1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
69 ///////////////////////////////////////////////////////////////////////
70 // ISO 15693 Part 2 - Air Interface
71 // This section basicly contains transmission and receiving of bits
72 ///////////////////////////////////////////////////////////////////////
74 #define Crc(data,datalen) Iso15693Crc(data,datalen)
75 #define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
76 #define sprintUID(target,uid) Iso15693sprintUID(target,uid)
79 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
80 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
81 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
83 // timing. Delays in SSP_CLK ticks.
84 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
85 #define DELAY_READER_TO_ARM_SIM 8
86 #define DELAY_ARM_TO_READER_SIM 1
87 #define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response
88 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader
89 #define DELAY_ISO15693_VCD_TO_VICC_READER 1056 // 1056/3,39MHz = 311.5us from end of command EOF to start of tag response
90 #define DELAY_ISO15693_VICC_TO_VCD_READER 1017 // 1017/3.39MHz = 300us between end of tag response and next reader command
92 // ---------------------------
94 // ---------------------------
96 // prepare data using "1 out of 4" code for later transmission
97 // resulting data rate is 26.48 kbit/s (fc/512)
99 // n ... length of data
100 static void CodeIso15693AsReader(uint8_t *cmd
, int n
)
106 // Give it a bit of slack at the beginning
107 for(i
= 0; i
< 24; i
++) {
120 for(i
= 0; i
< n
; i
++) {
121 for(j
= 0; j
< 8; j
+= 2) {
122 int these
= (cmd
[i
] >> j
) & 3;
173 // Fill remainder of last byte with 1
174 for(i
= 0; i
< 4; i
++) {
181 // encode data using "1 out of 256" scheme
182 // data rate is 1,66 kbit/s (fc/8192)
183 // is designed for more robust communication over longer distances
184 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
190 // Give it a bit of slack at the beginning
191 for(i
= 0; i
< 24; i
++) {
205 for(i
= 0; i
< n
; i
++) {
206 for (j
= 0; j
<=255; j
++) {
222 // Fill remainder of last byte with 1
223 for(i
= 0; i
< 4; i
++) {
231 static void CodeIso15693AsTag(uint8_t *cmd
, int n
)
246 for(int i
= 0; i
< n
; i
++) {
247 for(int j
= 0; j
< 8; j
++) {
248 if ((cmd
[i
] >> j
) & 0x01) {
272 // Transmit the command (to the tag) that was placed in cmd[].
273 static void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t start_time
)
275 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
276 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
278 while (GetCountSspClk() < start_time
) ;
281 for(int c
= 0; c
< len
; c
++) {
282 uint8_t data
= cmd
[c
];
283 for (int i
= 0; i
< 8; i
++) {
284 uint16_t send_word
= (data
& 0x80) ? 0x0000 : 0xffff;
285 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
286 AT91C_BASE_SSC
->SSC_THR
= send_word
;
287 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
288 AT91C_BASE_SSC
->SSC_THR
= send_word
;
297 //-----------------------------------------------------------------------------
298 // Transmit the tag response (to the reader) that was placed in cmd[].
299 //-----------------------------------------------------------------------------
300 static void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t start_time
, bool slow
)
302 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
303 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
305 uint8_t shift_delay
= start_time
& 0x00000007;
306 uint8_t bitmask
= 0x00;
307 for (int i
= 0; i
< shift_delay
; i
++) {
308 bitmask
|= (0x01 << i
);
311 while (GetCountSspClk() < (start_time
& 0xfffffff8)) ;
313 AT91C_BASE_SSC
->SSC_THR
= 0x00; // clear TXRDY
316 uint8_t bits_to_shift
= 0x00;
317 for(size_t c
= 0; c
<= len
; c
++) {
318 uint8_t bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | (c
==len
?0x00:cmd
[c
]) >> shift_delay
;
319 bits_to_shift
= cmd
[c
] & bitmask
;
320 for (int i
= 7; i
>= 0; i
--) {
321 for (int j
= 0; j
< (slow
?4:1); ) {
322 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
323 if (bits_to_send
>> i
& 0x01) {
324 AT91C_BASE_SSC
->SSC_THR
= 0xff;
326 AT91C_BASE_SSC
->SSC_THR
= 0x00;
338 //=============================================================================
339 // An ISO 15693 decoder for tag responses (one subcarrier only).
