1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // Routines to support ISO 14443B. This includes both the reader software and
10 // the `fake tag' modes.
11 //-----------------------------------------------------------------------------
13 #include "iso14443b.h"
15 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "fpgaloader.h"
23 #define RECEIVE_SAMPLES_TIMEOUT 64 // TR0 max is 256/fs = 256/(848kHz) = 302us or 64 samples from FPGA
24 #define ISO14443B_DMA_BUFFER_SIZE 128
26 // PCB Block number for APDUs
27 static uint8_t pcb_blocknum
= 0;
29 //=============================================================================
30 // An ISO 14443 Type B tag. We listen for commands from the reader, using
31 // a UART kind of thing that's implemented in software. When we get a
32 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
33 // If it's good, then we can do something appropriate with it, and send
35 //=============================================================================
37 //-----------------------------------------------------------------------------
38 // Code up a string of octets at layer 2 (including CRC, we don't generate
39 // that here) so that they can be transmitted to the reader. Doesn't transmit
40 // them yet, just leaves them ready to send in ToSend[].
41 //-----------------------------------------------------------------------------
42 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
48 // Transmit a burst of ones, as the initial thing that lets the
49 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
50 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
52 for(i
= 0; i
< 20; i
++) {
60 for(i
= 0; i
< 10; i
++) {
66 for(i
= 0; i
< 2; i
++) {
73 for(i
= 0; i
< len
; i
++) {
84 for(j
= 0; j
< 8; j
++) {
107 for(i
= 0; i
< 10; i
++) {
113 for(i
= 0; i
< 2; i
++) {
120 // Convert from last byte pos to length
124 //-----------------------------------------------------------------------------
125 // The software UART that receives commands from the reader, and its state
127 //-----------------------------------------------------------------------------
131 STATE_GOT_FALLING_EDGE_OF_SOF
,
132 STATE_AWAITING_START_BIT
,
143 /* Receive & handle a bit coming from the reader.
145 * This function is called 4 times per bit (every 2 subcarrier cycles).
146 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
149 * LED A -> ON once we have received the SOF and are expecting the rest.
150 * LED A -> OFF once we have received EOF or are in error state or unsynced
152 * Returns: true if we received a EOF
153 * false if we are still waiting for some more
155 static RAMFUNC
int Handle14443bUartBit(uint8_t bit
)
160 // we went low, so this could be the beginning
162 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
168 case STATE_GOT_FALLING_EDGE_OF_SOF
:
170 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
172 if(Uart
.bitCnt
> 9) {
173 // we've seen enough consecutive
174 // zeros that it's a valid SOF
177 Uart
.state
= STATE_AWAITING_START_BIT
;
178 LED_A_ON(); // Indicate we got a valid SOF
180 // didn't stay down long enough
181 // before going high, error
182 Uart
.state
= STATE_UNSYNCD
;
185 // do nothing, keep waiting
189 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
190 if(Uart
.bitCnt
> 12) {
191 // Give up if we see too many zeros without
194 Uart
.state
= STATE_UNSYNCD
;
198 case STATE_AWAITING_START_BIT
:
201 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
202 // stayed high for too long between
204 Uart
.state
= STATE_UNSYNCD
;
207 // falling edge, this starts the data byte
211 Uart
.state
= STATE_RECEIVING_DATA
;
215 case STATE_RECEIVING_DATA
:
217 if(Uart
.posCnt
== 2) {
218 // time to sample a bit
221 Uart
.shiftReg
|= 0x200;
225 if(Uart
.posCnt
>= 4) {
228 if(Uart
.bitCnt
== 10) {
229 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
231 // this is a data byte, with correct
232 // start and stop bits
233 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
236 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
237 // Buffer overflowed, give up
239 Uart
.state
= STATE_UNSYNCD
;
241 // so get the next byte now
243 Uart
.state
= STATE_AWAITING_START_BIT
;
245 } else if (Uart
.shiftReg
== 0x000) {
246 // this is an EOF byte
247 LED_A_OFF(); // Finished receiving
248 Uart
.state
= STATE_UNSYNCD
;
249 if (Uart
.byteCnt
!= 0) {
255 Uart
.state
= STATE_UNSYNCD
;
262 Uart
.state
= STATE_UNSYNCD
;
270 static void UartReset()
272 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
273 Uart
.state
= STATE_UNSYNCD
;
279 static void UartInit(uint8_t *data
)
286 //-----------------------------------------------------------------------------
287 // Receive a command (from the reader to us, where we are the simulated tag),
288 // and store it in the given buffer, up to the given maximum length. Keeps
289 // spinning, waiting for a well-framed command, until either we get one
290 // (returns true) or someone presses the pushbutton on the board (false).
