]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
Minor dox
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
21 #include "crapto1.h"
22 #include "mifareutil.h"
23 #include "BigBuf.h"
24 static uint32_t iso14a_timeout;
25 int rsamples = 0;
26 uint8_t trigger = 0;
27 // the block number for the ISO14443-4 PCB
28 static uint8_t iso14_pcb_blocknum = 0;
29
30 //
31 // ISO14443 timing:
32 //
33 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34 #define REQUEST_GUARD_TIME (7000/16 + 1)
35 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37 // bool LastCommandWasRequest = FALSE;
38
39 //
40 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41 //
42 // When the PM acts as reader and is receiving tag data, it takes
43 // 3 ticks delay in the AD converter
44 // 16 ticks until the modulation detector completes and sets curbit
45 // 8 ticks until bit_to_arm is assigned from curbit
46 // 8*16 ticks for the transfer from FPGA to ARM
47 // 4*16 ticks until we measure the time
48 // - 8*16 ticks because we measure the time of the previous transfer
49 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50
51 // When the PM acts as a reader and is sending, it takes
52 // 4*16 ticks until we can write data to the sending hold register
53 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
54 // 8 ticks until the first transfer starts
55 // 8 ticks later the FPGA samples the data
56 // 1 tick to assign mod_sig_coil
57 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58
59 // When the PM acts as tag and is receiving it takes
60 // 2 ticks delay in the RF part (for the first falling edge),
61 // 3 ticks for the A/D conversion,
62 // 8 ticks on average until the start of the SSC transfer,
63 // 8 ticks until the SSC samples the first data
64 // 7*16 ticks to complete the transfer from FPGA to ARM
65 // 8 ticks until the next ssp_clk rising edge
66 // 4*16 ticks until we measure the time
67 // - 8*16 ticks because we measure the time of the previous transfer
68 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69
70 // The FPGA will report its internal sending delay in
71 uint16_t FpgaSendQueueDelay;
72 // the 5 first bits are the number of bits buffered in mod_sig_buf
73 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75
76 // When the PM acts as tag and is sending, it takes
77 // 4*16 ticks until we can write data to the sending hold register
78 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
79 // 8 ticks until the first transfer starts
80 // 8 ticks later the FPGA samples the data
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 // + 1 tick to assign mod_sig_coil
83 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84
85 // When the PM acts as sniffer and is receiving tag data, it takes
86 // 3 ticks A/D conversion
87 // 14 ticks to complete the modulation detection
88 // 8 ticks (on average) until the result is stored in to_arm
89 // + the delays in transferring data - which is the same for
90 // sniffing reader and tag data and therefore not relevant
91 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92
93 // When the PM acts as sniffer and is receiving reader data, it takes
94 // 2 ticks delay in analogue RF receiver (for the falling edge of the
95 // start bit, which marks the start of the communication)
96 // 3 ticks A/D conversion
97 // 8 ticks on average until the data is stored in to_arm.
98 // + the delays in transferring data - which is the same for
99 // sniffing reader and tag data and therefore not relevant
100 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101
102 //variables used for timing purposes:
103 //these are in ssp_clk cycles:
104 static uint32_t NextTransferTime;
105 static uint32_t LastTimeProxToAirStart;
106 static uint32_t LastProxToAirDuration;
107
108
109
110 // CARD TO READER - manchester
111 // Sequence D: 11110000 modulation with subcarrier during first half
112 // Sequence E: 00001111 modulation with subcarrier during second half
113 // Sequence F: 00000000 no modulation with subcarrier
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
118 #define SEC_D 0xf0
119 #define SEC_E 0x0f
120 #define SEC_F 0x00
121 #define SEC_X 0x0c
122 #define SEC_Y 0x00
123 #define SEC_Z 0xc0
124
125 const uint8_t OddByteParity[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
142 };
143
144 void iso14a_set_trigger(bool enable) {
145 trigger = enable;
146 }
147
148
149
150 void iso14a_set_timeout(uint32_t timeout) {
151 iso14a_timeout = timeout;
152 }
153
154 //-----------------------------------------------------------------------------
155 // Generate the parity value for a byte sequence
156 //
157 //-----------------------------------------------------------------------------
158 byte_t oddparity (const byte_t bt)
159 {
160 return OddByteParity[bt];
161 }
162
163 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
164 {
165 uint16_t paritybit_cnt = 0;
166 uint16_t paritybyte_cnt = 0;
167 uint8_t parityBits = 0;
168
169 for (uint16_t i = 0; i < iLen; i++) {
170 // Generate the parity bits
171 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
172 if (paritybit_cnt == 7) {
173 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
174 parityBits = 0; // and advance to next Parity Byte
175 paritybyte_cnt++;
176 paritybit_cnt = 0;
177 } else {
178 paritybit_cnt++;
179 }
180 }
181
182 // save remaining parity bits
183 par[paritybyte_cnt] = parityBits;
184
185 }
186
187 void AppendCrc14443a(uint8_t* data, int len)
188 {
189 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
190 }
191
192 //=============================================================================
193 // ISO 14443 Type A - Miller decoder
194 //=============================================================================
195 // Basics:
196 // This decoder is used when the PM3 acts as a tag.
197 // The reader will generate "pauses" by temporarily switching of the field.
198 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
199 // The FPGA does a comparison with a threshold and would deliver e.g.:
200 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
201 // The Miller decoder needs to identify the following sequences:
202 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
203 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
204 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
205 // Note 1: the bitstream may start at any time. We therefore need to sync.
206 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
207 //-----------------------------------------------------------------------------
208 static tUart Uart;
209
210 // Lookup-Table to decide if 4 raw bits are a modulation.