340 // Uses cross correlation to identify each bit and EOF.
341 // This function is called 8 times per bit (every 2 subcarrier cycles).
342 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
343 // i.e. function is called every 4,72us
345 // LED C -> ON once we have received the SOF and are expecting the rest.
346 // LED C -> OFF once we have received EOF or are unsynced
348 // Returns: true if we received a EOF
349 // false if we are still waiting for some more
350 //=============================================================================
352 #define NOISE_THRESHOLD 160 // don't try to correlate noise
354 typedef struct DecodeTag
{
358 STATE_TAG_SOF_HIGH_END
,
359 STATE_TAG_RECEIVING_DATA
,
378 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
)
380 switch(DecodeTag
->state
) {
381 case STATE_TAG_SOF_LOW
:
382 // waiting for 12 times low (11 times low is accepted as well)
383 if (amplitude
< NOISE_THRESHOLD
) {
384 DecodeTag
->posCount
++;
386 if (DecodeTag
->posCount
> 10) {
387 DecodeTag
->posCount
= 1;
389 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
391 DecodeTag
->posCount
= 0;
396 case STATE_TAG_SOF_HIGH
:
397 // waiting for 10 times high. Take average over the last 8
398 if (amplitude
> NOISE_THRESHOLD
) {
399 DecodeTag
->posCount
++;
400 if (DecodeTag
->posCount
> 2) {
401 DecodeTag
->sum1
+= amplitude
; // keep track of average high value
403 if (DecodeTag
->posCount
== 10) {
404 DecodeTag
->sum1
>>= 4; // calculate half of average high value (8 samples)
405 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
407 } else { // high phase was too short
408 DecodeTag
->posCount
= 1;
409 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
413 case STATE_TAG_SOF_HIGH_END
:
414 // waiting for a falling edge
415 if (amplitude
< DecodeTag
->sum1
) { // signal drops below 50% average high: a falling edge
416 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
417 DecodeTag
->shiftReg
= 0;
418 DecodeTag
->bitCount
= 0;
420 DecodeTag
->sum1
= amplitude
;
422 DecodeTag
->posCount
= 2;
423 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
426 DecodeTag
->posCount
++;
427 if (DecodeTag
->posCount
> 13) { // high phase too long
428 DecodeTag
->posCount
= 0;
429 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
435 case STATE_TAG_RECEIVING_DATA
:
436 if (DecodeTag
->posCount
== 1) {
440 if (DecodeTag
->posCount
<= 4) {
441 DecodeTag
->sum1
+= amplitude
;
443 DecodeTag
->sum2
+= amplitude
;
445 if (DecodeTag
->posCount
== 8) {
446 int32_t corr_1
= DecodeTag
->sum2
- DecodeTag
->sum1
;
447 int32_t corr_0
= -corr_1
;
448 int32_t corr_EOF
= (DecodeTag
->sum1
+ DecodeTag
->sum2
) / 2;
449 if (corr_EOF
> corr_0
&& corr_EOF
> corr_1
) {
450 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
451 DecodeTag
->state
= STATE_TAG_EOF
;
453 DecodeTag
->posCount
= 0;
454 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
457 } else if (corr_1
> corr_0
) {
459 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
460 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
462 DecodeTag
->lastBit
= LOGIC1
;
463 DecodeTag
->shiftReg
>>= 1;
464 DecodeTag
->shiftReg
|= 0x80;
465 DecodeTag
->bitCount
++;
466 if (DecodeTag
->bitCount
== 8) {
467 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
469 if (DecodeTag
->len
> DecodeTag
->max_len
) {
470 // buffer overflow, give up
471 DecodeTag
->posCount
= 0;
472 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
475 DecodeTag
->bitCount
= 0;
476 DecodeTag
->shiftReg
= 0;
481 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
482 DecodeTag
->posCount
= 0;
483 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
486 DecodeTag
->lastBit
= LOGIC0
;
487 DecodeTag
->shiftReg
>>= 1;
488 DecodeTag
->bitCount
++;
489 if (DecodeTag
->bitCount
== 8) {
490 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
492 if (DecodeTag
->len
> DecodeTag
->max_len
) {
493 // buffer overflow, give up
494 DecodeTag
->posCount
= 0;
495 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
498 DecodeTag
->bitCount
= 0;
499 DecodeTag
->shiftReg
= 0;
503 DecodeTag
->posCount
= 0;
505 DecodeTag
->posCount
++;
509 if (DecodeTag
->posCount
== 1) {
513 if (DecodeTag
->posCount
<= 4) {
514 DecodeTag
->sum1
+= amplitude
;
516 DecodeTag
->sum2
+= amplitude
;
518 if (DecodeTag
->posCount
== 8) {
519 int32_t corr_1
= DecodeTag
->sum2
- DecodeTag
->sum1
;
520 int32_t corr_0
= -corr_1
;
521 int32_t corr_EOF
= (DecodeTag
->sum1
+ DecodeTag
->sum2
) / 2;
522 if (corr_EOF
> corr_0
|| corr_1
> corr_0
) {
523 DecodeTag
->posCount
= 0;
524 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
531 DecodeTag
->posCount
++;
540 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