292 // Assume that we're called with the SSC (to the FPGA) and ADC path set
294 //-----------------------------------------------------------------------------
295 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
)
297 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
298 // only, since we are receiving, not transmitting).
299 // Signal field is off with the appropriate LED
301 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
303 // Now run a `software UART' on the stream of incoming samples.
309 if(BUTTON_PRESS()) return false;
311 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
312 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
313 for(uint8_t mask
= 0x80; mask
!= 0x00; mask
>>= 1) {
314 if(Handle14443bUartBit(b
& mask
)) {
325 //-----------------------------------------------------------------------------
326 // Main loop of simulated tag: receive commands from reader, decide what
327 // response to send, and send it.
328 //-----------------------------------------------------------------------------
329 void SimulateIso14443bTag(void)
332 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
333 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
334 // ... and REQB, AFI=0, Normal Request, N=1:
335 static const uint8_t cmd2
[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
337 static const uint8_t cmd3
[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
339 static const uint8_t cmd4
[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
341 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
342 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
343 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
344 static const uint8_t response1
[] = {
345 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
346 0x00, 0x21, 0x85, 0x5e, 0xd7
348 // response to HLTB and ATTRIB
349 static const uint8_t response2
[] = {0x00, 0x78, 0xF0};
352 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
359 uint16_t respLen
, respCodeLen
;
361 // allocate command receive buffer
363 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
366 uint16_t cmdsRecvd
= 0;
368 // prepare the (only one) tag answer:
369 CodeIso14443bAsTag(response1
, sizeof(response1
));
370 uint8_t *resp1Code
= BigBuf_malloc(ToSendMax
);
371 memcpy(resp1Code
, ToSend
, ToSendMax
);
372 uint16_t resp1CodeLen
= ToSendMax
;
374 // prepare the (other) tag answer:
375 CodeIso14443bAsTag(response2
, sizeof(response2
));
376 uint8_t *resp2Code
= BigBuf_malloc(ToSendMax
);
377 memcpy(resp2Code
, ToSend
, ToSendMax
);
378 uint16_t resp2CodeLen
= ToSendMax
;
380 // We need to listen to the high-frequency, peak-detected path.
381 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
382 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
388 if(!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
389 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
393 LogTrace(receivedCmd
, len
, 0, 0, NULL
, true);
395 // Good, look at the command now.
396 if ( (len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
) == 0)
397 || (len
== sizeof(cmd2
) && memcmp(receivedCmd
, cmd2
, len
) == 0) ) {
399 respLen
= sizeof(response1
);
400 respCode
= resp1Code
;
401 respCodeLen
= resp1CodeLen
;
402 } else if ( (len
== sizeof(cmd3
) && receivedCmd
[0] == cmd3
[0])
403 || (len
== sizeof(cmd4
) && receivedCmd
[0] == cmd4
[0]) ) {
405 respLen
= sizeof(response2
);
406 respCode
= resp2Code
;
407 respCodeLen
= resp2CodeLen
;
409 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
410 // And print whether the CRC fails, just for good measure
412 if (len
>= 3){ // if crc exists
413 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
414 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
415 // Not so good, try again.
416 DbpString("+++CRC fail");
419 DbpString("CRC passes");
422 //get rid of compiler warning
426 respCode
= resp1Code
;
427 //don't crash at new command just wait and see if reader will send other new cmds.
433 if(cmdsRecvd
> 0x30) {
434 DbpString("many commands later...");
438 if(respCodeLen
<= 0) continue;
441 // Signal field is off with the appropriate LED
443 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
444 AT91C_BASE_SSC
->SSC_THR
= 0xff;
445 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
447 // Transmit the response.
