]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - client/nonce2key/crapto1.c
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
34 static void quicksort(uint32_t* const start
, uint32_t* const stop
)
36 uint32_t *it
= start
+ 1, *rit
= stop
, t
;
44 else if(*rit
> *start
)
47 t
= *it
, *it
= *rit
, *rit
= t
;
52 t
= *rit
, *rit
= *start
, *start
= t
;
54 quicksort(start
, rit
- 1);
55 quicksort(rit
+ 1, stop
);
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
60 static inline uint32_t* binsearch(uint32_t *start
, uint32_t *stop
)
62 uint32_t mid
, val
= *stop
& 0xff000000;
64 if(start
[mid
= (stop
- start
) >> 1] > val
)
72 /** update_contribution
73 * helper, calculates the partial linear feedback contributions and puts in MSB
76 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
78 uint32_t p
= *item
>> 25;
80 p
= p
<< 1 | parity(*item
& mask1
);
81 p
= p
<< 1 | parity(*item
& mask2
);
82 *item
= p
<< 24 | (*item
& 0xffffff);
86 * using a bit of the keystream extend the table of possible lfsr states
89 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
92 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
93 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
94 *tbl
|= filter(*tbl
) ^ bit
;
95 update_contribution(tbl
, m1
, m2
);
97 } else if(filter(*tbl
) == bit
) {
100 update_contribution(tbl
, m1
, m2
);
102 update_contribution(tbl
, m1
, m2
);
107 /** extend_table_simple
108 * using a bit of the keystream extend the table of possible lfsr states
110 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
112 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
113 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
114 *tbl
|= filter(*tbl
) ^ bit
;
115 } else if(filter(*tbl
) == bit
) { // insert
124 * recursively narrow down the search space, 4 bits of keystream at a time
126 static struct Crypto1State
*
127 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
128 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
129 struct Crypto1State
*sl
, uint32_t in
)
134 for(e
= e_head
; e
<= e_tail
; ++e
) {
135 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
136 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
138 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
139 sl
[1].odd
= sl
[1].even
= 0;
145 for(i
= 0; i
< 4 && rem
--; i
++) {
149 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1,
150 LF_POLY_ODD
<< 1, 0);
154 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
,
155 LF_POLY_EVEN
<< 1 | 1, in
& 3);
160 quicksort(o_head
, o_tail
);
161 quicksort(e_head
, e_tail
);
163 while(o_tail
>= o_head
&& e_tail
>= e_head
)
164 if(((*o_tail
^ *e_tail
) >> 24) == 0) {
165 o_tail
= binsearch(o_head
, o
= o_tail
);
166 e_tail
= binsearch(e_head
, e
= e_tail
);
167 sl
= recover(o_tail
--, o
, oks
,
168 e_tail
--, e
, eks
, rem
, sl
, in
);
170 else if(*o_tail
> *e_tail
)
171 o_tail
= binsearch(o_head
, o_tail
) - 1;
173 e_tail
= binsearch(e_head
, e_tail
) - 1;
178 * recover the state of the lfsr given 32 bits of the keystream
179 * additionally you can use the in parameter to specify the value
180 * that was fed into the lfsr at the time the keystream was generated
182 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
184 struct Crypto1State
*statelist
;
185 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
186 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
189 // split the keystream into an odd and even part
190 for(i
= 31; i
>= 0; i
-= 2)
191 oks
= oks
<< 1 | BEBIT(ks2
, i
);
192 for(i
= 30; i
>= 0; i
-= 2)
193 eks
= eks
<< 1 | BEBIT(ks2
, i
);
195 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
196 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
197 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
198 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
204 statelist
->odd
= statelist
->even
= 0;
206 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
207 for(i
= 1 << 20; i
>= 0; --i
) {
208 if(filter(i
) == (oks
& 1))
210 if(filter(i
) == (eks
& 1))
214 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
215 for(i
= 0; i
< 4; i
++) {
216 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
217 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
220 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
221 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
222 // parameter into account.