)
542 DecodeTag
->posCount
= 0;
543 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
544 DecodeTag
->output
= data
;
545 DecodeTag
->max_len
= max_len
;
549 static void DecodeTagReset(DecodeTag_t
*DecodeTag
)
551 DecodeTag
->posCount
= 0;
552 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
557 * Receive and decode the tag response, also log to tracebuffer
559 static int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, int timeout
)
562 bool gotFrame
= false;
564 uint16_t *dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
566 // the Decoder data structure
567 DecodeTag_t DecodeTag
= { 0 };
568 DecodeTagInit(&DecodeTag
, response
, max_len
);
570 // wait for last transfer to complete
571 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
573 // And put the FPGA in the appropriate mode
574 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
576 // Setup and start DMA.
577 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
578 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
579 uint16_t *upTo
= dmaBuf
;
582 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
584 if (behindBy
== 0) continue;
586 uint16_t tagdata
= *upTo
++;
588 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
589 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
590 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
591 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
595 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
596 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
597 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
602 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
607 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
617 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
618 samples
, gotFrame
, DecodeTag
.state
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
620 if (DecodeTag
.len
> 0) {
621 LogTrace(DecodeTag
.output
, DecodeTag
.len
, 0, 0, NULL
, false);
624 return DecodeTag
.len
;
628 //=============================================================================
629 // An ISO15693 decoder for reader commands.
631 // This function is called 4 times per bit (every 2 subcarrier cycles).
632 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
634 // LED B -> ON once we have received the SOF and are expecting the rest.
635 // LED B -> OFF once we have received EOF or are in error state or unsynced
637 // Returns: true if we received a EOF
638 // false if we are still waiting for some more
639 //=============================================================================
641 typedef struct DecodeReader
{
643 STATE_READER_UNSYNCD
,
644 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
645 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
646 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
647 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
648 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
649 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
665 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
)
667 DecodeReader
->output
= data
;
668 DecodeReader
->byteCountMax
= max_len
;
669 DecodeReader
->state
= STATE_READER_UNSYNCD
;
670 DecodeReader
->byteCount
= 0;
671 DecodeReader
->bitCount
= 0;
672 DecodeReader
->posCount
= 1;
673 DecodeReader
->shiftReg
= 0;
677 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
)
679 DecodeReader
->state
= STATE_READER_UNSYNCD
;
683 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(uint8_t bit
, DecodeReader_t
*restrict DecodeReader
)
685 switch(DecodeReader
->state
) {
686 case STATE_READER_UNSYNCD
:
688 // we went low, so this could be the beginning of a SOF
689 DecodeReader
->posCount
= 1;
690 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
694 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
695 DecodeReader
->posCount
++;
696 if(bit
) { // detected rising edge
697 if(DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
698 DecodeReaderReset(DecodeReader
);
700 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
703 if(DecodeReader
->posCount
> 5) { // stayed low for too long
704 DecodeReaderReset(DecodeReader
);
706 // do nothing, keep waiting
711 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
712 DecodeReader
->posCount
++;
713 if(!bit
) { // detected a falling edge
714 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
715 DecodeReaderReset(DecodeReader
);
716 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
717 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
718 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
719 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
