]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/mifare/mifarehost.c
modify USB communications
[proxmark3-svn] / client / mifare / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include "mifarehost.h"
12
13 #include <inttypes.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <pthread.h>
18
19 #include "crapto1/crapto1.h"
20 #include "comms.h"
21 #include "usb_cmd.h"
22 #include "cmdmain.h"
23 #include "ui.h"
24 #include "parity.h"
25 #include "util.h"
26 #include "iso14443crc.h"
27 #include "util_posix.h"
28
29 #include "mifare.h"
30 #include "mifare4.h"
31
32 // mifare tracer flags used in mfTraceDecode()
33 #define TRACE_IDLE 0x00
34 #define TRACE_AUTH1 0x01
35 #define TRACE_AUTH2 0x02
36 #define TRACE_AUTH_OK 0x03
37 #define TRACE_READ_DATA 0x04
38 #define TRACE_WRITE_OK 0x05
39 #define TRACE_WRITE_DATA 0x06
40 #define TRACE_ERROR 0xFF
41
42
43 static int compare_uint64(const void *a, const void *b) {
44 // didn't work: (the result is truncated to 32 bits)
45 //return (*(int64_t*)b - *(int64_t*)a);
46
47 // better:
48 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
49 else if (*(uint64_t*)b < *(uint64_t*)a) return 1;
50 else return -1;
51 }
52
53
54 // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
55 static uint32_t intersection(uint64_t *list1, uint64_t *list2)
56 {
57 if (list1 == NULL || list2 == NULL) {
58 return 0;
59 }
60 uint64_t *p1, *p2, *p3;
61 p1 = p3 = list1;
62 p2 = list2;
63
64 while ( *p1 != -1 && *p2 != -1 ) {
65 if (compare_uint64(p1, p2) == 0) {
66 *p3++ = *p1++;
67 p2++;
68 }
69 else {
70 while (compare_uint64(p1, p2) < 0) ++p1;
71 while (compare_uint64(p1, p2) > 0) ++p2;
72 }
73 }
74 *p3 = -1;
75 return p3 - list1;
76 }
77
78
79 // Darkside attack (hf mf mifare)
80 static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
81 struct Crypto1State *states;
82 uint32_t i, pos;
83 uint8_t bt, ks3x[8], par[8][8];
84 uint64_t key_recovered;
85 uint64_t *keylist;
86
87 // Reset the last three significant bits of the reader nonce
88 nr &= 0xffffff1f;
89
90 for (pos=0; pos<8; pos++) {
91 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
92 bt = (par_info >> (pos*8)) & 0xff;
93 for (i=0; i<8; i++) {
94 par[7-pos][i] = (bt >> i) & 0x01;
95 }
96 }
97
98 states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0));
99
100 if (states == NULL) {
101 *keys = NULL;
102 return 0;
103 }
104
105 keylist = (uint64_t*)states;
106
107 for (i = 0; keylist[i]; i++) {
108 lfsr_rollback_word(states+i, uid^nt, 0);
109 crypto1_get_lfsr(states+i, &key_recovered);
110 keylist[i] = key_recovered;
111 }
112 keylist[i] = -1;
113
114 *keys = keylist;
115 return i;
116 }
117
118
119 int mfDarkside(uint64_t *key) {
120 uint32_t uid = 0;
121 uint32_t nt = 0, nr = 0, ar = 0;
122 uint64_t par_list = 0, ks_list = 0;
123 uint64_t *keylist = NULL, *last_keylist = NULL;
124 uint32_t keycount = 0;
125 int16_t isOK = 0;
126
127 UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}};
128
129 // message
130 printf("-------------------------------------------------------------------------\n");
131 printf("Executing command. Expected execution time: 25sec on average\n");
132 printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
133 printf("-------------------------------------------------------------------------\n");
134
135
136 while (true) {
137 clearCommandBuffer();
138 SendCommand(&c);
139
140 //flush queue
141 while (ukbhit()) {
142 int c = getchar(); (void) c;
143 }
144
145 // wait cycle
146 while (true) {
147 printf(".");
148 fflush(stdout);
149 if (ukbhit()) {
150 return -5;
151 break;
152 }
153
154 UsbCommand resp;
155 if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
156 isOK = resp.arg[0];
157 if (isOK < 0) {
158 return isOK;