450 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
451 uint8_t b
= respCode
[i
];
453 AT91C_BASE_SSC
->SSC_THR
= b
;
456 if(i
> respCodeLen
) {
460 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
461 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
466 // trace the response:
467 LogTrace(resp
, respLen
, 0, 0, NULL
, false);
471 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
475 //=============================================================================
476 // An ISO 14443 Type B reader. We take layer two commands, code them
477 // appropriately, and then send them to the tag. We then listen for the
478 // tag's response, which we leave in the buffer to be demodulated on the
480 //=============================================================================
485 DEMOD_PHASE_REF_TRAINING
,
486 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
487 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
488 DEMOD_AWAITING_START_BIT
,
494 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
506 * Handles reception of a bit from the tag
508 * This function is called 2 times per bit (every 4 subcarrier cycles).
509 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
512 * LED C -> ON once we have received the SOF and are expecting the rest.
513 * LED C -> OFF once we have received EOF or are unsynced
515 * Returns: true if we received a EOF
516 * false if we are still waiting for some more
519 static RAMFUNC
int Handle14443bSamplesDemod(int ci
, int cq
)
523 // The soft decision on the bit uses an estimate of just the
524 // quadrant of the reference angle, not the exact angle.
525 #define MAKE_SOFT_DECISION() { \
526 if(Demod.sumI > 0) { \
531 if(Demod.sumQ > 0) { \
538 #define SUBCARRIER_DETECT_THRESHOLD 8
540 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
541 #define AMPLITUDE(ci,cq) (MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2))
542 switch(Demod
.state
) {
544 if(AMPLITUDE(ci
,cq
) > SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
545 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
552 case DEMOD_PHASE_REF_TRAINING
:
553 if(Demod
.posCount
< 8) {
554 if (AMPLITUDE(ci
,cq
) > SUBCARRIER_DETECT_THRESHOLD
) {
555 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
556 // note: synchronization time > 80 1/fs
560 } else { // subcarrier lost
561 Demod
.state
= DEMOD_UNSYNCD
;
564 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
568 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
569 MAKE_SOFT_DECISION();
570 if(v
< 0) { // logic '0' detected
571 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
572 Demod
.posCount
= 0; // start of SOF sequence
574 if(Demod
.posCount
> 200/4) { // maximum length of TR1 = 200 1/fs
575 Demod
.state
= DEMOD_UNSYNCD
;
581 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
583 MAKE_SOFT_DECISION();
585 if(Demod
.posCount
< 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
586 Demod
.state
= DEMOD_UNSYNCD
;
588 LED_C_ON(); // Got SOF
592 Demod
.state
= DEMOD_AWAITING_START_BIT
;
593 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
599 if(Demod
.posCount
> 12*2) { // low phase of SOF too long (> 12 etu)
600 Demod
.state
= DEMOD_UNSYNCD
;
606 case DEMOD_AWAITING_START_BIT
:
608 MAKE_SOFT_DECISION();
610 if (Demod
.posCount
> 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
612 if (Demod
.bitCount
== 0 && Demod
.len
== 0) { // received SOF only, this is valid for iClass/Picopass
615 Demod
.state
= DEMOD_UNSYNCD
;
618 } else { // start bit detected
619 Demod
.posCount
= 1; // this was the first half
622 Demod
.state
= DEMOD_RECEIVING_DATA
;
626 case DEMOD_RECEIVING_DATA
:
627 MAKE_SOFT_DECISION();
628 if (Demod
.posCount
== 0) { // first half of bit
631 } else { // second half of bit
634 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
635 if(Demod.thisBit > 0) {
636 Demod.metric += Demod.thisBit;
638 Demod.metric -= Demod.thisBit;
643 Demod
.shiftReg
>>= 1;
644 if (Demod
.thisBit
> 0) { // logic '1'
645 Demod
.shiftReg
|= 0x200;
649 if (Demod
.bitCount
== 10) {
650 uint16_t s
= Demod
.shiftReg
;
651 if ((s
& 0x200) && !(s
& 0x001)) { // stop bit == '1', start bit == '0'
652 uint8_t b
= (s
>> 1);
653 Demod
.output
[Demod
.len
] = b
;
656 Demod
.state
= DEMOD_AWAITING_START_BIT
;
658 Demod
.state
= DEMOD_UNSYNCD
;
661 // This is EOF (start, stop and all data bits == '0'
671 Demod
.state
= DEMOD_UNSYNCD
;
680 static void DemodReset()
682 // Clear out the state of the "UART" that receives from the tag.