720 DecodeReaderReset(DecodeReader
);
721 } else { // SOF for 1 out of 4 coding
722 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
723 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
726 if(DecodeReader
->posCount
> 29) { // stayed high for too long
727 DecodeReaderReset(DecodeReader
);
729 // do nothing, keep waiting
734 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
735 DecodeReader
->posCount
++;
736 if (bit
) { // detected rising edge
737 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
738 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
739 DecodeReaderReset(DecodeReader
);
741 DecodeReader
->posCount
= 1;
742 DecodeReader
->bitCount
= 0;
743 DecodeReader
->byteCount
= 0;
744 DecodeReader
->sum1
= 1;
745 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
748 } else { // CODING_1_OUT_OF_4
749 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
750 DecodeReaderReset(DecodeReader
);
752 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
756 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
757 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
758 DecodeReaderReset(DecodeReader
);
760 // do nothing, keep waiting
762 } else { // CODING_1_OUT_OF_4
763 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
764 DecodeReaderReset(DecodeReader
);
766 // do nothing, keep waiting
772 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
773 DecodeReader
->posCount
++;
775 if (DecodeReader
->posCount
== 33) {
776 DecodeReader
->posCount
= 1;
777 DecodeReader
->bitCount
= 0;
778 DecodeReader
->byteCount
= 0;
779 DecodeReader
->sum1
= 1;
780 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
783 // do nothing, keep waiting
785 } else { // unexpected falling edge
786 DecodeReaderReset(DecodeReader
);
790 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
791 DecodeReader
->posCount
++;
792 if (DecodeReader
->posCount
== 1) {
793 DecodeReader
->sum1
= bit
;
794 } else if (DecodeReader
->posCount
<= 4) {
795 DecodeReader
->sum1
+= bit
;
796 } else if (DecodeReader
->posCount
== 5) {
797 DecodeReader
->sum2
= bit
;
799 DecodeReader
->sum2
+= bit
;
801 if (DecodeReader
->posCount
== 8) {
802 DecodeReader
->posCount
= 0;
803 int corr10
= DecodeReader
->sum1
- DecodeReader
->sum2
;
804 int corr01
= DecodeReader
->sum2
- DecodeReader
->sum1
;
805 int corr11
= (DecodeReader
->sum1
+ DecodeReader
->sum2
) / 2;
806 if (corr01
> corr11
&& corr01
> corr10
) { // EOF
807 LED_B_OFF(); // Finished receiving
808 DecodeReaderReset(DecodeReader
);
809 if (DecodeReader
->byteCount
!= 0) {
813 if (corr10
> corr11
) { // detected a 2bit position
814 DecodeReader
->shiftReg
>>= 2;
815 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
817 if (DecodeReader
->bitCount
== 15) { // we have a full byte
818 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
819 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
820 // buffer overflow, give up
822 DecodeReaderReset(DecodeReader
);
824 DecodeReader
->bitCount
= 0;
825 DecodeReader
->shiftReg
= 0;
827 DecodeReader
->bitCount
++;
832 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
833 DecodeReader
->posCount
++;
834 if (DecodeReader
->posCount
== 1) {
835 DecodeReader
->sum1
= bit
;
836 } else if (DecodeReader
->posCount
<= 4) {
837 DecodeReader
->sum1
+= bit
;
838 } else if (DecodeReader
->posCount
== 5) {
839 DecodeReader
->sum2
= bit
;
841 DecodeReader
->sum2
+= bit
;
843 if (DecodeReader
->posCount
== 8) {
844 DecodeReader
->posCount
= 0;
845 int corr10
= DecodeReader
->sum1
- DecodeReader
->sum2
;
846 int corr01
= DecodeReader
->sum2
- DecodeReader
->sum1
;
847 int corr11
= (DecodeReader
->sum1
+ DecodeReader
->sum2
) / 2;
848 if (corr01
> corr11
&& corr01
> corr10
) { // EOF
849 LED_B_OFF(); // Finished receiving
850 DecodeReaderReset(DecodeReader
);
851 if (DecodeReader
->byteCount
!= 0) {
855 if (corr10
> corr11
) { // detected the bit position
856 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
858 if (DecodeReader
->bitCount
== 255) { // we have a full byte
859 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
860 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
861 // buffer overflow, give up
863 DecodeReaderReset(DecodeReader
);
866 DecodeReader
->bitCount
++;
872 DecodeReaderReset(DecodeReader
);
880 //-----------------------------------------------------------------------------
881 // Receive a command (from the reader to us, where we are the simulated tag),
882 // and store it in the given buffer, up to the given maximum length. Keeps
883 // spinning, waiting for a well-framed command, until either we get one
884 // (returns true) or someone presses the pushbutton on the board (false).