159 }
160 uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
161 nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
162 par_list = bytes_to_num(resp.d.asBytes + 8, 8);
163 ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
164 nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4);
165 ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4);
166 break;
167 }
168 }
169
170 if (par_list == 0 && c.arg[0] == true) {
171 PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
172 }
173 c.arg[0] = false;
174
175 keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist);
176
177 if (keycount == 0) {
178 PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
179 PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
180 continue;
181 }
182
183 if (par_list == 0) {
184 qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
185 keycount = intersection(last_keylist, keylist);
186 if (keycount == 0) {
187 free(last_keylist);
188 last_keylist = keylist;
189 continue;
190 }
191 }
192
193 if (keycount > 1) {
194 PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount);
195 } else {
196 PrintAndLog("Found a possible key. Trying to authenticate...\n");
197 }
198
199 uint8_t *keys_to_chk = malloc(keycount * 6);
200 for (int i = 0; i < keycount; i++) {
201 num_to_bytes(keylist[i], 6, keys_to_chk+i);
202 }
203
204 *key = -1;
205 mfCheckKeys(0, 0, 0, false, keycount, keys_to_chk, key);
206
207 free(keys_to_chk);
208
209 if (*key != -1) {
210 free(last_keylist);
211 free(keylist);
212 break;
213 } else {
214 PrintAndLog("Authentication failed. Trying again...");
215 free(last_keylist);
216 last_keylist = keylist;
217 }
218 }
219
220 return 0;
221 }
222
223
224 int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
225
226 bool display_progress = false;
227 uint64_t start_time = msclock();
228 uint64_t next_print_time = start_time + 5 * 1000;
229
230 if (keycnt > 1000) {
231 PrintAndLog("We have %d keys to check. This will take some time!", keycnt);
232 PrintAndLog("Press button to abort.");
233 display_progress = true;
234 }
235
236 uint32_t max_keys = (keycnt > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : keycnt;
237 *found_key = -1;
238 bool multisectorCheck = false;
239
240 for (int i = 0, ii = 0; i < keycnt; i += max_keys) {
241
242 if ((i + max_keys) >= keycnt) {
243 max_keys = keycnt - i;
244 }
245
246 bool init = (i == 0);
247 bool drop_field = (max_keys == keycnt);
248 uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
249
250 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
251 memcpy(c.d.asBytes, keys + i * 6, max_keys * 6);
252 SendCommand(&c);
253
254 UsbCommand resp;
255 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000))
256 return 1;
257
258 if ((resp.arg[0] & 0xff) != 0x01) {
259 if (((int)resp.arg[1]) < 0) { // error
260 return (int)resp.arg[1];
261 } else { // nothing found yet
262 if (display_progress && msclock() >= next_print_time) {
263 float brute_force_per_second = (float)(i - ii) / (float)(msclock() - start_time) * 1000.0;
264 ii = i;
265 start_time = msclock();
266 next_print_time = start_time + 10 * 1000;
267 PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second);
268 }
269 }
270 } else { // success
271 *found_key = bytes_to_num(resp.d.asBytes, 6);
272 return 0;
273 }
274 }
275
276 return 2; // nothing found
277 }
278
279
280 int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector) {
281
282 uint8_t keyPtr = 0;
283
284 if (e_sector == NULL)
285 return -1;
286
287 bool multisectorCheck = true;
288 uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
289
290 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}};
291 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
292 SendCommand(&c);
293