211 // We accept two or three consecutive "0" in any position with the rest "1"
212 const bool Mod_Miller_LUT[] = {
213 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
214 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
215 };
216 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
217 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
218
219 void UartReset()
220 {
221 Uart.state = STATE_UNSYNCD;
222 Uart.bitCount = 0;
223 Uart.len = 0; // number of decoded data bytes
224 Uart.parityLen = 0; // number of decoded parity bytes
225 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
226 Uart.parityBits = 0; // holds 8 parity bits
227 Uart.twoBits = 0x0000; // buffer for 2 Bits
228 Uart.highCnt = 0;
229 Uart.startTime = 0;
230 Uart.endTime = 0;
231 }
232
233 void UartInit(uint8_t *data, uint8_t *parity)
234 {
235 Uart.output = data;
236 Uart.parity = parity;
237 UartReset();
238 }
239
240 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
241 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
242 {
243
244 Uart.twoBits = (Uart.twoBits << 8) | bit;
245
246 if (Uart.state == STATE_UNSYNCD) { // not yet synced
247
248 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
249 if (Uart.twoBits == 0xffff) {
250 Uart.highCnt++;
251 } else {
252 Uart.highCnt = 0;
253 }
254 } else {
255 Uart.syncBit = 0xFFFF; // not set
256 // look for 00xx1111 (the start bit)
257 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
258 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
259 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
260 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
261 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
262 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
263 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
264 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
265 if (Uart.syncBit != 0xFFFF) {
266 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
267 Uart.startTime -= Uart.syncBit;
268 Uart.endTime = Uart.startTime;
269 Uart.state = STATE_START_OF_COMMUNICATION;
270 }
271 }
272
273 } else {
274
275 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
276 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
277 UartReset();
278 Uart.highCnt = 6;
279 } else { // Modulation in first half = Sequence Z = logic "0"
280 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
281 UartReset();
282 Uart.highCnt = 6;
283 } else {
284 Uart.bitCount++;
285 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
286 Uart.state = STATE_MILLER_Z;
287 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
288 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
289 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
290 Uart.parityBits <<= 1; // make room for the parity bit
291 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
292 Uart.bitCount = 0;
293 Uart.shiftReg = 0;
294 if((Uart.len&0x0007) == 0) { // every 8 data bytes
295 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
296 Uart.parityBits = 0;
297 }
298 }
299 }
300 }
301 } else {
302 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
303 Uart.bitCount++;
304 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
305 Uart.state = STATE_MILLER_X;
306 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
307 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
308 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
309 Uart.parityBits <<= 1; // make room for the new parity bit
310 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
311 Uart.bitCount = 0;
312 Uart.shiftReg = 0;
313 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
314 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
315 Uart.parityBits = 0;
316 }
317 }
318 } else { // no modulation in both halves - Sequence Y
319 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
320 Uart.state = STATE_UNSYNCD;
321 Uart.bitCount--; // last "0" was part of EOC sequence
322 Uart.shiftReg <<= 1; // drop it
323 if(Uart.bitCount > 0) { // if we decoded some bits
324 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
325 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
326 Uart.parityBits <<= 1; // add a (void) parity bit
327 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
328 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
329 return TRUE;
330 } else if (Uart.len & 0x0007) { // there are some parity bits to store
331 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
332 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
333 }
334 if (Uart.len) {
335 return TRUE; // we are finished with decoding the raw data sequence
336 } else {
337 UartReset(); // Nothing receiver - start over
338 }
339 }
340 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
341 UartReset();
342 Uart.highCnt = 6;
343 } else { // a logic "0"
344 Uart.bitCount++;
345 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
346 Uart.state = STATE_MILLER_Y;
347 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
348 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
349 Uart.parityBits <<= 1; // make room for the parity bit
350 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
351 Uart.bitCount = 0;
352 Uart.shiftReg = 0;
353 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
354 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
355 Uart.parityBits = 0;
356 }
357 }
358 }
359 }
360 }
361
362 }
363
364 return FALSE; // not finished yet, need more data
365 }
366
367
368
369 //=============================================================================
370 // ISO 14443 Type A - Manchester decoder
371 //=============================================================================
372 // Basics:
373 // This decoder is used when the PM3 acts as a reader.
374 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
375 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
376 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
377 // The Manchester decoder needs to identify the following sequences:
378 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
379 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
380 // 8 ticks unmodulated: Sequence F = end of communication
381 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
382 // Note 1: the bitstream may start at any time. We therefore need to sync.
383 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
384 static tDemod Demod;
385
386 // Lookup-Table to decide if 4 raw bits are a modulation.
387 // We accept three or four "1" in any position
388 const bool Mod_Manchester_LUT[] = {
389 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
390 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
391 };
392
393 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
394 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
395
396
397 void DemodReset()
398 {
399 Demod.state = DEMOD_UNSYNCD;
400 Demod.len = 0; // number of decoded data bytes
401 Demod.parityLen = 0;
402 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
403 Demod.parityBits = 0; //
404 Demod.collisionPos = 0; // Position of collision bit
405 Demod.twoBits = 0xffff; // buffer for 2 Bits
406 Demod.highCnt = 0;
407 Demod.startTime = 0;
408 Demod.endTime = 0;
409 }
410
411 void DemodInit(uint8_t *data, uint8_t *parity)
412 {
413 Demod.output = data;
414 Demod.parity = parity;
415 DemodReset();
416 }
417
418 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
419 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
420 {
421
422 Demod.twoBits = (Demod.twoBits << 8) | bit;
423
424 if (Demod.state == DEMOD_UNSYNCD) {
425
426 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
427 if (Demod.twoBits == 0x0000) {
428 Demod.highCnt++;
429 } else {
430 Demod.highCnt = 0;
431 }
432 } else {
433 Demod.syncBit = 0xFFFF; // not set
434 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
435 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
436 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
437 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
438 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
439 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
440 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
441 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
442 if (Demod.syncBit != 0xFFFF) {
443 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
444 Demod.startTime -= Demod.syncBit;
445 Demod.bitCount = offset; // number of decoded data bits
446 Demod.state = DEMOD_MANCHESTER_DATA;
447 }
448 }
449
450 } else {
451
452 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
453 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
454 if (!Demod.collisionPos) {
455 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
456 }
457 } // modulation in first half only - Sequence D = 1
458 Demod.bitCount++;
459 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
460 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
461 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
462 Demod.parityBits <<= 1; // make room for the parity bit
463 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
464 Demod.bitCount = 0;
465 Demod.shiftReg = 0;
466 if((Demod.len&0x0007) == 0) { // every 8 data bytes
467 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
468 Demod.parityBits = 0;
469 }
470 }
471 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
472 } else { // no modulation in first half
473 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
474 Demod.bitCount++;
475 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
476 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
477 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
478 Demod.parityBits <<= 1; // make room for the new parity bit
479 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
480 Demod.bitCount = 0;
481 Demod.shiftReg = 0;
482 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
483 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
484 Demod.parityBits = 0;
485 }
486 }
487 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
488 } else { // no modulation in both halves - End of communication
489 if(Demod.bitCount > 0) { // there are some remaining data bits
490 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
491 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
492 Demod.parityBits <<= 1; // add a (void) parity bit
493 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
494 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
495 return TRUE;
496 } else if (Demod.len & 0x0007) { // there are some parity bits to store
497 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
498 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
499 }
500 if (Demod.len) {
501 return TRUE; // we are finished with decoding the raw data sequence
502 } else { // nothing received. Start over
503 DemodReset();
504 }
505 }
506 }
507
508 }
509
510 return FALSE; // not finished yet, need more data
511 }
512
513 //=============================================================================
514 // Finally, a `sniffer' for ISO 14443 Type A
515 // Both sides of communication!
516 //=============================================================================
517
518 //-----------------------------------------------------------------------------
519 // Record the sequence of commands sent by the reader to the tag, with
520 // triggering so that we start recording at the point that the tag is moved
521 // near the reader.
522 //-----------------------------------------------------------------------------
523 void RAMFUNC SnoopIso14443a(uint8_t param) {
524 // param:
525 // bit 0 - trigger from first card answer
526 // bit 1 - trigger from first reader 7-bit request
527
528 LEDsoff();
529
530 // We won't start recording the frames that we acquire until we trigger;
531 // a good trigger condition to get started is probably when we see a
532 // response from the tag.
533 // triggered == FALSE -- to wait first for card
534 bool triggered = !(param & 0x03);
535
536 // Allocate memory from BigBuf for some buffers
537 // free all previous allocations first
538 BigBuf_free();
539
540 // The command (reader -> tag) that we're receiving.
541 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
542 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
543
544 // The response (tag -> reader) that we're receiving.
