1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void ToSendReset(void)
52 void ToSendStuffBit(int b
)
56 ToSend
[ToSendMax
] = 0;
61 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
66 if(ToSendMax
>= sizeof(ToSend
)) {
68 DbpString("ToSendStuffBit overflowed!");
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
76 void DbpString(char *str
)
78 byte_t len
= strlen(str
);
79 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
83 void DbpIntegers(int x1
, int x2
, int x3
)
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
89 void Dbprintf(const char *fmt
, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string
[128];
95 kvsprintf(fmt
, output_string
, 10, ap
);
98 DbpString(output_string
);
101 // prints HEX & ASCII
102 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
115 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
118 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
120 Dbprintf("%*D",l
,d
," ");
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch
)
137 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
138 AT91C_BASE_ADC
->ADC_MR
=
139 ADC_MODE_PRESCALE(32) |
140 ADC_MODE_STARTUP_TIME(16) |
141 ADC_MODE_SAMPLE_HOLD_TIME(8);
142 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
144 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
145 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
147 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
152 int AvgAdc(int ch
) // was static - merlok
157 for(i
= 0; i
< 32; i
++) {
161 return (a
+ 15) >> 5;
164 void MeasureAntennaTuning(void)
166 uint8_t LF_Results
[256];
167 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
168 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
173 * Sweeps the useful LF range of the proxmark from
174 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
175 * read the voltage in the antenna, the result left
176 * in the buffer is a graph which should clearly show
177 * the resonating frequency of your LF antenna
178 * ( hopefully around 95 if it is tuned to 125kHz!)
181 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
182 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
183 for (i
=255; i
>=19; i
--) {
185 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
187 // Vref = 3.3V, and a 10000:240 voltage divider on the input
188 // can measure voltages up to 137500 mV
189 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
190 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
191 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
193 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
194 if(LF_Results
[i
] > peak
) {
196 peak
= LF_Results
[i
];
202 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
205 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
206 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
207 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
209 // Vref = 3300mV, and an 10:1 voltage divider on the input
210 // can measure voltages up to 33000 mV
211 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
213 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
214 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
220 void MeasureAntennaTuningHf(void)
222 int vHf
= 0; // in mV
224 DbpString("Measuring HF antenna, press button to exit");
227 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
228 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
231 // Vref = 3300mV, and an 10:1 voltage divider on the input
232 // can measure voltages up to 33000 mV
233 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
235 Dbprintf("%d mV",vHf
);
236 if (BUTTON_PRESS()) break;
238 DbpString("cancelled");
242 void SimulateTagHfListen(void)
244 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
245 // There might be a better size to be defined:
246 #define HF_14B_SNOOP_BUFFER_SIZE 2744
247 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
252 // We're using this mode just so that I can test it out; the simulated
253 // tag mode would work just as well and be simpler.
254 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
257 // We need to listen to the high-frequency, peak-detected path.
258 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
264 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
265 AT91C_BASE_SSC
->SSC_THR
= 0xff;
267 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
268 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
282 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
288 DbpString("simulate tag (now type bitsamples)");
291 void ReadMem(int addr
)
293 const uint8_t *data
= ((uint8_t *)addr
);
295 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
296 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
299 /* osimage version information is linked in */
300 extern struct version_information version_information
;
301 /* bootrom version information is pointed to from _bootphase1_version_pointer */
302 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
303 void SendVersion(void)
305 char temp
[512]; /* Limited data payload in USB packets */
306 DbpString("Prox/RFID mark3 RFID instrument");
308 /* Try to find the bootrom version information. Expect to find a pointer at
309 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
310 * pointer, then use it.
312 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
313 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
314 DbpString("bootrom version information appears invalid");
316 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
320 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
323 FpgaGatherVersion(temp
, sizeof(temp
));
326 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
330 // samy's sniff and repeat routine
333 DbpString("Stand-alone mode! No PC necessary.");
334 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
336 // 3 possible options? no just 2 for now
339 int high
[OPTS
], low
[OPTS
];
341 // Oooh pretty -- notify user we're in elite samy mode now
343 LED(LED_ORANGE
, 200);
345 LED(LED_ORANGE
, 200);
347 LED(LED_ORANGE
, 200);
349 LED(LED_ORANGE
, 200);
356 // Turn on selected LED
357 LED(selected
+ 1, 0);
364 // Was our button held down or pressed?