294 UsbCommand resp;
295 if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth
296 if ((resp.arg[0] & 0xff) != 0x01) return 2;
297
298 bool foundAKey = false;
299 for(int sec = 0; sec < sectorCnt; sec++){
300 for(int keyAB = 0; keyAB < 2; keyAB++){
301 keyPtr = *(resp.d.asBytes + keyAB * 40 + sec);
302 if (keyPtr){
303 e_sector[sec].foundKey[keyAB] = true;
304 e_sector[sec].Key[keyAB] = bytes_to_num(keyBlock + (keyPtr - 1) * 6, 6);
305 foundAKey = true;
306 }
307 }
308 }
309 return foundAKey ? 0 : 3;
310 }
311
312 // Compare 16 Bits out of cryptostate
313 int Compare16Bits(const void * a, const void * b) {
314 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
315 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
316 else return -1;
317 }
318
319 typedef
320 struct {
321 union {
322 struct Crypto1State *slhead;
323 uint64_t *keyhead;
324 } head;
325 union {
326 struct Crypto1State *sltail;
327 uint64_t *keytail;
328 } tail;
329 uint32_t len;
330 uint32_t uid;
331 uint32_t blockNo;
332 uint32_t keyType;
333 uint32_t nt_enc;
334 uint32_t ks1;
335 } StateList_t;
336
337
338 // wrapper function for multi-threaded lfsr_recovery32
339 void
340 #ifdef __has_attribute
341 #if __has_attribute(force_align_arg_pointer)
342 __attribute__((force_align_arg_pointer))
343 #endif
344 #endif
345 *nested_worker_thread(void *arg) {
346 struct Crypto1State *p1;
347 StateList_t *statelist = arg;
348
349 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt_enc ^ statelist->uid);
350 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
351 statelist->len = p1 - statelist->head.slhead;
352 statelist->tail.sltail = --p1;
353 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
354
355 return statelist->head.slhead;
356 }
357
358
359 int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
360 uint32_t i;
361 uint32_t uid;
362 UsbCommand resp;
363
364 int num_unique_nonces;
365
366 StateList_t statelists[2];
367 struct Crypto1State *p1, *p2, *p3, *p4;
368
369 uint8_t *keyBlock = NULL;
370 uint64_t key64;
371
372 int isOK = 1;
373
374 // flush queue
375 (void)WaitForResponseTimeout(CMD_ACK,NULL,100);
376
377 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
378 memcpy(c.d.asBytes, key, 6);
379 SendCommand(&c);
380
381 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
382 // some cards can cause it to get stuck in a loop, so break out of it
383 UsbCommand c = {CMD_PING};
384 SendCommand(&c);
385 (void)WaitForResponseTimeout(CMD_ACK,NULL,500);
386 return -1;
387 }
388
389 if (resp.arg[0]) {
390 return resp.arg[0]; // error during nested
391 }
392
393 memcpy(&uid, resp.d.asBytes, 4);
394 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
395
396 for (i = 0; i < 2; i++) {
397 statelists[i].blockNo = resp.arg[2] & 0xff;
398 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
399 statelists[i].uid = uid;
400 memcpy(&statelists[i].nt_enc, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
401 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
402 }
403
404 uint32_t authentication_timeout;
405 memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
406 PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
407
408 if (statelists[0].nt_enc == statelists[1].nt_enc && statelists[0].ks1 == statelists[1].ks1)
409 num_unique_nonces = 1;
410 else
411 num_unique_nonces = 2;
412
413 // calc keys
414
415 pthread_t thread_id[2];
416
417 // create and run worker threads
418 for (i = 0; i < 2; i++) {
419 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
420 }
421
422 // wait for threads to terminate:
423 for (i = 0; i < 2; i++) {
424 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
425 }
426
427
428 // the first 16 Bits of the cryptostate already contain part of our key.