684 Demod
.state
= DEMOD_UNSYNCD
;
686 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
690 static void DemodInit(uint8_t *data
)
698 * Demodulate the samples we received from the tag, also log to tracebuffer
699 * quiet: set to 'true' to disable debug output
701 static int GetSamplesFor14443bDemod(int timeout
, bool quiet
) {
704 bool gotFrame
= false;
705 int lastRxCounter
, samples
= 0;
708 // Allocate memory from BigBuf for some buffers
709 // free all previous allocations first
712 // The response (tag -> reader) that we're receiving.
713 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
715 // The DMA buffer, used to stream samples from the FPGA
716 uint16_t *dmaBuf
= (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
* sizeof(uint16_t));
718 // Set up the demodulator for tag -> reader responses.
719 DemodInit(receivedResponse
);
721 // wait for last transfer to complete
722 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
))
724 // Setup and start DMA.
725 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
726 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
728 uint16_t *upTo
= dmaBuf
;
729 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
731 // Signal field is ON with the appropriate LED:
733 // And put the FPGA in the appropriate mode
734 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_848_KHZ
| FPGA_HF_READER_MODE_RECEIVE_IQ
);
737 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1);
738 if(behindBy
> maxBehindBy
) {
739 maxBehindBy
= behindBy
;
742 if(behindBy
< 1) continue;
748 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
749 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
750 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
752 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
753 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
754 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
; // DMA Next Counter registers
758 if (Handle14443bSamplesDemod(ci
, cq
)) {
764 if(samples
> timeout
&& Demod
.state
< DEMOD_PHASE_REF_TRAINING
) {
773 if (!quiet
) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", maxBehindBy
, samples
, gotFrame
, Demod
.len
, Demod
.sumI
, Demod
.sumQ
);
779 LogTrace(Demod
.output
, Demod
.len
, 0, 0, NULL
, false);
785 //-----------------------------------------------------------------------------
786 // Transmit the command (to the tag) that was placed in ToSend[].
787 //-----------------------------------------------------------------------------
788 static void TransmitFor14443b(void)
790 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_SHALLOW_MOD
);
792 for(int c
= 0; c
< ToSendMax
; c
++) {
793 uint8_t data
= ToSend
[c
];
794 for (int i
= 0; i
< 8; i
++) {
795 uint16_t send_word
= (data
& 0x80) ? 0x0000 : 0xffff;
796 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
797 AT91C_BASE_SSC
->SSC_THR
= send_word
;
798 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
799 AT91C_BASE_SSC
->SSC_THR
= send_word
;
808 //-----------------------------------------------------------------------------
809 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
810 // so that it is ready to transmit to the tag using TransmitFor14443b().
811 //-----------------------------------------------------------------------------
812 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
820 for(i
= 0; i
< 10; i
++) {
826 for(i
= 0; i
< len
; i
++) {
831 for(j
= 0; j
< 8; j
++) {
844 for(i
= 0; i
< 10; i
++) {
849 // ensure that last byte is filled up
850 for(i
= 0; i
< 8; i
++) {
854 // Convert from last character reference to length
860 Convenience function to encode, transmit and trace iso 14443b comms
862 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
)
864 CodeIso14443bAsReader(cmd
, len
);
866 LogTrace(cmd
,len
, 0, 0, NULL
, true);
869 /* Sends an APDU to the tag
870 * TODO: check CRC and preamble
872 int iso14443b_apdu(uint8_t const *message
, size_t message_length
, uint8_t *response
) {
874 uint8_t message_frame
[message_length
+ 4];
876 message_frame
[0] = 0x0A | pcb_blocknum
;
879 message_frame
[1] = 0;
881 memcpy(message_frame
+ 2, message
, message_length
);
883 ComputeCrc14443(CRC_14443_B
, message_frame
, message_length
+ 2, &message_frame
[message_length
+ 2], &message_frame
[message_length
+ 3]);
885 CodeAndTransmit14443bAsReader(message_frame
, message_length
+ 4);
887 int ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
888 FpgaDisableTracing();
894 // copy response contents
895 if (response
!= NULL
) {
896 memcpy(response
, Demod
.output
, Demod
.len
);
902 /* Perform the ISO 14443 B Card Selection procedure
903 * Currently does NOT do any collision handling.