365 int button_pressed
= BUTTON_HELD(1000);
368 // Button was held for a second, begin recording
369 if (button_pressed
> 0 && cardRead
== 0)
372 LED(selected
+ 1, 0);
376 DbpString("Starting recording");
378 // wait for button to be released
379 while(BUTTON_PRESS())
382 /* need this delay to prevent catching some weird data */
385 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
386 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
389 LED(selected
+ 1, 0);
390 // Finished recording
392 // If we were previously playing, set playing off
393 // so next button push begins playing what we recorded
400 else if (button_pressed
> 0 && cardRead
== 1)
403 LED(selected
+ 1, 0);
407 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
409 // wait for button to be released
410 while(BUTTON_PRESS())
413 /* need this delay to prevent catching some weird data */
416 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
417 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
420 LED(selected
+ 1, 0);
421 // Finished recording
423 // If we were previously playing, set playing off
424 // so next button push begins playing what we recorded
431 // Change where to record (or begin playing)
432 else if (button_pressed
)
434 // Next option if we were previously playing
436 selected
= (selected
+ 1) % OPTS
;
440 LED(selected
+ 1, 0);
442 // Begin transmitting
446 DbpString("Playing");
447 // wait for button to be released
448 while(BUTTON_PRESS())
450 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
451 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
452 DbpString("Done playing");
453 if (BUTTON_HELD(1000) > 0)
455 DbpString("Exiting");
460 /* We pressed a button so ignore it here with a delay */
463 // when done, we're done playing, move to next option
464 selected
= (selected
+ 1) % OPTS
;
467 LED(selected
+ 1, 0);
470 while(BUTTON_PRESS())
479 Listen and detect an external reader. Determine the best location
483 Inside the ListenReaderField() function, there is two mode.
484 By default, when you call the function, you will enter mode 1.
485 If you press the PM3 button one time, you will enter mode 2.
486 If you press the PM3 button a second time, you will exit the function.
488 DESCRIPTION OF MODE 1:
489 This mode just listens for an external reader field and lights up green
490 for HF and/or red for LF. This is the original mode of the detectreader
493 DESCRIPTION OF MODE 2:
494 This mode will visually represent, using the LEDs, the actual strength of the
495 current compared to the maximum current detected. Basically, once you know
496 what kind of external reader is present, it will help you spot the best location to place
497 your antenna. You will probably not get some good results if there is a LF and a HF reader
498 at the same place! :-)
502 static const char LIGHT_SCHEME
[] = {
503 0x0, /* ---- | No field detected */
504 0x1, /* X--- | 14% of maximum current detected */
505 0x2, /* -X-- | 29% of maximum current detected */
506 0x4, /* --X- | 43% of maximum current detected */
507 0x8, /* ---X | 57% of maximum current detected */
508 0xC, /* --XX | 71% of maximum current detected */
509 0xE, /* -XXX | 86% of maximum current detected */
510 0xF, /* XXXX | 100% of maximum current detected */
512 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
514 void ListenReaderField(int limit
)
516 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
517 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
518 int mode
=1, display_val
, display_max
, i
;
525 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
527 if(limit
!= HF_ONLY
) {
528 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
532 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
534 if (limit
!= LF_ONLY
) {
535 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
540 if (BUTTON_PRESS()) {
545 DbpString("Signal Strength Mode");
549 DbpString("Stopped");
557 if (limit
!= HF_ONLY
) {
559 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
564 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
565 // see if there's a significant change
566 if(abs(lf_av
- lf_av_new
) > 10) {
567 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
575 if (limit
!= LF_ONLY
) {
577 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
582 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
583 // see if there's a significant change
584 if(abs(hf_av
- hf_av_new
) > 10) {
585 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
594 if (limit
== LF_ONLY
) {
596 display_max
= lf_max
;
597 } else if (limit
== HF_ONLY
) {
599 display_max
= hf_max
;
600 } else { /* Pick one at random */
601 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
603 display_max
= hf_max
;
606 display_max
= lf_max
;
609 for (i
=0; i
<LIGHT_LEN
; i
++) {
610 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