429 // Create the intersection of the two lists based on these 16 Bits and
430 // roll back the cryptostate
431 p1 = p3 = statelists[0].head.slhead;
432 p2 = p4 = statelists[1].head.slhead;
433 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
434 if (Compare16Bits(p1, p2) == 0) {
435 struct Crypto1State savestate, *savep = &savestate;
436 savestate = *p1;
437 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
438 *p3 = *p1;
439 lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0);
440 p3++;
441 p1++;
442 }
443 savestate = *p2;
444 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
445 *p4 = *p2;
446 lfsr_rollback_word(p4, statelists[1].nt_enc ^ statelists[1].uid, 0);
447 p4++;
448 p2++;
449 }
450 }
451 else {
452 while (Compare16Bits(p1, p2) == -1) p1++;
453 while (Compare16Bits(p1, p2) == 1) p2++;
454 }
455 }
456 *(uint64_t*)p3 = -1;
457 *(uint64_t*)p4 = -1;
458 statelists[0].len = p3 - statelists[0].head.slhead;
459 statelists[1].len = p4 - statelists[1].head.slhead;
460 statelists[0].tail.sltail=--p3;
461 statelists[1].tail.sltail=--p4;
462
463 for (i = 0; i < 2; i++) {
464 PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt_enc:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt_enc, statelists[i].ks1);
465 }
466
467 // the statelists now contain possible keys. The key we are searching for must be in the
468 // intersection of both lists. Create the intersection:
469 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
470
471 if (num_unique_nonces > 1) {
472 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
473 statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
474 }
475 else {
476 PrintAndLog("Nonce 1 and 2 are the same!");
477 }
478
479 uint32_t num_keys = statelists[0].len;
480 keyBlock = calloc(num_keys, 6);
481 if (keyBlock == NULL) {
482 free(statelists[0].head.slhead);
483 free(statelists[1].head.slhead);
484 return -4;
485 }
486
487 for (i = 0; i < num_keys; i++) {
488 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
489 num_to_bytes(key64, 6, keyBlock + i*6);
490 }
491
492 // The list may still contain several key candidates. Test each of them with mfCheckKeys
493 isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keyBlock, &key64);
494
495 if (isOK == 0) { // success, key found
496 num_to_bytes(key64, 6, resultKey);
497 }
498
499 if (isOK == 1) { // timeout
500 isOK = -1;
501 }
502
503 free(statelists[0].head.slhead);
504 free(statelists[1].head.slhead);
505 free(keyBlock);
506
507 return isOK;
508 }
509
510 // MIFARE
511 int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
512
513 UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
514 memcpy(c.d.asBytes, key, 6);
515 clearCommandBuffer();
516 SendCommand(&c);
517
518 UsbCommand resp;
519 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
520 uint8_t isOK = resp.arg[0] & 0xff;
521
522 if (isOK) {
523 memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
524 return 0;
525 } else {
526 return 1;
527 }
528 } else {
529 PrintAndLogEx(ERR, "Command execute timeout");
530 return 2;
531 }
532
533 return 0;
534 }
535
536 // EMULATOR
537
538 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
539 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
540 SendCommand(&c);
541
542 UsbCommand resp;
543 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
544 memcpy(data, resp.d.asBytes, blocksCount * 16);
545 return 0;
546 }
547
548 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
549 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
550 memcpy(c.d.asBytes, data, blocksCount * 16);
551 SendCommand(&c);
552 return 0;
553 }
554
555 // "MAGIC" CARD
556
557 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
558 uint8_t isOK = 0;
559
560 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
561 SendCommand(&c);
562
563 UsbCommand resp;
564 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
565 isOK = resp.arg[0] & 0xff;
566 memcpy(data, resp.d.asBytes, 16);
567 if (!isOK) return 2;
568 } else {
569 PrintAndLog("Command execute timeout");
570 return 1;
571 }
572 return 0;
573 }
574
575 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