904 * It expects 0-1 cards in the device's range.
905 * TODO: Support multiple cards (perform anticollision)
906 * TODO: Verify CRC checksums
908 int iso14443b_select_card()
910 // WUPB command (including CRC)
911 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
912 static const uint8_t wupb
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
913 // ATTRIB command (with space for CRC)
914 uint8_t attrib
[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
916 // first, wake up the tag
917 CodeAndTransmit14443bAsReader(wupb
, sizeof(wupb
));
918 int ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
925 // copy the PUPI to ATTRIB
926 memcpy(attrib
+ 1, Demod
.output
+ 1, 4);
927 /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
929 attrib
[7] = Demod
.output
[10] & 0x0F;
930 ComputeCrc14443(CRC_14443_B
, attrib
, 9, attrib
+ 9, attrib
+ 10);
931 CodeAndTransmit14443bAsReader(attrib
, sizeof(attrib
));
932 ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
933 // Answer to ATTRIB too short?
937 // reset PCB block number
942 // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
943 void iso14443b_setup() {
944 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
945 // Set up the synchronous serial port
946 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
947 // connect Demodulated Signal to ADC:
948 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
950 // Signal field is on with the appropriate LED
952 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_SHALLOW_MOD
);
958 //-----------------------------------------------------------------------------
959 // Read a SRI512 ISO 14443B tag.
961 // SRI512 tags are just simple memory tags, here we're looking at making a dump
962 // of the contents of the memory. No anticollision algorithm is done, we assume
963 // we have a single tag in the field.
965 // I tried to be systematic and check every answer of the tag, every CRC, etc...
966 //-----------------------------------------------------------------------------
967 void ReadSTMemoryIso14443b(uint32_t dwLast
)
972 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
973 // Make sure that we start from off, since the tags are stateful;
974 // confusing things will happen if we don't reset them between reads.
976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
979 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
980 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
982 // Now give it time to spin up.
983 // Signal field is on with the appropriate LED
985 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_SHALLOW_MOD
);
991 // First command: wake up the tag using the INITIATE command
992 uint8_t cmd1
[] = {0x06, 0x00, 0x97, 0x5b};
993 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
994 int ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
997 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
998 DbpString("No response from tag");
1002 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1003 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
1006 // There is a response, SELECT the uid
1007 DbpString("Now SELECT tag:");
1008 cmd1
[0] = 0x0E; // 0x0E is SELECT
1009 cmd1
[1] = Demod
.output
[0];
1010 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1011 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1012 ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
1013 if (Demod
.len
!= 3) {
1014 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1015 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
1019 // Check the CRC of the answer:
1020 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
1021 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
1022 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1023 DbpString("CRC Error reading select response.");
1027 // Check response from the tag: should be the same UID as the command we just sent:
1028 if (cmd1
[1] != Demod
.output
[0]) {
1029 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1030 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
1035 // Tag is now selected,
1036 // First get the tag's UID:
1038 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1039 CodeAndTransmit14443bAsReader(cmd1
, 3); // Only first three bytes for this one
1040 ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
1042 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1043 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1047 // The check the CRC of the answer (use cmd1 as temporary variable):
1048 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1049 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1050 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1051 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1052 // Do not return;, let's go on... (we should retry, maybe ?)
1054 Dbprintf("Tag UID (64 bits): %08x %08x",
1055 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1056 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1058 // Now loop to read all 16 blocks, address from 0 to last block
1059 Dbprintf("Tag memory dump, block 0 to %d", dwLast
);
1065 DbpString("System area block (0xff):");
1069 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1070 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1071 ret
= GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, true);
1072 if (ret
!= 6) { // Check if we got an answer from the tag
1073 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1074 DbpString("Expected 6 bytes from tag, got less...");
1078 // The check the CRC of the answer (use cmd1 as temporary variable):
1079 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1080 if (cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1081 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1082 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1083 // Do not return;, let's go on... (we should retry, maybe ?)
