
);
923 // Trigger a finish downloading signal with an ACK frame
924 cmd_send(CMD_ACK
,0,0,traceLen
,0,0);
928 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
929 uint8_t *b
= BigBuf_get_addr();
930 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
931 cmd_send(CMD_ACK
,0,0,0,0,0);
938 case CMD_SET_LF_DIVISOR
:
939 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
940 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
943 case CMD_SET_ADC_MUX
:
945 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
946 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
947 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
948 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
964 case CMD_SETUP_WRITE
:
965 case CMD_FINISH_WRITE
:
966 case CMD_HARDWARE_RESET
:
970 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
972 // We're going to reset, and the bootrom will take control.
976 case CMD_START_FLASH
:
977 if(common_area
.flags
.bootrom_present
) {
978 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
981 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
985 case CMD_DEVICE_INFO
: {
986 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
987 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
988 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
992 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
997 void __attribute__((noreturn
)) AppMain(void)
1001 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1002 /* Initialize common area */
1003 memset(&common_area
, 0, sizeof(common_area
));
1004 common_area
.magic
= COMMON_AREA_MAGIC
;
1005 common_area
.version
= 1;
1007 common_area
.flags
.osimage_present
= 1;
1017 // The FPGA gets its clock from us from PCK0 output, so set that up.
1018 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1019 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1020 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1021 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1022 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1023 AT91C_PMC_PRES_CLK_4
;
1024 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1027 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1029 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1031 // Load the FPGA image, which we have stored in our flash.
1032 // (the HF version by default)
1033 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1041 byte_t rx
[sizeof(UsbCommand
)];
1046 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1048 UsbPacketReceived(rx
,rx_len
);
1054 if (BUTTON_HELD(1000) > 0)