886 // Assume that we're called with the SSC (to the FPGA) and ADC path set
888 //-----------------------------------------------------------------------------
890 static int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
)
893 bool gotFrame
= false;
896 uint8_t *dmaBuf
= BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
);
898 // the decoder data structure
899 DecodeReader_t DecodeReader
= {0};
900 DecodeReaderInit(&DecodeReader
, received
, max_len
);
902 // wait for last transfer to complete
903 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
906 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
908 // clear receive register and wait for next transfer
909 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
911 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
913 uint32_t bit_time
= GetCountSspClk() & 0xfffffff8;
915 // Setup and start DMA.
916 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
917 uint8_t *upTo
= dmaBuf
;
920 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
922 if (behindBy
== 0) continue;
925 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
926 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
927 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
928 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
932 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
933 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
934 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
937 for (int i
= 7; i
>= 0; i
--) {
938 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
939 *eof_time
= bit_time
+ samples
- DELAY_READER_TO_ARM_SIM
; // end of EOF
950 if (BUTTON_PRESS()) {
951 DecodeReader
.byteCount
= 0;
960 BigBuf_free_keep_EM();
962 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
963 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
965 if (DecodeReader
.byteCount
> 0) {
966 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, 0, *eof_time
, NULL
, true);
969 return DecodeReader
.byteCount
;
973 // Encode (into the ToSend buffers) an identify request, which is the first
974 // thing that you must send to a tag to get a response.
975 static void BuildIdentifyRequest(void)
980 // one sub-carrier, inventory, 1 slot, fast rate
981 // AFI is at bit 5 (1<<4) when doing an INVENTORY
982 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
983 // inventory command code
992 CodeIso15693AsReader(cmd
, sizeof(cmd
));
996 //-----------------------------------------------------------------------------
997 // Start to read an ISO 15693 tag. We send an identify request, then wait
998 // for the response. The response is not demodulated, just left in the buffer
999 // so that it can be downloaded to a PC and processed there.
1000 //-----------------------------------------------------------------------------
1001 void AcquireRawAdcSamplesIso15693(void)
1006 uint8_t *dest
= BigBuf_get_addr();
1008 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1009 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1010 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1011 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1013 BuildIdentifyRequest();
1015 // Give the tags time to energize
1019 // Now send the command
1020 TransmitTo15693Tag(ToSend
, ToSendMax
, 0);
1022 // wait for last transfer to complete
1023 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1025 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1027 for(int c
= 0; c
< 4000; ) {
1028 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1029 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1034 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1039 void SnoopIso15693(void)
1042 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1048 // The DMA buffer, used to stream samples from the FPGA
1049 uint16_t* dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
1052 // Count of samples received so far, so that we can include timing
1053 // information in the trace buffer.
1056 DecodeTag_t DecodeTag
= {0};
1057 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1058 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1060 DecodeReader_t DecodeReader
= {0};;
1061 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1062 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
));
1064 // Print some debug information about the buffer sizes
1066 Dbprintf("Snooping buffers initialized:");
1067 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1068 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1069 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1070 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1072 Dbprintf("Snoop started. Press PM3 Button to stop.");
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1075 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1077 // Setup for the DMA.