1085 // Now print out the memory location:
1086 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1087 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1088 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1095 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1100 //=============================================================================
1101 // Finally, the `sniffer' combines elements from both the reader and
1102 // simulated tag, to show both sides of the conversation.
1103 //=============================================================================
1105 //-----------------------------------------------------------------------------
1106 // Record the sequence of commands sent by the reader to the tag, with
1107 // triggering so that we start recording at the point that the tag is moved
1109 //-----------------------------------------------------------------------------
1111 * Memory usage for this function, (within BigBuf)
1112 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1113 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1114 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1115 * Demodulated samples received - all the rest
1117 void RAMFUNC
SnoopIso14443b(void)
1120 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1126 // The DMA buffer, used to stream samples from the FPGA
1127 uint16_t *dmaBuf
= (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1131 int maxBehindBy
= 0;
1133 // Count of samples received so far, so that we can include timing
1134 // information in the trace buffer.
1137 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1138 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1140 // Print some debug information about the buffer sizes
1141 Dbprintf("Snooping buffers initialized:");
1142 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1143 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1144 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1145 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1147 // Signal field is off
1150 // And put the FPGA in the appropriate mode
1151 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_848_KHZ
| FPGA_HF_READER_MODE_SNOOP_IQ
);
1152 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1154 // Setup for the DMA.
1155 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1157 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1158 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
1160 bool TagIsActive
= false;
1161 bool ReaderIsActive
= false;
1162 // We won't start recording the frames that we acquire until we trigger.
1163 // A good trigger condition to get started is probably when we see a
1165 bool triggered
= false;
1167 // And now we loop, receiving samples.
1169 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1);
1170 if(behindBy
> maxBehindBy
) {
1171 maxBehindBy
= behindBy
;
1174 if(behindBy
< 1) continue;
1180 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1181 upTo
= dmaBuf
; // start reading the circular buffer from the beginning again
1182 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1183 if(behindBy
> (9*ISO14443B_DMA_BUFFER_SIZE
/10)) {
1184 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1188 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1189 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1190 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1192 if(BUTTON_PRESS()) {
1193 DbpString("cancelled");
1200 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1201 if(Handle14443bUartBit(ci
& 0x01)) {
1203 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, NULL
, true);
1204 /* And ready to receive another command. */
1206 /* And also reset the demod code, which might have been */
1207 /* false-triggered by the commands from the reader. */
1210 if(Handle14443bUartBit(cq
& 0x01)) {
1212 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, NULL
, true);
1213 /* And ready to receive another command. */
1215 /* And also reset the demod code, which might have been */
1216 /* false-triggered by the commands from the reader. */
1219 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1222 if (!ReaderIsActive
&& triggered
) { // no need to try decoding tag data if the reader is sending or not yet triggered
1223 if (Handle14443bSamplesDemod(ci
/2, cq
/2) >= 0) {
1224 //Use samples as a time measurement
1225 LogTrace(Demod
.output
, Demod
.len
, samples
, samples
, NULL
, false);
1226 // And ready to receive another response.
1229 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1234 FpgaDisableSscDma();
1235 DbpString("Snoop statistics:");
1236 Dbprintf(" Max behind by: %i", maxBehindBy
);
1237 Dbprintf(" Uart State: %x", Uart
.state
);
1238 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1239 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1240 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1246 * Send raw command to tag ISO14443B
1248 * datalen len of buffer data
1249 * recv bool when true wait for data from tag and send to client
1250 * powerfield bool leave the field on when true
1251 * data buffer with byte to send
1257 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
, uint8_t powerfield
, uint8_t data
[])
1260 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1261 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1263 // switch field on and give tag some time to power up
1265 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_SHALLOW_MOD
);
1266 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1272 CodeAndTransmit14443bAsReader(data
, datalen
);
1275 int ret
= GetSamplesFor14443bDemod(5*RECEIVE_SAMPLES_TIMEOUT
, true);
1276 FpgaDisableTracing();
1277 uint16_t iLen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1278 cmd_send(CMD_ACK
, ret
, 0, 0, Demod
.output
, iLen
);
1281 FpgaDisableTracing();
1285 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);