576
577 uint8_t isOK = 0;
578 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
579 memcpy(c.d.asBytes, data, 16);
580 SendCommand(&c);
581
582 UsbCommand resp;
583 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
584 isOK = resp.arg[0] & 0xff;
585 if (uid != NULL)
586 memcpy(uid, resp.d.asBytes, 4);
587 if (!isOK)
588 return 2;
589 } else {
590 PrintAndLog("Command execute timeout");
591 return 1;
592 }
593
594 return 0;
595 }
596
597 int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) {
598 uint8_t isOK = 0;
599 uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04;
600 UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}};
601 SendCommand(&c);
602
603 UsbCommand resp;
604 WaitForResponse(CMD_ACK,&resp);
605 isOK = resp.arg[0] & 0xff;
606
607 return isOK;
608 }
609
610 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) {
611 uint8_t oldblock0[16] = {0x00};
612 uint8_t block0[16] = {0x00};
613 int gen = 0, res;
614
615 gen = mfCIdentify();
616
617 /* generation 1a magic card by default */
618 uint8_t cmdParams = CSETBLOCK_SINGLE_OPER;
619 if (gen == 2) {
620 /* generation 1b magic card */
621 cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B;
622 }
623
624 res = mfCGetBlock(0, oldblock0, cmdParams);
625
626 if (res == 0) {
627 memcpy(block0, oldblock0, 16);
628 PrintAndLog("old block 0: %s", sprint_hex(block0,16));
629 } else {
630 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
631 }
632
633 // fill in the new values
634 // UID
635 memcpy(block0, uid, 4);
636 // Mifare UID BCC
637 block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
638 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
639 if (sak != NULL)
640 block0[5] = sak[0];
641 if (atqa != NULL) {
642 block0[6] = atqa[1];
643 block0[7] = atqa[0];
644 }
645 PrintAndLog("new block 0: %s", sprint_hex(block0, 16));
646
647 res = mfCSetBlock(0, block0, oldUID, false, cmdParams);
648 if (res) {
649 PrintAndLog("Can't set block 0. Error: %d", res);
650 return res;
651 }
652
653 return 0;
654 }
655
656 int mfCIdentify() {
657 UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}};
658 SendCommand(&c);
659 UsbCommand resp;
660 WaitForResponse(CMD_ACK,&resp);
661
662 uint8_t isGeneration = resp.arg[0] & 0xff;
663 switch( isGeneration ){
664 case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
665 case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
666 default: PrintAndLog("No chinese magic backdoor command detected"); break;
667 }
668
669 return (int) isGeneration;
670 }
671
672
673 // SNIFFER
674
675 // constants
676 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
677
678 // variables
679 char logHexFileName[FILE_PATH_SIZE] = {0x00};
680 static uint8_t traceCard[4096] = {0x00};
681 static char traceFileName[FILE_PATH_SIZE] = {0x00};
682 static int traceState = TRACE_IDLE;
683 static uint8_t traceCurBlock = 0;
684 static uint8_t traceCurKey = 0;
685
686 struct Crypto1State *traceCrypto1 = NULL;
687
688 struct Crypto1State *revstate;
689 uint64_t lfsr;
690 uint64_t ui64Key;
691 uint32_t ks2;
692 uint32_t ks3;
693
694 uint32_t uid; // serial number
695 uint32_t nt; // tag challenge
696 uint32_t nt_enc; // encrypted tag challenge
697 uint8_t nt_enc_par; // encrypted tag challenge parity
698 uint32_t nr_enc; // encrypted reader challenge
699 uint32_t ar_enc; // encrypted reader response
700 uint8_t ar_enc_par; // encrypted reader response parity
701 uint32_t at_enc; // encrypted tag response
702 uint8_t at_enc_par; // encrypted tag response parity
703
704 int isTraceCardEmpty(void) {
705 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
706 }
707
708 int isBlockEmpty(int blockN) {
709 for (int i = 0; i < 16; i++)
710 if (traceCard[blockN * 16 + i] != 0) return 0;
711
712 return 1;
713 }
714
715 int isBlockTrailer(int blockN) {
716 return ((blockN & 0x03) == 0x03);
717 }
718
719 int saveTraceCard(void) {
720 FILE * f;
721
722 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
723
724 f = fopen(traceFileName, "w+");
725 if ( !f ) return 1;
726
727 for (int i = 0; i < 64; i++) { // blocks