1078 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1080 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1082 bool TagIsActive
= false;
1083 bool ReaderIsActive
= false;
1084 bool ExpectTagAnswer
= false;
1086 // And now we loop, receiving samples.
1088 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1090 if (behindBy
== 0) continue;
1092 uint16_t snoopdata
= *upTo
++;
1094 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1095 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1096 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1097 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1100 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1101 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1102 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1104 if(BUTTON_PRESS()) {
1105 DbpString("Snoop stopped.");
1112 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1113 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1114 FpgaDisableSscDma();
1115 ExpectTagAnswer
= true;
1116 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, samples
, samples
, NULL
, true);
1117 /* And ready to receive another command. */
1118 DecodeReaderReset(&DecodeReader
);
1119 /* And also reset the demod code, which might have been */
1120 /* false-triggered by the commands from the reader. */
1121 DecodeTagReset(&DecodeTag
);
1123 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1125 if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1126 FpgaDisableSscDma();
1127 ExpectTagAnswer
= true;
1128 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, samples
, samples
, NULL
, true);
1129 /* And ready to receive another command. */
1130 DecodeReaderReset(&DecodeReader
);
1131 /* And also reset the demod code, which might have been */
1132 /* false-triggered by the commands from the reader. */
1133 DecodeTagReset(&DecodeTag
);
1135 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1137 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
);
1140 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1141 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1142 FpgaDisableSscDma();
1143 //Use samples as a time measurement
1144 LogTrace(DecodeTag
.output
, DecodeTag
.len
, samples
, samples
, NULL
, false);
1145 // And ready to receive another response.
1146 DecodeTagReset(&DecodeTag
);
1147 DecodeReaderReset(&DecodeReader
);
1148 ExpectTagAnswer
= false;
1150 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1152 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1157 FpgaDisableSscDma();
1162 DbpString("Snoop statistics:");
1163 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer
);
1164 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1165 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1166 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1167 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1168 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1172 // Initialize the proxmark as iso15k reader
1173 static void Iso15693InitReader() {
1174 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1178 // Start from off (no field generated)
1180 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1183 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1184 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1186 // Give the tags time to energize
1188 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1192 ///////////////////////////////////////////////////////////////////////
1193 // ISO 15693 Part 3 - Air Interface
1194 // This section basically contains transmission and receiving of bits
1195 ///////////////////////////////////////////////////////////////////////
1198 // uid is in transmission order (which is reverse of display order)
1199 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1204 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1205 // followed by the block data
1206 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1207 // READ BLOCK command code
1208 cmd
[1] = ISO15693_READBLOCK
;
1209 // UID may be optionally specified here
1218 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1219 // Block number to read
1220 cmd
[10] = blockNumber
;
1222 crc
= Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1223 cmd
[11] = crc
& 0xff;
1226 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1230 // Now the VICC>VCD responses when we are simulating a tag
1231 static void BuildInventoryResponse(uint8_t *uid
)
1237 cmd
[0] = 0; // No error, no protocol format extension
1238 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1240 cmd
[2] = uid
[7]; //0x32;
1241 cmd
[3] = uid
[6]; //0x4b;
1242 cmd
[4] = uid
[5]; //0x03;
1243 cmd
[5] = uid
[4]; //0x01;
1244 cmd
[6] = uid
[3]; //0x00;
1245 cmd
[7] = uid
[2]; //0x10;
1246 cmd
[8] = uid
[1]; //0x05;
1247 cmd
[9] = uid
[0]; //0xe0;
1250 cmd
[10] = crc
& 0xff;
1253 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1256 // Universal Method for sending to and recv bytes from a tag
1257 // init ... should we initialize the reader?