545 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
546 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
547
548 // The DMA buffer, used to stream samples from the FPGA
549 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
550
551 // init trace buffer
552 clear_trace();
553 set_tracing(TRUE);
554
555 uint8_t *data = dmaBuf;
556 uint8_t previous_data = 0;
557 int maxDataLen = 0;
558 int dataLen = 0;
559 bool TagIsActive = FALSE;
560 bool ReaderIsActive = FALSE;
561
562 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
563
564 // Set up the demodulator for tag -> reader responses.
565 DemodInit(receivedResponse, receivedResponsePar);
566
567 // Set up the demodulator for the reader -> tag commands
568 UartInit(receivedCmd, receivedCmdPar);
569
570 // Setup and start DMA.
571 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
572
573 // And now we loop, receiving samples.
574 for(uint32_t rsamples = 0; TRUE; ) {
575
576 if(BUTTON_PRESS()) {
577 DbpString("cancelled by button");
578 break;
579 }
580
581 LED_A_ON();
582 WDT_HIT();
583
584 int register readBufDataP = data - dmaBuf;
585 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
586 if (readBufDataP <= dmaBufDataP){
587 dataLen = dmaBufDataP - readBufDataP;
588 } else {
589 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
590 }
591 // test for length of buffer
592 if(dataLen > maxDataLen) {
593 maxDataLen = dataLen;
594 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
595 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
596 break;
597 }
598 }
599 if(dataLen < 1) continue;
600
601 // primary buffer was stopped( <-- we lost data!
602 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
603 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
604 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
605 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
606 }
607 // secondary buffer sets as primary, secondary buffer was stopped
608 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
609 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
610 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
611 }
612
613 LED_A_OFF();
614
615 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
616
617 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
618 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
619 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
620 LED_C_ON();
621
622 // check - if there is a short 7bit request from reader
623 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
624
625 if(triggered) {
626 if (!LogTrace(receivedCmd,
627 Uart.len,
628 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
629 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
630 Uart.parity,
631 TRUE)) break;
632 }
633 /* And ready to receive another command. */
634 UartReset();
635 /* And also reset the demod code, which might have been */
636 /* false-triggered by the commands from the reader. */
637 DemodReset();
638 LED_B_OFF();
639 }
640 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
641 }
642
643 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
644 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
645 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
646 LED_B_ON();
647
648 if (!LogTrace(receivedResponse,
649 Demod.len,
650 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
651 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
652 Demod.parity,
653 FALSE)) break;
654
655 if ((!triggered) && (param & 0x01)) triggered = TRUE;
656
657 // And ready to receive another response.
658 DemodReset();
659 LED_C_OFF();
660 }
661 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
662 }
663 }
664
665 previous_data = *data;
666 rsamples++;
667 data++;
668 if(data == dmaBuf + DMA_BUFFER_SIZE) {
669 data = dmaBuf;
670 }
671 } // main cycle
672
673 DbpString("COMMAND FINISHED");
674
675 FpgaDisableSscDma();
676 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
677 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
678 LEDsoff();
679 }
680
681 //-----------------------------------------------------------------------------
682 // Prepare tag messages
683 //-----------------------------------------------------------------------------
684 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
685 {
686 ToSendReset();
687
688 // Correction bit, might be removed when not needed
689 ToSendStuffBit(0);
690 ToSendStuffBit(0);
691 ToSendStuffBit(0);
692 ToSendStuffBit(0);
693 ToSendStuffBit(1); // 1
694 ToSendStuffBit(0);
695 ToSendStuffBit(0);
696 ToSendStuffBit(0);
697
698 // Send startbit
699 ToSend[++ToSendMax] = SEC_D;
700 LastProxToAirDuration = 8 * ToSendMax - 4;
701
702 for(uint16_t i = 0; i < len; i++) {
703 uint8_t b = cmd[i];
704
705 // Data bits
706 for(uint16_t j = 0; j < 8; j++) {
707 if(b & 1) {
708 ToSend[++ToSendMax] = SEC_D;
709 } else {
710 ToSend[++ToSendMax] = SEC_E;
711 }
712 b >>= 1;
713 }
714
715 // Get the parity bit
716 if (parity[i>>3] & (0x80>>(i&0x0007))) {
717 ToSend[++ToSendMax] = SEC_D;
718 LastProxToAirDuration = 8 * ToSendMax - 4;
719 } else {
720 ToSend[++ToSendMax] = SEC_E;
721 LastProxToAirDuration = 8 * ToSendMax;
722 }
723 }
724
725 // Send stopbit
726 ToSend[++ToSendMax] = SEC_F;
727
728 // Convert from last byte pos to length
729 ToSendMax++;
730 }
731
732 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
733 {
734 uint8_t par[MAX_PARITY_SIZE];
735
736 GetParity(cmd, len, par);
737 CodeIso14443aAsTagPar(cmd, len, par);
738 }
739
740
741 static void Code4bitAnswerAsTag(uint8_t cmd)
742 {
743 int i;
744
745 ToSendReset();
746
747 // Correction bit, might be removed when not needed
748 ToSendStuffBit(0);
749 ToSendStuffBit(0);
750 ToSendStuffBit(0);
751 ToSendStuffBit(0);
752 ToSendStuffBit(1); // 1
753 ToSendStuffBit(0);
754 ToSendStuffBit(0);
755 ToSendStuffBit(0);
756
757 // Send startbit
758 ToSend[++ToSendMax] = SEC_D;
759
760 uint8_t b = cmd;
761 for(i = 0; i < 4; i++) {
762 if(b & 1) {
763 ToSend[++ToSendMax] = SEC_D;
764 LastProxToAirDuration = 8 * ToSendMax - 4;
765 } else {
766 ToSend[++ToSendMax] = SEC_E;
767 LastProxToAirDuration = 8 * ToSendMax;
768 }
769 b >>= 1;
770 }
771
772 // Send stopbit
773 ToSend[++ToSendMax] = SEC_F;
774
775 // Convert from last byte pos to length
776 ToSendMax++;
777 }
778
779 //-----------------------------------------------------------------------------
780 // Wait for commands from reader
781 // Stop when button is pressed
782 // Or return TRUE when command is captured
783 //-----------------------------------------------------------------------------
784 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
785 {
786 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
787 // only, since we are receiving, not transmitting).
788 // Signal field is off with the appropriate LED
789 LED_D_OFF();
790 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
791
792 // Now run a `software UART' on the stream of incoming samples.