223 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00);
224 recover(odd_head
, odd_tail
, oks
,
225 even_head
, even_tail
, eks
, 11, statelist
, in
<< 1);
233 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
234 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
235 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
236 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
237 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
238 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
239 0x7EC7EE90, 0x7F63F748, 0x79117020};
240 static const uint32_t T1
[] = {
241 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
242 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
243 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
244 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
245 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
246 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
247 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
248 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
249 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
250 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
251 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
252 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
253 /** Reverse 64 bits of keystream into possible cipher states
254 * Variation mentioned in the paper. Somewhat optimized version
256 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
258 struct Crypto1State
*statelist
, *sl
;
259 uint8_t oks
[32], eks
[32], hi
[32];
260 uint32_t low
= 0, win
= 0;
261 uint32_t *tail
, table
[1 << 16];
264 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
267 sl
->odd
= sl
->even
= 0;
269 for(i
= 30; i
>= 0; i
-= 2) {
270 oks
[i
>> 1] = BEBIT(ks2
, i
);
271 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
273 for(i
= 31; i
>= 0; i
-= 2) {
274 eks
[i
>> 1] = BEBIT(ks2
, i
);
275 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
278 for(i
= 0xfffff; i
>= 0; --i
) {
279 if (filter(i
) != oks
[0])
283 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
284 extend_table_simple(table
, &tail
, oks
[j
]);
289 for(j
= 0; j
< 19; ++j
)
290 low
= low
<< 1 | parity(i
& S1
[j
]);
291 for(j
= 0; j
< 32; ++j
)
292 hi
[j
] = parity(i
& T1
[j
]);
294 for(; tail
>= table
; --tail
) {
295 for(j
= 0; j
< 3; ++j
) {
297 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
298 if(filter(*tail
) != oks
[29 + j
])
302 for(j
= 0; j
< 19; ++j
)
303 win
= win
<< 1 | parity(*tail
& S2
[j
]);
306 for(j
= 0; j
< 32; ++j
) {
307 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
308 if(filter(win
) != eks
[j
])
312 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
313 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
316 sl
->odd
= sl
->even
= 0;
323 /** lfsr_rollback_bit
324 * Rollback the shift register in order to get previous states
326 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
333 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
336 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
337 out
^= LF_POLY_ODD
& s
->odd
;
339 out
^= (ret
= filter(s
->odd
)) & !!fb
;
341 s
->even
|= parity(out
) << 23;
344 /** lfsr_rollback_byte
345 * Rollback the shift register in order to get previous states
347 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
351 for (i = 7; i >= 0; --i)
352 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
354 // unfold loop 20160112
356 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
357 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
358 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
359 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
360 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
361 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
362 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
363 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
366 /** lfsr_rollback_word
367 * Rollback the shift register in order to get previous states
369 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
374 for (i = 31; i >= 0; --i)
375 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
377 // unfold loop 20160112
379 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (31 ^ 24);
380 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (30 ^ 24);
381 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (29 ^ 24);
382 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (28 ^ 24);
383 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (27 ^ 24);
384 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (26 ^ 24);
385 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (25 ^ 24);
386 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
388 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (23 ^ 24);
389 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (22 ^ 24);
390 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (21 ^ 24);
391 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (20 ^ 24);
392 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (19 ^ 24);
393 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (18 ^ 24);
394 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (17 ^ 24);
395 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (16 ^ 24);
397 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (15 ^ 24);
398 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (14 ^ 24);
399 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (13 ^ 24);
400 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (12 ^ 24);
401 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (11 ^ 24);
402 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (10 ^ 24);
403 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (9 ^ 24);
404 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (8 ^ 24);
406 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (7 ^ 24);
407 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (6 ^ 24);
408 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (5 ^ 24);
409 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (4 ^ 24);
410 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (3 ^ 24);
411 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (2 ^ 24);
412 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (1 ^ 24);
413 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (0 ^ 24);
418 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
420 static uint16_t *dist
= 0;
421 int nonce_distance(uint32_t from
, uint32_t to
)
425 dist
= malloc(2 << 16);
428 for (x
= i
= 1; i
; ++i
) {
429 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
430 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
433 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
437 static uint32_t fastfwd
[2][8] = {
438 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
439 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
444 * Is an exported helper function from the common prefix attack
445 * Described in the "dark side" paper. It returns an -1 terminated array
446 * of possible partial(21 bit) secret state.
447 * The required keystream(ks) needs to contain the keystream that was used to
448 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
449 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
451 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
453 uint32_t *candidates
= malloc(4 << 10);
454 if(!candidates
) return 0;
457 int size
= 0, i
, good
;
459 for(i
= 0; i
< 1 << 21; ++i
) {
460 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
461 entry
= i
^ fastfwd
[isodd
][c
];
462 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
463 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
466 candidates
[size
++] = i
;
469 candidates
[size
] = -1;
475 * helper function which eliminates possible secret states using parity bits
477 static struct Crypto1State
* check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
479 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
481 for(c
= 0; good
&& c
< 8; ++c
) {
482 sl
->odd
= odd
^ fastfwd
[1][c
];
483 sl
->even
= even
^ fastfwd
[0][c
];
485 lfsr_rollback_bit(sl
, 0, 0);
486 lfsr_rollback_bit(sl
, 0, 0);
488 ks3
= lfsr_rollback_bit(sl
, 0, 0);
489 ks2
= lfsr_rollback_word(sl
, 0, 0);
490 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
492 nr
= ks1
^ (prefix
| c
<< 5);
495 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
496 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
497 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
498 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
499 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
505 /** lfsr_common_prefix
506 * Implentation of the common prefix attack.
507 * Requires the 28 bit constant prefix used as reader nonce (pfx)
508 * The reader response used (rr)
509 * The keystream used to encrypt the observed NACK's (ks)
510 * The parity bits (par)
511 * It returns a zero terminated list of possible cipher states after the
512 * tag nonce was fed in
515 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
517 struct Crypto1State
*statelist
, *s
;
518 uint32_t *odd
, *even
, *o
, *e
, top
;
520 odd
= lfsr_prefix_ks(ks
, 1);
521 even
= lfsr_prefix_ks(ks
, 0);
523 s
= statelist
= malloc((sizeof *statelist
) << 21);
524 if(!s
|| !odd
|| !even
) {
531 for(o
= odd
; *o
+ 1; ++o
)
532 for(e
= even
; *e
+ 1; ++e
)
533 for(top
= 0; top
< 64; ++top
) {
535 *e
+= (!(top
& 7) + 1) << 21;
536 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
539 s
->odd
= s
->even
= 0;