1258 // speed ... 0 low speed, 1 hi speed
1259 // *recv will contain the tag's answer
1260 // return: lenght of received data
1261 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
) {
1267 if (init
) Iso15693InitReader();
1272 // low speed (1 out of 256)
1273 CodeIso15693AsReader256(send
, sendlen
);
1275 // high speed (1 out of 4)
1276 CodeIso15693AsReader(send
, sendlen
);
1279 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1281 // Now wait for a response
1283 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, DELAY_ISO15693_VCD_TO_VICC_READER
* 2);
1292 // --------------------------------------------------------------------
1294 // --------------------------------------------------------------------
1296 // Decodes a message from a tag and displays its metadata and content
1297 #define DBD15STATLEN 48
1298 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1299 char status
[DBD15STATLEN
+1]={0};
1303 if (d
[0] & ISO15693_RES_EXT
)
1304 strncat(status
,"ProtExt ", DBD15STATLEN
);
1305 if (d
[0] & ISO15693_RES_ERROR
) {
1307 strncat(status
,"Error ", DBD15STATLEN
);
1310 strncat(status
,"01:notSupp", DBD15STATLEN
);
1313 strncat(status
,"02:notRecog", DBD15STATLEN
);
1316 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1319 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1322 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1325 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1328 strncat(status
,"12:locked", DBD15STATLEN
);
1331 strncat(status
,"13:progErr", DBD15STATLEN
);
1334 strncat(status
,"14:lockErr", DBD15STATLEN
);
1337 strncat(status
,"unknownErr", DBD15STATLEN
);
1339 strncat(status
," ", DBD15STATLEN
);
1341 strncat(status
,"NoErr ", DBD15STATLEN
);
1345 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1346 strncat(status
,"CrcOK",DBD15STATLEN
);
1348 strncat(status
,"CrcFail!",DBD15STATLEN
);
1350 Dbprintf("%s",status
);
1356 ///////////////////////////////////////////////////////////////////////
1357 // Functions called via USB/Client
1358 ///////////////////////////////////////////////////////////////////////
1360 void SetDebugIso15693(uint32_t debug
) {
1362 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1367 //---------------------------------------------------------------------------------------
1368 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1369 // all demodulation performed in arm rather than host. - greg
1370 //---------------------------------------------------------------------------------------
1371 void ReaderIso15693(uint32_t parameter
)
1379 uint8_t TagUID
[8] = {0x00};
1381 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1383 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1385 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1387 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1389 // Start from off (no field generated)
1390 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1393 // Give the tags time to energize
1395 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1400 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1401 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1403 // Now send the IDENTIFY command
1404 BuildIdentifyRequest();
1405 TransmitTo15693Tag(ToSend
, ToSendMax
, 0);
1407 // Now wait for a response
1408 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2) ;
1409 uint32_t start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1411 if (answerLen
>=12) // we should do a better check than this
1413 TagUID
[0] = answer
[2];
1414 TagUID
[1] = answer
[3];
1415 TagUID
[2] = answer
[4];
1416 TagUID
[3] = answer
[5];
1417 TagUID
[4] = answer
[6];
1418 TagUID
[5] = answer
[7];
1419 TagUID
[6] = answer
[8]; // IC Manufacturer code
1420 TagUID
[7] = answer
[9]; // always E0
1424 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1425 DbdecodeIso15693Answer(answerLen
, answer
);
1426 Dbhexdump(answerLen
, answer
, false);
1429 if (answerLen
>= 12)
1430 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1431 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1432 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1435 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1436 // DbdecodeIso15693Answer(answerLen2,answer2);
1437 // Dbhexdump(answerLen2,answer2,true);
1439 // Dbprintf("%d octets read from XXX request:", answerLen3);
1440 // DbdecodeIso15693Answer(answerLen3,answer3);
1441 // Dbhexdump(answerLen3,answer3,true);
1444 if (answerLen
>= 12 && DEBUG
) {
1445 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1446 BuildReadBlockRequest(TagUID
, i
);
1447 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1448 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2);
1449 start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1450 if (answerLen
> 0) {
1451 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1452 DbdecodeIso15693Answer(answerLen
, answer
);
1453 Dbhexdump(answerLen
, answer
, false);
1454 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1459 // for the time being, switch field off to protect rdv4.0
1460 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1461 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1468 // Simulate an ISO15693 TAG.