728 for (int j = 0; j < 16; j++) // bytes
729 fprintf(f, "%02x", *(traceCard + i * 16 + j));
730 if (i < 63)
731 fprintf(f,"\n");
732 }
733 fclose(f);
734 return 0;
735 }
736
737 int loadTraceCard(uint8_t *tuid) {
738 FILE * f;
739 char buf[64] = {0x00};
740 uint8_t buf8[64] = {0x00};
741 int i, blockNum;
742
743 if (!isTraceCardEmpty())
744 saveTraceCard();
745
746 memset(traceCard, 0x00, 4096);
747 memcpy(traceCard, tuid + 3, 4);
748
749 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
750
751 f = fopen(traceFileName, "r");
752 if (!f) return 1;
753
754 blockNum = 0;
755
756 while(!feof(f)){
757
758 memset(buf, 0, sizeof(buf));
759 if (fgets(buf, sizeof(buf), f) == NULL) {
760 PrintAndLog("File reading error.");
761 fclose(f);
762 return 2;
763 }
764
765 if (strlen(buf) < 32){
766 if (feof(f)) break;
767 PrintAndLog("File content error. Block data must include 32 HEX symbols");
768 fclose(f);
769 return 2;
770 }
771 for (i = 0; i < 32; i += 2)
772 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
773
774 memcpy(traceCard + blockNum * 16, buf8, 16);
775
776 blockNum++;
777 }
778 fclose(f);
779
780 return 0;
781 }
782
783 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
784
785 if (traceCrypto1)
786 crypto1_destroy(traceCrypto1);
787
788 traceCrypto1 = NULL;
789
790 if (wantSaveToEmlFile)
791 loadTraceCard(tuid);
792
793 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
794 traceCard[5] = sak;
795 memcpy(&traceCard[6], atqa, 2);
796 traceCurBlock = 0;
797 uid = bytes_to_num(tuid + 3, 4);
798
799 traceState = TRACE_IDLE;
800
801 return 0;
802 }
803
804 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
805 uint8_t bt = 0;
806 int i;
807
808 if (len != 1) {
809 for (i = 0; i < len; i++)
810 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
811 } else {
812 bt = 0;
813 for (i = 0; i < 4; i++)
814 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
815
816 data[0] = bt;
817 }
818 return;
819 }
820
821 bool NTParityCheck(uint32_t ntx) {
822 if (
823 (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((nt_enc_par >> 5) & 0x01) ^ (nt_enc & 0x01)) ||
824 (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((nt_enc_par >> 6) & 0x01) ^ (nt_enc >> 8 & 0x01)) ||
825 (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01))
826 )
827 return false;
828
829 uint32_t ar = prng_successor(ntx, 64);
830 if (
831 (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) ||
832 (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ar_enc_par >> 6) & 0x01) ^ (ar_enc >> 8 & 0x01)) ||
833 (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ar_enc_par >> 7) & 0x01) ^ (ar_enc >> 16 & 0x01))
834 )
835 return false;
836
837 uint32_t at = prng_successor(ntx, 96);
838 if (
839 (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ar_enc_par >> 4) & 0x01) ^ (at_enc >> 24 & 0x01)) ||
840 (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((at_enc_par >> 5) & 0x01) ^ (at_enc & 0x01)) ||
841 (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((at_enc_par >> 6) & 0x01) ^ (at_enc >> 8 & 0x01)) ||
842 (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01))
843 )
844 return false;
845
846 return true;
847 }
848
849
850 int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEmlFile) {
851 uint8_t data[64];
852
853 if (traceState == TRACE_ERROR) return 1;
854 if (len > 64) {
855 traceState = TRACE_ERROR;
856 return 1;
857 }
858
859 memcpy(data, data_src, len);
860 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
861 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
862 uint8_t parity[16];
863 oddparitybuf(data, len, parity);
864 PrintAndLog("dec> %s [%s]", sprint_hex(data, len), printBitsPar(parity, len));
865 AddLogHex(logHexFileName, "dec> ", data, len);
866 }
867
868 switch (traceState) {
869 case TRACE_IDLE:
870 // check packet crc16!
871 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
872 PrintAndLog("dec> CRC ERROR!!!");
873 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
874 traceState = TRACE_ERROR; // do not decrypt the next commands
875 return 1;
876 }
877
878 // AUTHENTICATION
879 if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