793 UartInit(received, parity);
794
795 // clear RXRDY:
796 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
797
798 for(;;) {
799 WDT_HIT();
800
801 if(BUTTON_PRESS()) return FALSE;
802
803 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
804 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
805 if(MillerDecoding(b, 0)) {
806 *len = Uart.len;
807 return TRUE;
808 }
809 }
810 }
811 }
812
813 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
814 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
815 int EmSend4bit(uint8_t resp);
816 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
817 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
818 int EmSendCmd(uint8_t *resp, uint16_t respLen);
819 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
820 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
821 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
822
823 static uint8_t* free_buffer_pointer;
824
825 typedef struct {
826 uint8_t* response;
827 size_t response_n;
828 uint8_t* modulation;
829 size_t modulation_n;
830 uint32_t ProxToAirDuration;
831 } tag_response_info_t;
832
833 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
834 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
835 // This will need the following byte array for a modulation sequence
836 // 144 data bits (18 * 8)
837 // 18 parity bits
838 // 2 Start and stop
839 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
840 // 1 just for the case
841 // ----------- +
842 // 166 bytes, since every bit that needs to be send costs us a byte
843 //
844
845
846 // Prepare the tag modulation bits from the message
847 CodeIso14443aAsTag(response_info->response,response_info->response_n);
848
849 // Make sure we do not exceed the free buffer space
850 if (ToSendMax > max_buffer_size) {
851 Dbprintf("Out of memory, when modulating bits for tag answer:");
852 Dbhexdump(response_info->response_n,response_info->response,false);
853 return false;
854 }
855
856 // Copy the byte array, used for this modulation to the buffer position
857 memcpy(response_info->modulation,ToSend,ToSendMax);
858
859 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
860 response_info->modulation_n = ToSendMax;
861 response_info->ProxToAirDuration = LastProxToAirDuration;
862
863 return true;
864 }
865
866
867 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
868 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
869 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
870 // -> need 273 bytes buffer
871 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
872
873 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
874 // Retrieve and store the current buffer index
875 response_info->modulation = free_buffer_pointer;
876
877 // Determine the maximum size we can use from our buffer
878 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
879
880 // Forward the prepare tag modulation function to the inner function
881 if (prepare_tag_modulation(response_info, max_buffer_size)) {
882 // Update the free buffer offset
883 free_buffer_pointer += ToSendMax;
884 return true;
885 } else {
886 return false;
887 }
888 }
889
890 //-----------------------------------------------------------------------------
891 // Main loop of simulated tag: receive commands from reader, decide what
892 // response to send, and send it.
893 //-----------------------------------------------------------------------------
894 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
895 {
896 uint8_t sak;
897
898 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
899 uint8_t response1[2];
900
901 switch (tagType) {
902 case 1: { // MIFARE Classic
903 // Says: I am Mifare 1k - original line
904 response1[0] = 0x04;
905 response1[1] = 0x00;
906 sak = 0x08;
907 } break;
908 case 2: { // MIFARE Ultralight
909 // Says: I am a stupid memory tag, no crypto
910 response1[0] = 0x04;
911 response1[1] = 0x00;
912 sak = 0x00;
913 } break;
914 case 3: { // MIFARE DESFire
915 // Says: I am a DESFire tag, ph33r me
916 response1[0] = 0x04;
917 response1[1] = 0x03;
918 sak = 0x20;
919 } break;
920 case 4: { // ISO/IEC 14443-4
921 // Says: I am a javacard (JCOP)
922 response1[0] = 0x04;
923 response1[1] = 0x00;
924 sak = 0x28;
925 } break;
926 case 5: { // MIFARE TNP3XXX
927 // Says: I am a toy
928 response1[0] = 0x01;
929 response1[1] = 0x0f;
930 sak = 0x01;
931 } break;
932 default: {
933 Dbprintf("Error: unkown tagtype (%d)",tagType);
934 return;
935 } break;
936 }
937
938 // The second response contains the (mandatory) first 24 bits of the UID
939 uint8_t response2[5] = {0x00};
940
941 // Check if the uid uses the (optional) part
942 uint8_t response2a[5] = {0x00};
943
944 if (uid_2nd) {
945 response2[0] = 0x88;
946 num_to_bytes(uid_1st,3,response2+1);
947 num_to_bytes(uid_2nd,4,response2a);
948 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
949
950 // Configure the ATQA and SAK accordingly
951 response1[0] |= 0x40;
952 sak |= 0x04;
953 } else {
954 num_to_bytes(uid_1st,4,response2);
955 // Configure the ATQA and SAK accordingly
956 response1[0] &= 0xBF;
957 sak &= 0xFB;
958 }
959
960 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
961 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
962
963 // Prepare the mandatory SAK (for 4 and 7 byte UID)
964 uint8_t response3[3] = {0x00};
965 response3[0] = sak;
966 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
967
968 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
969 uint8_t response3a[3] = {0x00};
970 response3a[0] = sak & 0xFB;
971 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
972
973 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
974 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
975 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
976 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
977 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
978 // TC(1) = 0x02: CID supported, NAD not supported
979 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
980
981 #define TAG_RESPONSE_COUNT 7
982 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
983 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
984 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
985 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
986 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
987 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
988 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
989 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
990 };
991
992 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
993 // Such a response is less time critical, so we can prepare them on the fly
994 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
995 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
996 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
997 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
998 tag_response_info_t dynamic_response_info = {
999 .response = dynamic_response_buffer,
1000 .response_n = 0,
1001 .modulation = dynamic_modulation_buffer,
1002 .modulation_n = 0
1003 };
1004
1005 BigBuf_free_keep_EM();
1006
1007 // allocate buffers:
1008 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1009 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1010 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1011
1012 // clear trace
1013 clear_trace();
1014 set_tracing(TRUE);
1015
1016 // Prepare the responses of the anticollision phase
1017 // there will be not enough time to do this at the moment the reader sends it REQA
1018 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1019 prepare_allocated_tag_modulation(&responses[i]);
1020 }
1021
1022 int len = 0;
1023
1024 // To control where we are in the protocol
1025 int order = 0;
1026 int lastorder;
1027
1028 // Just to allow some checks
1029 int happened = 0;
1030 int happened2 = 0;
1031 int cmdsRecvd = 0;
1032
1033 // We need to listen to the high-frequency, peak-detected path.
1034 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1035
1036 cmdsRecvd = 0;
1037 tag_response_info_t* p_response;
1038
1039 LED_A_ON();
1040 for(;;) {
1041 // Clean receive command buffer
1042
1043 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1044 DbpString("Button press");
1045 break;
1046 }
1047
1048 p_response = NULL;
1049
1050 // Okay, look at the command now.