1469 // For Inventory command: print command and send Inventory Response with given UID
1470 // TODO: interpret other reader commands and send appropriate response
1471 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
)
1476 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1477 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1478 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1479 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1483 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1485 // Build a suitable response to the reader INVENTORY command
1486 BuildInventoryResponse(uid
);
1489 while (!BUTTON_PRESS()) {
1490 uint32_t eof_time
= 0, start_time
= 0;
1491 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1493 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1494 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1495 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
- DELAY_ARM_TO_READER_SIM
;
1496 TransmitTo15693Reader(ToSend
, ToSendMax
, start_time
, slow
);
1499 Dbprintf("%d bytes read from reader:", cmd_len
);
1500 Dbhexdump(cmd_len
, cmd
, false);
1503 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1508 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1509 // (some manufactures offer a way to read the AFI, though)
1510 void BruteforceIso15693Afi(uint32_t speed
)
1516 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1518 int datalen
=0, recvlen
=0;
1520 Iso15693InitReader();
1523 // first without AFI
1524 // Tags should respond without AFI and with AFI=0 even when AFI is active
1526 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1527 data
[1] = ISO15693_INVENTORY
;
1528 data
[2] = 0; // mask length
1529 datalen
= AddCrc(data
,3);
1530 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), 0);
1531 uint32_t start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1534 Dbprintf("NoAFI UID=%s", sprintUID(NULL
, &recv
[2]));
1539 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1540 data
[1] = ISO15693_INVENTORY
;
1542 data
[3] = 0; // mask length
1544 for (int i
= 0; i
< 256; i
++) {
1546 datalen
= AddCrc(data
,4);
1547 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
);
1548 start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1550 if (recvlen
>= 12) {
1551 Dbprintf("AFI=%i UID=%s", i
, sprintUID(NULL
, &recv
[2]));
1554 Dbprintf("AFI Bruteforcing done.");
1556 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1560 // Allows to directly send commands to the tag via the client
1561 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1564 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1570 Dbhexdump(datalen
, data
, false);
1573 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0);
1578 Dbhexdump(recvlen
, recvbuf
, false);
1579 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1582 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1586 // for the time being, switch field off to protect rdv4.0
1587 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1588 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1597 // --------------------------------------------------------------------
1598 // -- Misc & deprecated functions
1599 // --------------------------------------------------------------------
1603 // do not use; has a fix UID
1604 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1609 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1610 // followed by the block data
1611 // one sub-carrier, inventory, 1 slot, fast rate
1612 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1613 // System Information command code
1615 // UID may be optionally specified here
1624 cmd[9]= 0xe0; // always e0 (not exactly unique)
1626 crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1627 cmd[10] = crc & 0xff;
1630 CodeIso15693AsReader(cmd, sizeof(cmd));
1634 // do not use; has a fix UID
1635 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1640 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1641 // followed by the block data
1642 // one sub-carrier, inventory, 1 slot, fast rate
1643 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1644 // READ Multi BLOCK command code
1646 // UID may be optionally specified here
1655 cmd[9]= 0xe0; // always e0 (not exactly unique)
1656 // First Block number to read
1658 // Number of Blocks to read
1659 cmd[11] = 0x2f; // read quite a few
1661 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1662 cmd[12] = crc & 0xff;
1665 CodeIso15693AsReader(cmd, sizeof(cmd));
1668 // do not use; has a fix UID
1669 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1674 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1675 // followed by the block data
1676 // one sub-carrier, inventory, 1 slot, fast rate
1677 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1678 // READ BLOCK command code
1680 // UID may be optionally specified here
1689 cmd[9]= 0xe0; // always e0 (not exactly unique)
1695 // cmd[13] = 0x00; //Now the CRC
1696 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1697 cmd[12] = crc & 0xff;
1700 CodeIso15693AsReader(cmd, sizeof(cmd));
1703 // do not use; has a fix UID
1704 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1709 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1710 // followed by the block data
1711 // one sub-carrier, inventory, 1 slot, fast rate
1712 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1713 // READ BLOCK command code
1715 // UID may be optionally specified here
1724 cmd[9]= 0xe0; // always e0 (not exactly unique)
1726 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1730 // cmd[13] = 0x00; //Now the CRC
1731 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1732 cmd[12] = crc & 0xff;
1735 CodeIso15693AsReader(cmd, sizeof(cmd));