611 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
612 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
613 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
614 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
622 void UsbPacketReceived(uint8_t *packet
, int len
)
624 UsbCommand
*c
= (UsbCommand
*)packet
;
626 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
630 case CMD_SET_LF_SAMPLING_CONFIG
:
631 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
633 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
634 cmd_send(CMD_ACK
,SampleLF(),0,0,0,0);
636 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
637 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
639 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
640 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
642 case CMD_HID_DEMOD_FSK
:
643 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
645 case CMD_HID_SIM_TAG
:
646 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
648 case CMD_HID_CLONE_TAG
:
649 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
651 case CMD_IO_DEMOD_FSK
:
652 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
654 case CMD_IO_CLONE_TAG
:
655 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
657 case CMD_EM410X_DEMOD
:
658 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
660 case CMD_EM410X_WRITE_TAG
:
661 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
663 case CMD_READ_TI_TYPE
:
666 case CMD_WRITE_TI_TYPE
:
667 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
669 case CMD_SIMULATE_TAG_125K
:
671 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
674 case CMD_LF_SIMULATE_BIDIR
:
675 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
677 case CMD_INDALA_CLONE_TAG
:
678 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
680 case CMD_INDALA_CLONE_TAG_L
:
681 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
683 case CMD_T55XX_READ_BLOCK
:
684 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
686 case CMD_T55XX_WRITE_BLOCK
:
687 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
689 case CMD_T55XX_READ_TRACE
:
692 case CMD_PCF7931_READ
:
694 cmd_send(CMD_ACK
,0,0,0,0,0);
696 case CMD_EM4X_READ_WORD
:
697 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
699 case CMD_EM4X_WRITE_WORD
:
700 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
705 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
706 SnoopHitag(c
->arg
[0]);
708 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
709 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
711 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
712 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
718 AcquireRawAdcSamplesIso15693();
720 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
721 RecordRawAdcSamplesIso15693();
724 case CMD_ISO_15693_COMMAND
:
725 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
728 case CMD_ISO_15693_FIND_AFI
:
729 BruteforceIso15693Afi(c
->arg
[0]);
732 case CMD_ISO_15693_DEBUG
:
733 SetDebugIso15693(c
->arg
[0]);
736 case CMD_READER_ISO_15693
:
737 ReaderIso15693(c
->arg
[0]);
739 case CMD_SIMTAG_ISO_15693
:
740 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
745 case CMD_SIMULATE_TAG_LEGIC_RF
:
746 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
749 case CMD_WRITER_LEGIC_RF
:
750 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
753 case CMD_READER_LEGIC_RF
:
754 LegicRfReader(c
->arg
[0], c
->arg
[1]);
758 #ifdef WITH_ISO14443b
759 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
760 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
762 case CMD_READ_SRI512_TAG
:
763 ReadSTMemoryIso14443(0x0F);
765 case CMD_READ_SRIX4K_TAG
:
766 ReadSTMemoryIso14443(0x7F);
768 case CMD_SNOOP_ISO_14443
:
771 case CMD_SIMULATE_TAG_ISO_14443
:
772 SimulateIso14443Tag();
774 case CMD_ISO_14443B_COMMAND
:
775 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
779 #ifdef WITH_ISO14443a
780 case CMD_SNOOP_ISO_14443a
:
781 SnoopIso14443a(c
->arg
[0]);
783 case CMD_READER_ISO_14443a
:
786 case CMD_SIMULATE_TAG_ISO_14443a
:
787 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
790 case CMD_EPA_PACE_COLLECT_NONCE
:
791 EPA_PACE_Collect_Nonce(c
);
794 case CMD_READER_MIFARE
:
795 ReaderMifare(c
->arg
[0]);
797 case CMD_MIFARE_READBL
:
798 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFAREU_READBL
:
801 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
803 case CMD_MIFAREUC_AUTH1
:
804 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
806 case CMD_MIFAREUC_AUTH2
:
807 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
809 case CMD_MIFAREU_READCARD
:
810 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
812 case CMD_MIFAREUC_READCARD
:
813 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
815 case CMD_MIFARE_READSC
:
816 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
818 case CMD_MIFARE_WRITEBL
:
819 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
821 case CMD_MIFAREU_WRITEBL_COMPAT
:
822 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
824 case CMD_MIFAREU_WRITEBL
:
825 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
827 case CMD_MIFARE_NESTED
:
828 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
830 case CMD_MIFARE_CHKKEYS
:
831 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
833 case CMD_SIMULATE_MIFARE_CARD
:
834 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_MIFARE_SET_DBGMODE
:
839 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
841 case CMD_MIFARE_EML_MEMCLR
:
842 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
844 case CMD_MIFARE_EML_MEMSET
:
845 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
847 case CMD_MIFARE_EML_MEMGET
:
848 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
850 case CMD_MIFARE_EML_CARDLOAD
:
851 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
854 // Work with "magic Chinese" card
855 case CMD_MIFARE_CSETBLOCK
:
856 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
858 case CMD_MIFARE_CGETBLOCK
:
859 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
861 case CMD_MIFARE_CIDENT
:
866 case CMD_MIFARE_SNIFFER
:
867 SniffMifare(c
->arg
[0]);
873 // Makes use of ISO14443a FPGA Firmware
874 case CMD_SNOOP_ICLASS
:
877 case CMD_SIMULATE_TAG_ICLASS
:
878 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
880 case CMD_READER_ICLASS
:
881 ReaderIClass(c
->arg
[0]);
883 case CMD_READER_ICLASS_REPLAY
:
884 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
888 case CMD_SIMULATE_TAG_HF_LISTEN
:
889 SimulateTagHfListen();
896 case CMD_MEASURE_ANTENNA_TUNING
:
897 MeasureAntennaTuning();
900 case CMD_MEASURE_ANTENNA_TUNING_HF
:
901 MeasureAntennaTuningHf();
904 case CMD_LISTEN_READER_FIELD
:
905 ListenReaderField(c
->arg
[0]);
908 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
909 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
911 LED_D_OFF(); // LED D indicates field ON or OFF
914 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
917 uint8_t *BigBuf
= BigBuf_get_addr();
918 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
919 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
920 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
922 // Trigger a finish downloading signal with an ACK frame
923 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
927 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
928 uint8_t *b
= BigBuf_get_addr();
929 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
930 cmd_send(CMD_ACK
,0,0,0,0,0);
937 case CMD_SET_LF_DIVISOR
:
938 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
939 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
942 case CMD_SET_ADC_MUX
:
944 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
945 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
946 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
947 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
963 case CMD_SETUP_WRITE
:
964 case CMD_FINISH_WRITE
:
965 case CMD_HARDWARE_RESET
:
969 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
971 // We're going to reset, and the bootrom will take control.
975 case CMD_START_FLASH
:
976 if(common_area
.flags
.bootrom_present
) {
977 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
980 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
984 case CMD_DEVICE_INFO
: {
985 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
986 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
987 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
991 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
996 void __attribute__((noreturn
)) AppMain(void)
1000 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1001 /* Initialize common area */
1002 memset(&common_area
, 0, sizeof(common_area
));
1003 common_area
.magic
= COMMON_AREA_MAGIC
;
1004 common_area
.version
= 1;
1006 common_area
.flags
.osimage_present
= 1;
1016 // The FPGA gets its clock from us from PCK0 output, so set that up.
1017 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1018 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1019 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1020 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1021 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1022 AT91C_PMC_PRES_CLK_4
;
1023 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1026 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1028 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1030 // Load the FPGA image, which we have stored in our flash.
1031 // (the HF version by default)
1032 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1040 byte_t rx
[sizeof(UsbCommand
)];
1045 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1047 UsbPacketReceived(rx
,rx_len
);
1053 if (BUTTON_HELD(1000) > 0)