1051 lastorder = order;
1052 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1053 p_response = &responses[0]; order = 1;
1054 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1055 p_response = &responses[0]; order = 6;
1056 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1057 p_response = &responses[1]; order = 2;
1058 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1059 p_response = &responses[2]; order = 20;
1060 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1061 p_response = &responses[3]; order = 3;
1062 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1063 p_response = &responses[4]; order = 30;
1064 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1065 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1066 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1067 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1068 p_response = NULL;
1069 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1070
1071 if (tracing) {
1072 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1073 }
1074 p_response = NULL;
1075 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1076 p_response = &responses[5]; order = 7;
1077 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1078 if (tagType == 1 || tagType == 2) { // RATS not supported
1079 EmSend4bit(CARD_NACK_NA);
1080 p_response = NULL;
1081 } else {
1082 p_response = &responses[6]; order = 70;
1083 }
1084 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1085 if (tracing) {
1086 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1087 }
1088 uint32_t nr = bytes_to_num(receivedCmd,4);
1089 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1090 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1091 } else {
1092 // Check for ISO 14443A-4 compliant commands, look at left nibble
1093 switch (receivedCmd[0]) {
1094
1095 case 0x0B:
1096 case 0x0A: { // IBlock (command)
1097 dynamic_response_info.response[0] = receivedCmd[0];
1098 dynamic_response_info.response[1] = 0x00;
1099 dynamic_response_info.response[2] = 0x90;
1100 dynamic_response_info.response[3] = 0x00;
1101 dynamic_response_info.response_n = 4;
1102 } break;
1103
1104 case 0x1A:
1105 case 0x1B: { // Chaining command
1106 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1107 dynamic_response_info.response_n = 2;
1108 } break;
1109
1110 case 0xaa:
1111 case 0xbb: {
1112 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1113 dynamic_response_info.response_n = 2;
1114 } break;
1115
1116 case 0xBA: { //
1117 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1118 dynamic_response_info.response_n = 2;
1119 } break;
1120
1121 case 0xCA:
1122 case 0xC2: { // Readers sends deselect command
1123 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1124 dynamic_response_info.response_n = 2;
1125 } break;
1126
1127 default: {
1128 // Never seen this command before
1129 if (tracing) {
1130 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1131 }
1132 Dbprintf("Received unknown command (len=%d):",len);
1133 Dbhexdump(len,receivedCmd,false);
1134 // Do not respond
1135 dynamic_response_info.response_n = 0;
1136 } break;
1137 }
1138
1139 if (dynamic_response_info.response_n > 0) {
1140 // Copy the CID from the reader query
1141 dynamic_response_info.response[1] = receivedCmd[1];
1142
1143 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1144 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1145 dynamic_response_info.response_n += 2;
1146
1147 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1148 Dbprintf("Error preparing tag response");
1149 if (tracing) {
1150 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1151 }
1152 break;
1153 }
1154 p_response = &dynamic_response_info;
1155 }
1156 }
1157
1158 // Count number of wakeups received after a halt
1159 if(order == 6 && lastorder == 5) { happened++; }
1160
1161 // Count number of other messages after a halt
1162 if(order != 6 && lastorder == 5) { happened2++; }
1163
1164 if(cmdsRecvd > 999) {
1165 DbpString("1000 commands later...");
1166 break;
1167 }
1168 cmdsRecvd++;
1169
1170 if (p_response != NULL) {
1171 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1172 // do the tracing for the previous reader request and this tag answer:
1173 uint8_t par[MAX_PARITY_SIZE];
1174 GetParity(p_response->response, p_response->response_n, par);
1175
1176 EmLogTrace(Uart.output,
1177 Uart.len,
1178 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1179 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1180 Uart.parity,
1181 p_response->response,
1182 p_response->response_n,
1183 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1184 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1185 par);
1186 }
1187
1188 if (!tracing) {
1189 Dbprintf("Trace Full. Simulation stopped.");
1190 break;
1191 }
1192 }
1193
1194 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1195 LED_A_OFF();
1196 BigBuf_free_keep_EM();
1197 }
1198
1199
1200 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1201 // of bits specified in the delay parameter.
1202 void PrepareDelayedTransfer(uint16_t delay)
1203 {
1204 uint8_t bitmask = 0;
1205 uint8_t bits_to_shift = 0;
1206 uint8_t bits_shifted = 0;
1207
1208 delay &= 0x07;
1209 if (delay) {
1210 for (uint16_t i = 0; i < delay; i++) {
1211 bitmask |= (0x01 << i);
1212 }
1213 ToSend[ToSendMax++] = 0x00;
1214 for (uint16_t i = 0; i < ToSendMax; i++) {
1215 bits_to_shift = ToSend[i] & bitmask;
1216 ToSend[i] = ToSend[i] >> delay;
1217 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1218 bits_shifted = bits_to_shift;
1219 }
1220 }
1221 }
1222
1223
1224 //-------------------------------------------------------------------------------------
1225 // Transmit the command (to the tag) that was placed in ToSend[].
1226 // Parameter timing:
1227 // if NULL: transfer at next possible time, taking into account
1228 // request guard time and frame delay time
1229 // if == 0: transfer immediately and return time of transfer
1230 // if != 0: delay transfer until time specified
1231 //-------------------------------------------------------------------------------------
1232 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1233 {
1234
1235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1236
1237 uint32_t ThisTransferTime = 0;
1238
1239 if (timing) {
1240 if(*timing == 0) { // Measure time
1241 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1242 } else {
1243 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1244 }
1245 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1246 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1247 LastTimeProxToAirStart = *timing;
1248 } else {
1249 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1250 while(GetCountSspClk() < ThisTransferTime);
1251 LastTimeProxToAirStart = ThisTransferTime;
1252 }
1253
1254 // clear TXRDY
1255 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1256
1257 uint16_t c = 0;
1258 for(;;) {
1259 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1260 AT91C_BASE_SSC->SSC_THR = cmd[c];
1261 c++;
1262 if(c >= len) {
1263 break;
1264 }
1265 }
1266 }
1267
1268 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1269 }
1270
1271
1272 //-----------------------------------------------------------------------------
1273 // Prepare reader command (in bits, support short frames) to send to FPGA
1274 //-----------------------------------------------------------------------------
1275 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1276 {
1277 int i, j;
1278 int last;
1279 uint8_t b;
1280
1281 ToSendReset();
1282
1283 // Start of Communication (Seq. Z)
1284 ToSend[++ToSendMax] = SEC_Z;
1285 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1286 last = 0;
1287
1288 size_t bytecount = nbytes(bits);
1289 // Generate send structure for the data bits
1290 for (i = 0; i < bytecount; i++) {
1291 // Get the current byte to send
1292 b = cmd[i];
1293 size_t bitsleft = MIN((bits-(i*8)),8);
1294
1295 for (j = 0; j < bitsleft; j++) {
1296 if (b & 1) {
1297 // Sequence X
1298 ToSend[++ToSendMax] = SEC_X;
1299 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1300 last = 1;
1301 } else {
1302 if (last == 0) {
1303 // Sequence Z
1304 ToSend[++ToSendMax] = SEC_Z;
1305 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1306 } else {
1307 // Sequence Y
1308 ToSend[++ToSendMax] = SEC_Y;
1309 last = 0;
1310 }
1311 }
1312 b >>= 1;
1313 }
1314
1315 // Only transmit parity bit if we transmitted a complete byte
1316 if (j == 8) {
1317 // Get the parity bit
1318 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1319 // Sequence X
1320 ToSend[++ToSendMax] = SEC_X;
1321 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1322 last = 1;
1323 } else {
1324 if (last == 0) {
1325 // Sequence Z
1326 ToSend[++ToSendMax] = SEC_Z;
1327 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1328 } else {
1329 // Sequence Y
1330 ToSend[++ToSendMax] = SEC_Y;
1331 last = 0;
1332 }
1333 }
1334 }
1335 }
1336
1337 // End of Communication: Logic 0 followed by Sequence Y
1338 if (last == 0) {
1339 // Sequence Z
1340 ToSend[++ToSendMax] = SEC_Z;
1341 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1342 } else {
1343 // Sequence Y
1344 ToSend[++ToSendMax] = SEC_Y;
1345 last = 0;
1346 }
1347 ToSend[++ToSendMax] = SEC_Y;
1348
1349 // Convert to length of command:
1350 ToSendMax++;
1351 }
1352
1353 //-----------------------------------------------------------------------------
1354 // Prepare reader command to send to FPGA
1355 //-----------------------------------------------------------------------------
1356 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1357 {
1358 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1359 }
1360
1361 //-----------------------------------------------------------------------------
1362 // Wait for commands from reader
1363 // Stop when button is pressed (return 1) or field was gone (return 2)
1364 // Or return 0 when command is captured
1365 //-----------------------------------------------------------------------------
1366 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1367 {
1368 *len = 0;
1369
1370 uint32_t timer = 0, vtime = 0;
1371 int analogCnt = 0;
1372 int analogAVG = 0;
1373
1374 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1375 // only, since we are receiving, not transmitting).