880 traceState = TRACE_AUTH1;
881 traceCurBlock = data[1];
882 traceCurKey = data[0] == 60 ? 1:0;
883 return 0;
884 }
885
886 // READ
887 if ((len ==4) && ((data[0] == 0x30))) {
888 traceState = TRACE_READ_DATA;
889 traceCurBlock = data[1];
890 return 0;
891 }
892
893 // WRITE
894 if ((len ==4) && ((data[0] == 0xA0))) {
895 traceState = TRACE_WRITE_OK;
896 traceCurBlock = data[1];
897 return 0;
898 }
899
900 // HALT
901 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
902 traceState = TRACE_ERROR; // do not decrypt the next commands
903 return 0;
904 }
905
906 return 0;
907 break;
908
909 case TRACE_READ_DATA:
910 if (len == 18) {
911 traceState = TRACE_IDLE;
912
913 if (isBlockTrailer(traceCurBlock)) {
914 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
915 } else {
916 memcpy(traceCard + traceCurBlock * 16, data, 16);
917 }
918 if (wantSaveToEmlFile) saveTraceCard();
919 return 0;
920 } else {
921 traceState = TRACE_ERROR;
922 return 1;
923 }
924 break;
925
926 case TRACE_WRITE_OK:
927 if ((len == 1) && (data[0] == 0x0a)) {
928 traceState = TRACE_WRITE_DATA;
929
930 return 0;
931 } else {
932 traceState = TRACE_ERROR;
933 return 1;
934 }
935 break;
936
937 case TRACE_WRITE_DATA:
938 if (len == 18) {
939 traceState = TRACE_IDLE;
940
941 memcpy(traceCard + traceCurBlock * 16, data, 16);
942 if (wantSaveToEmlFile) saveTraceCard();
943 return 0;
944 } else {
945 traceState = TRACE_ERROR;
946 return 1;
947 }
948 break;
949
950 case TRACE_AUTH1:
951 if (len == 4) {
952 traceState = TRACE_AUTH2;
953 if (!traceCrypto1) {
954 nt = bytes_to_num(data, 4);
955 } else {
956 nt_enc = bytes_to_num(data, 4);
957 nt_enc_par = parity;
958 }
959 return 0;
960 } else {
961 traceState = TRACE_ERROR;
962 return 1;
963 }
964 break;
965
966 case TRACE_AUTH2:
967 if (len == 8) {
968 traceState = TRACE_AUTH_OK;
969
970 nr_enc = bytes_to_num(data, 4);
971 ar_enc = bytes_to_num(data + 4, 4);
972 ar_enc_par = parity << 4;
973 return 0;
974 } else {
975 traceState = TRACE_ERROR;
976 return 1;
977 }
978 break;
979
980 case TRACE_AUTH_OK:
981 if (len ==4) {
982 traceState = TRACE_IDLE;
983
984 at_enc = bytes_to_num(data, 4);
985 at_enc_par = parity;
986 if (!traceCrypto1) {
987
988 // decode key here)
989 ks2 = ar_enc ^ prng_successor(nt, 64);
990 ks3 = at_enc ^ prng_successor(nt, 96);
991 revstate = lfsr_recovery64(ks2, ks3);
992 lfsr_rollback_word(revstate, 0, 0);
993 lfsr_rollback_word(revstate, 0, 0);
994 lfsr_rollback_word(revstate, nr_enc, 1);
995 lfsr_rollback_word(revstate, uid ^ nt, 0);
996
997 crypto1_get_lfsr(revstate, &lfsr);
998 crypto1_destroy(revstate);
999 ui64Key = lfsr;
1000 printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n",
1001 (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
1002 validate_prng_nonce(nt) ? "WEAK": "HARDEND",
1003 ks2,
1004 ks3);
1005 AddLogUint64(logHexFileName, "key> ", lfsr);
1006 } else {
1007 if (validate_prng_nonce(nt)) {
1008 struct Crypto1State *pcs;
1009 pcs = crypto1_create(ui64Key);
1010 uint32_t nt1 = crypto1_word(pcs, nt_enc ^ uid, 1) ^ nt_enc;
1011 uint32_t ar = prng_successor(nt1, 64);
1012 uint32_t at = prng_successor(nt1, 96);
1013 printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid, nt1, printBitsPar(&nt_enc_par, 4), ar, at);
1014 uint32_t nr1 = crypto1_word(pcs, nr_enc, 1) ^ nr_enc;
1015 uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ar_enc;
1016 uint32_t at1 = crypto1_word(pcs, 0, 0) ^ at_enc;
1017 crypto1_destroy(pcs);
1018 printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1, ar1, at1);
1019
1020 if (NTParityCheck(nt1))
1021 printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF));
1022 else
1023 printf("key> the same key test. check nt parity error.\n");
1024
1025 uint32_t ntc = prng_successor(nt, 90);
1026 uint32_t ntx = 0;
1027 int ntcnt = 0;
1028 for (int i = 0; i < 16383; i++) {
1029 ntc = prng_successor(ntc, 1);
1030 if (NTParityCheck(ntc)){
1031 if (!ntcnt)
1032 ntx = ntc;
1033 ntcnt++;
1034 }
1035 }
1036 if (ntcnt)
1037 printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt);
1038 else
1039 printf("key> don't have any nt candidate( \n");