1376 // Signal field is off with the appropriate LED
1377 LED_D_OFF();
1378 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1379
1380 // Set ADC to read field strength
1381 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1382 AT91C_BASE_ADC->ADC_MR =
1383 ADC_MODE_PRESCALE(32) |
1384 ADC_MODE_STARTUP_TIME(16) |
1385 ADC_MODE_SAMPLE_HOLD_TIME(8);
1386 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1387 // start ADC
1388 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1389
1390 // Now run a 'software UART' on the stream of incoming samples.
1391 UartInit(received, parity);
1392
1393 // Clear RXRDY:
1394 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1395
1396 for(;;) {
1397 WDT_HIT();
1398
1399 if (BUTTON_PRESS()) return 1;
1400
1401 // test if the field exists
1402 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1403 analogCnt++;
1404 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1405 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1406 if (analogCnt >= 32) {
1407 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1408 vtime = GetTickCount();
1409 if (!timer) timer = vtime;
1410 // 50ms no field --> card to idle state
1411 if (vtime - timer > 50) return 2;
1412 } else
1413 if (timer) timer = 0;
1414 analogCnt = 0;
1415 analogAVG = 0;
1416 }
1417 }
1418
1419 // receive and test the miller decoding
1420 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1421 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1422 if(MillerDecoding(b, 0)) {
1423 *len = Uart.len;
1424 return 0;
1425 }
1426 }
1427
1428 }
1429 }
1430
1431
1432 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1433 {
1434 uint8_t b;
1435 uint16_t i = 0;
1436 uint32_t ThisTransferTime;
1437
1438 // Modulate Manchester
1439 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1440
1441 // include correction bit if necessary
1442 if (Uart.parityBits & 0x01) {
1443 correctionNeeded = TRUE;
1444 }
1445 if(correctionNeeded) {
1446 // 1236, so correction bit needed
1447 i = 0;
1448 } else {
1449 i = 1;
1450 }
1451
1452 // clear receiving shift register and holding register
1453 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1454 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1455 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1456 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1457
1458 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1459 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1460 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1461 if (AT91C_BASE_SSC->SSC_RHR) break;
1462 }
1463
1464 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1465
1466 // Clear TXRDY:
1467 AT91C_BASE_SSC->SSC_THR = SEC_F;
1468
1469 // send cycle
1470 for(; i < respLen; ) {
1471 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1472 AT91C_BASE_SSC->SSC_THR = resp[i++];
1473 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1474 }
1475
1476 if(BUTTON_PRESS()) {
1477 break;
1478 }
1479 }
1480
1481 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1482 for (i = 0; i < 2 ; ) {
1483 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1484 AT91C_BASE_SSC->SSC_THR = SEC_F;
1485 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1486 i++;
1487 }
1488 }
1489
1490 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1491
1492 return 0;
1493 }
1494
1495 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1496 Code4bitAnswerAsTag(resp);
1497 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1498 // do the tracing for the previous reader request and this tag answer:
1499 uint8_t par[1];
1500 GetParity(&resp, 1, par);
1501 EmLogTrace(Uart.output,
1502 Uart.len,
1503 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1504 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1505 Uart.parity,
1506 &resp,
1507 1,
1508 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1509 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1510 par);
1511 return res;
1512 }
1513
1514 int EmSend4bit(uint8_t resp){
1515 return EmSend4bitEx(resp, false);
1516 }
1517
1518 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1519 CodeIso14443aAsTagPar(resp, respLen, par);
1520 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1521 // do the tracing for the previous reader request and this tag answer:
1522 EmLogTrace(Uart.output,
1523 Uart.len,
1524 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1525 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1526 Uart.parity,
1527 resp,
1528 respLen,
1529 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1530 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1531 par);
1532 return res;
1533 }
1534
1535 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1536 uint8_t par[MAX_PARITY_SIZE];
1537 GetParity(resp, respLen, par);
1538 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1539 }
1540
1541 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1542 uint8_t par[MAX_PARITY_SIZE];
1543 GetParity(resp, respLen, par);
1544 return EmSendCmdExPar(resp, respLen, false, par);
1545 }
1546
1547 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1548 return EmSendCmdExPar(resp, respLen, false, par);
1549 }
1550
1551 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1552 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1553 {
1554 if (tracing) {
1555 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1556 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1557 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1558 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1559 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1560 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1561 reader_EndTime = tag_StartTime - exact_fdt;
1562 reader_StartTime = reader_EndTime - reader_modlen;
1563 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1564 return FALSE;
1565 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1566 } else {
1567 return TRUE;
1568 }
1569 }
1570
1571 //-----------------------------------------------------------------------------
1572 // Wait a certain time for tag response
1573 // If a response is captured return TRUE
1574 // If it takes too long return FALSE
1575 //-----------------------------------------------------------------------------
1576 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1577 {
1578 uint32_t c;
1579
1580 // Set FPGA mode to "reader listen mode", no modulation (listen
1581 // only, since we are receiving, not transmitting).
1582 // Signal field is on with the appropriate LED
1583 LED_D_ON();
1584 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1585
1586 // Now get the answer from the card
1587 DemodInit(receivedResponse, receivedResponsePar);
1588
1589 // clear RXRDY:
1590 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1591
1592 c = 0;
1593 for(;;) {
1594 WDT_HIT();
1595
1596 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1597 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1598 if(ManchesterDecoding(b, offset, 0)) {
1599 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1600 return TRUE;
1601 } else if (c++ > iso14a_timeout) {
1602 return FALSE;
1603 }
1604 }
1605 }
1606 }
1607
1608 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1609 {
1610 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1611
1612 // Send command to tag
1613 TransmitFor14443a(ToSend, ToSendMax, timing);
1614 if(trigger)
1615 LED_A_ON();
1616
1617 // Log reader command in trace buffer
1618 if (tracing) {
1619 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1620 }
1621 }
1622
1623 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1624 {
1625 ReaderTransmitBitsPar(frame, len*8, par, timing);
1626 }
1627
1628 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1629 {
1630 // Generate parity and redirect
1631 uint8_t par[MAX_PARITY_SIZE];
1632 GetParity(frame, len/8, par);
1633 ReaderTransmitBitsPar(frame, len, par, timing);
1634 }
1635
1636 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1637 {
1638 // Generate parity and redirect
1639 uint8_t par[MAX_PARITY_SIZE];
1640 GetParity(frame, len, par);
1641 ReaderTransmitBitsPar(frame, len*8, par, timing);
1642 }
1643
1644 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1645 {
1646 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1647 if (tracing) {
1648 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1649 }
1650 return Demod.len;
1651 }
1652
1653 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1654 {
1655 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1656 if (tracing) {
1657 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1658 }
1659 return Demod.len;
1660 }
1661
1662 /* performs iso14443a anticollision procedure
1663 * fills the uid pointer unless NULL
1664 * fills resp_data unless NULL */
1665 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1666 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1667 uint8_t sel_all[] = { 0x93,0x20 };
1668 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1669 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1670 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1671 uint8_t resp_par[MAX_PARITY_SIZE];
1672 byte_t uid_resp[4];
1673 size_t uid_resp_len;
1674
1675 uint8_t sak = 0x04; // cascade uid
1676 int cascade_level = 0;
1677 int len;
1678
1679 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1680 ReaderTransmitBitsPar(wupa,7,0, NULL);
1681
1682 // Receive the ATQA
1683 if(!ReaderReceive(resp, resp_par)) return 0;
1684
1685 if(p_hi14a_card) {
1686 memcpy(p_hi14a_card->atqa, resp, 2);
1687 p_hi14a_card->uidlen = 0;
1688 memset(p_hi14a_card->uid,0,10);
1689 }
1690
1691 // clear uid
1692 if (uid_ptr) {
1693 memset(uid_ptr,0,10);
1694 }
1695
1696 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1697 // which case we need to make a cascade 2 request and select - this is a long UID
1698 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1699 for(; sak & 0x04; cascade_level++) {
1700 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1701 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1702
1703 // SELECT_ALL
1704 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1705 if (!ReaderReceive(resp, resp_par)) return 0;
1706
1707 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1708 memset(uid_resp, 0, 4);
1709 uint16_t uid_resp_bits = 0;
1710 uint16_t collision_answer_offset = 0;
1711 // anti-collision-loop:
1712 while (Demod.collisionPos) {
1713 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1714 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1715 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1716 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1717 }
1718 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1719 uid_resp_bits++;
1720 // construct anticollosion command:
1721 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1722 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1723 sel_uid[2+i] = uid_resp[i];
1724 }
1725 collision_answer_offset = uid_resp_bits%8;
1726 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1727 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1728 }
1729 // finally, add the last bits and BCC of the UID
1730 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1731 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1732 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1733 }
1734
1735 } else { // no collision, use the response to SELECT_ALL as current uid
1736 memcpy(uid_resp, resp, 4);
1737 }
1738 uid_resp_len = 4;
1739
1740 // calculate crypto UID. Always use last 4 Bytes.
1741 if(cuid_ptr) {
1742 *cuid_ptr = bytes_to_num(uid_resp, 4);
1743 }
1744
1745 // Construct SELECT UID command
1746 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1747 memcpy(sel_uid+2, uid_resp, 4); // the UID
1748 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1749 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1750 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1751
1752 // Receive the SAK
1753 if (!ReaderReceive(resp, resp_par)) return 0;
1754 sak = resp[0];
1755
1756 // Test if more parts of the uid are coming
1757 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1758 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1759 // http://www.nxp.com/documents/application_note/AN10927.pdf
1760 uid_resp[0] = uid_resp[1];
1761 uid_resp[1] = uid_resp[2];
1762 uid_resp[2] = uid_resp[3];
1763
1764 uid_resp_len = 3;
1765 }
1766
1767 if(uid_ptr) {
1768 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1769 }
1770
1771 if(p_hi14a_card) {
1772 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1773 p_hi14a_card->uidlen += uid_resp_len;
1774 }
1775 }
1776
1777 if(p_hi14a_card) {
1778 p_hi14a_card->sak = sak;
1779 p_hi14a_card->ats_len = 0;
1780 }
1781
1782 // non iso14443a compliant tag
1783 if( (sak & 0x20) == 0) return 2;
1784
1785 // Request for answer to select
1786 AppendCrc14443a(rats, 2);
1787 ReaderTransmit(rats, sizeof(rats), NULL);
1788
1789 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1790
1791
1792 if(p_hi14a_card) {
1793 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1794 p_hi14a_card->ats_len = len;
1795 }
1796
1797 // reset the PCB block number
1798 iso14_pcb_blocknum = 0;
1799 return 1;
1800 }
1801
1802 void iso14443a_setup(uint8_t fpga_minor_mode) {
1803 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1804 // Set up the synchronous serial port
1805 FpgaSetupSsc();
1806 // connect Demodulated Signal to ADC:
1807 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1808
1809 // Signal field is on with the appropriate LED
1810 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1811 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1812 LED_D_ON();
1813 } else {
1814 LED_D_OFF();
1815 }
1816 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1817
1818 // Start the timer
1819 StartCountSspClk();
1820
1821 DemodReset();
1822 UartReset();
1823 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1824 iso14a_set_timeout(1050); // 10ms default
1825 }
1826
1827 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1828 uint8_t parity[MAX_PARITY_SIZE];
1829 uint8_t real_cmd[cmd_len+4];
1830 real_cmd[0] = 0x0a; //I-Block
1831 // put block number into the PCB
1832 real_cmd[0] |= iso14_pcb_blocknum;
1833 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1834 memcpy(real_cmd+2, cmd, cmd_len);
1835 AppendCrc14443a(real_cmd,cmd_len+2);
1836
1837 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1838 size_t len = ReaderReceive(data, parity);
1839 uint8_t *data_bytes = (uint8_t *) data;
1840 if (!len)
1841 return 0; //DATA LINK ERROR
1842 // if we received an I- or R(ACK)-Block with a block number equal to the
1843 // current block number, toggle the current block number
1844 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1845 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1846 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1847 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1848 {
1849 iso14_pcb_blocknum ^= 1;
1850 }
1851
1852 return len;
1853 }
1854
1855 //-----------------------------------------------------------------------------
1856 // Read an ISO 14443a tag. Send out commands and store answers.
1857 //
1858 //-----------------------------------------------------------------------------
1859 void ReaderIso14443a(UsbCommand *c)
1860 {
1861 iso14a_command_t param = c->arg[0];
1862 uint8_t *cmd = c->d.asBytes;
1863 size_t len = c->arg[1];
1864 size_t lenbits = c->arg[2];
1865 uint32_t arg0 = 0;
1866 byte_t buf[USB_CMD_DATA_SIZE];
1867 uint8_t par[MAX_PARITY_SIZE];
1868
1869 if(param & ISO14A_CONNECT) {
1870 clear_trace();
1871 }
1872
1873 set_tracing(TRUE);
1874
1875 if(param & ISO14A_REQUEST_TRIGGER) {
1876 iso14a_set_trigger(TRUE);
1877 }
1878
1879 if(param & ISO14A_CONNECT) {
1880 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1881 if(!(param & ISO14A_NO_SELECT)) {
1882 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1883 arg0 = iso14443a_select_card(NULL,card,NULL);
1884 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1885 }
1886 }
1887
1888 if(param & ISO14A_SET_TIMEOUT) {
1889 iso14a_set_timeout(c->arg[2]);
1890 }
1891
1892 if(param & ISO14A_APDU) {
1893 arg0 = iso14_apdu(cmd, len, buf);
1894 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1895 }
1896
1897 if(param & ISO14A_RAW) {
1898 if(param & ISO14A_APPEND_CRC) {
1899 AppendCrc14443a(cmd,len);
1900 len += 2;
1901 if (lenbits) lenbits += 16;
1902 }
1903 if(lenbits>0) {
1904 GetParity(cmd, lenbits/8, par);
1905 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
1906 } else {
1907 ReaderTransmit(cmd,len, NULL);
1908 }
1909 arg0 = ReaderReceive(buf, par);
1910 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1911 }
1912
1913 if(param & ISO14A_REQUEST_TRIGGER) {
1914 iso14a_set_trigger(FALSE);
1915 }
1916
1917 if(param & ISO14A_NO_DISCONNECT) {
1918 return;
1919 }
1920
1921 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1922 LEDsoff();
1923 }
1924
1925
1926 // Determine the distance between two nonces.