1040
1041 nt = ntx;
1042 ks2 = ar_enc ^ prng_successor(ntx, 64);
1043 ks3 = at_enc ^ prng_successor(ntx, 96);
1044
1045 // decode key
1046 revstate = lfsr_recovery64(ks2, ks3);
1047 lfsr_rollback_word(revstate, 0, 0);
1048 lfsr_rollback_word(revstate, 0, 0);
1049 lfsr_rollback_word(revstate, nr_enc, 1);
1050 lfsr_rollback_word(revstate, uid ^ nt, 0);
1051
1052 crypto1_get_lfsr(revstate, &lfsr);
1053 crypto1_destroy(revstate);
1054 ui64Key = lfsr;
1055 printf("key> probable key:%x%x ks2:%08x ks3:%08x\n",
1056 (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
1057 ks2,
1058 ks3);
1059 AddLogUint64(logHexFileName, "key> ", lfsr);
1060 } else {
1061 printf("key> hardnested not implemented!\n");
1062
1063 crypto1_destroy(traceCrypto1);
1064
1065 // not implemented
1066 traceState = TRACE_ERROR;
1067 }
1068 }
1069
1070 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
1071 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
1072
1073 if (traceCurKey) {
1074 num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
1075 } else {
1076 num_to_bytes(lfsr, 6, traceCard + blockShift);
1077 }
1078 if (wantSaveToEmlFile) saveTraceCard();
1079
1080 if (traceCrypto1) {
1081 crypto1_destroy(traceCrypto1);
1082 }
1083
1084 // set cryptosystem state
1085 traceCrypto1 = lfsr_recovery64(ks2, ks3);
1086 return 0;
1087 } else {
1088 traceState = TRACE_ERROR;
1089 return 1;
1090 }
1091 break;
1092
1093 default:
1094 traceState = TRACE_ERROR;
1095 return 1;
1096 }
1097
1098 return 0;
1099 }
1100
1101 // DECODING
1102
1103 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
1104 /*
1105 uint32_t nt; // tag challenge
1106 uint32_t ar_enc; // encrypted reader response
1107 uint32_t at_enc; // encrypted tag response
1108 */
1109 if (traceCrypto1) {
1110 crypto1_destroy(traceCrypto1);
1111 }
1112 ks2 = ar_enc ^ prng_successor(nt, 64);
1113 ks3 = at_enc ^ prng_successor(nt, 96);
1114 traceCrypto1 = lfsr_recovery64(ks2, ks3);
1115
1116 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
1117
1118 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
1119 crypto1_destroy(traceCrypto1);
1120 return 0;
1121 }
1122
1123 /** validate_prng_nonce
1124 * Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
1125 * returns
1126 * true = weak prng
1127 * false = hardend prng
1128 */
1129 bool validate_prng_nonce(uint32_t nonce) {
1130 uint16_t *dist = 0;
1131 uint16_t x, i;
1132
1133 dist = malloc(2 << 16);
1134 if(!dist)
1135 return -1;
1136
1137 // init prng table:
1138 for (x = i = 1; i; ++i) {
1139 dist[(x & 0xff) << 8 | x >> 8] = i;
1140 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
1141 }
1142
1143 uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535;
1144
1145 free(dist);
1146 return (res == 16);
1147 }
1148
1149 /* Detect Tag Prng,
1150 * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
1151 * the tag nonce is check to see if it has a predictable PRNG.
1152 * @returns
1153 * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
1154 * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
1155 */
1156 int DetectClassicPrng(void){
1157
1158 UsbCommand resp, respA;
1159 uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA
1160 uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS;
1161
1162 UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}};
1163 memcpy(c.d.asBytes, cmd, sizeof(cmd));
1164
1165 clearCommandBuffer();
1166 SendCommand(&c);
1167 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
1168 PrintAndLog("PRNG UID: Reply timeout.");
1169 return -1;
1170 }
1171
1172 // if select tag failed.
1173 if (resp.arg[0] == 0) {
1174 PrintAndLog("PRNG error: selecting tag failed, can't detect prng.");
1175 return -1;
1176 }
1177
1178 if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) {
1179 PrintAndLog("PRNG data: Reply timeout.");
1180 return -1;
1181 }
1182
1183 // check respA
1184 if (respA.arg[0] != 4) {
1185 PrintAndLog("PRNG data error: Wrong length: %d", respA.arg[0]);
1186 return -1;
1187 }
1188
1189 uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]);
1190 return validate_prng_nonce(nonce);
1191 }
Impressum, Datenschutz