1927 // Assume that the difference is small, but we don't know which is first.
1928 // Therefore try in alternating directions.
1929 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1930
1931 uint16_t i;
1932 uint32_t nttmp1, nttmp2;
1933
1934 if (nt1 == nt2) return 0;
1935
1936 nttmp1 = nt1;
1937 nttmp2 = nt2;
1938
1939 for (i = 1; i < 32768; i++) {
1940 nttmp1 = prng_successor(nttmp1, 1);
1941 if (nttmp1 == nt2) return i;
1942 nttmp2 = prng_successor(nttmp2, 1);
1943 if (nttmp2 == nt1) return -i;
1944 }
1945
1946 return(-99999); // either nt1 or nt2 are invalid nonces
1947 }
1948
1949
1950 //-----------------------------------------------------------------------------
1951 // Recover several bits of the cypher stream. This implements (first stages of)
1952 // the algorithm described in "The Dark Side of Security by Obscurity and
1953 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1954 // (article by Nicolas T. Courtois, 2009)
1955 //-----------------------------------------------------------------------------
1956 void ReaderMifare(bool first_try)
1957 {
1958 // Mifare AUTH
1959 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1960 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1961 static uint8_t mf_nr_ar3;
1962
1963 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
1964 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
1965
1966 // free eventually allocated BigBuf memory. We want all for tracing.
1967 BigBuf_free();
1968
1969 clear_trace();
1970 set_tracing(TRUE);
1971
1972 byte_t nt_diff = 0;
1973 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1974 static byte_t par_low = 0;
1975 bool led_on = TRUE;
1976 uint8_t uid[10] ={0};
1977 uint32_t cuid;
1978
1979 uint32_t nt = 0;
1980 uint32_t previous_nt = 0;
1981 static uint32_t nt_attacked = 0;
1982 byte_t par_list[8] = {0x00};
1983 byte_t ks_list[8] = {0x00};
1984
1985 static uint32_t sync_time;
1986 static uint32_t sync_cycles;
1987 int catch_up_cycles = 0;
1988 int last_catch_up = 0;
1989 uint16_t consecutive_resyncs = 0;
1990 int isOK = 0;
1991
1992 if (first_try) {
1993 mf_nr_ar3 = 0;
1994 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
1995 sync_time = GetCountSspClk() & 0xfffffff8;
1996 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1997 nt_attacked = 0;
1998 nt = 0;
1999 par[0] = 0;
2000 }
2001 else {
2002 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2003 mf_nr_ar3++;
2004 mf_nr_ar[3] = mf_nr_ar3;
2005 par[0] = par_low;
2006 }
2007
2008 LED_A_ON();
2009 LED_B_OFF();
2010 LED_C_OFF();
2011
2012
2013 for(uint16_t i = 0; TRUE; i++) {
2014
2015 WDT_HIT();
2016
2017 // Test if the action was cancelled
2018 if(BUTTON_PRESS()) {
2019 break;
2020 }
2021
2022 LED_C_ON();
2023
2024 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2025 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2026 continue;
2027 }
2028
2029 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2030 catch_up_cycles = 0;
2031
2032 // if we missed the sync time already, advance to the next nonce repeat
2033 while(GetCountSspClk() > sync_time) {
2034 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2035 }
2036
2037 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2038 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2039
2040 // Receive the (4 Byte) "random" nonce
2041 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2042 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2043 continue;
2044 }
2045
2046 previous_nt = nt;
2047 nt = bytes_to_num(receivedAnswer, 4);
2048
2049 // Transmit reader nonce with fake par
2050 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2051
2052 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2053 int nt_distance = dist_nt(previous_nt, nt);
2054 if (nt_distance == 0) {
2055 nt_attacked = nt;
2056 }
2057 else {
2058 if (nt_distance == -99999) { // invalid nonce received, try again
2059 continue;
2060 }
2061 sync_cycles = (sync_cycles - nt_distance);
2062 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2063 continue;
2064 }
2065 }
2066
2067 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2068 catch_up_cycles = -dist_nt(nt_attacked, nt);
2069 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2070 catch_up_cycles = 0;
2071 continue;
2072 }
2073 if (catch_up_cycles == last_catch_up) {
2074 consecutive_resyncs++;
2075 }
2076 else {
2077 last_catch_up = catch_up_cycles;
2078 consecutive_resyncs = 0;
2079 }
2080 if (consecutive_resyncs < 3) {
2081 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2082 }
2083 else {
2084 sync_cycles = sync_cycles + catch_up_cycles;
2085 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2086 }
2087 continue;
2088 }
2089
2090 consecutive_resyncs = 0;
2091
2092 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2093 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2094 {
2095 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2096
2097 if (nt_diff == 0)
2098 {
2099 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2100 }
2101
2102 led_on = !led_on;
2103 if(led_on) LED_B_ON(); else LED_B_OFF();
2104
2105 par_list[nt_diff] = SwapBits(par[0], 8);
2106 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2107
2108 // Test if the information is complete
2109 if (nt_diff == 0x07) {
2110 isOK = 1;
2111 break;
2112 }
2113
2114 nt_diff = (nt_diff + 1) & 0x07;
2115 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2116 par[0] = par_low;
2117 } else {
2118 if (nt_diff == 0 && first_try)
2119 {
2120 par[0]++;
2121 } else {
2122 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2123 }
2124 }
2125 }
2126
2127
2128 mf_nr_ar[3] &= 0x1F;
2129
2130 byte_t buf[28];
2131 memcpy(buf + 0, uid, 4);
2132 num_to_bytes(nt, 4, buf + 4);
2133 memcpy(buf + 8, par_list, 8);
2134 memcpy(buf + 16, ks_list, 8);
2135 memcpy(buf + 24, mf_nr_ar, 4);
2136
2137 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2138
2139 // Thats it...
2140 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2141 LEDsoff();
2142
2143 set_tracing(FALSE);
2144 }
2145
2146 /**
2147 *MIFARE 1K simulate.
2148 *
2149 *@param flags :
2150 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2151 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2152 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2153 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2154 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2155 */
2156 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2157 {
2158 int cardSTATE = MFEMUL_NOFIELD;
2159 int _7BUID = 0;
2160 int vHf = 0; // in mV
2161 int res;
2162 uint32_t selTimer = 0;
2163 uint32_t authTimer = 0;
2164 uint16_t len = 0;
2165 uint8_t cardWRBL = 0;
2166 uint8_t cardAUTHSC = 0;
2167 uint8_t cardAUTHKEY = 0xff; // no authentication
2168 uint32_t cardRr = 0;
2169 uint32_t cuid = 0;
2170 //uint32_t rn_enc = 0;
2171 uint32_t ans = 0;
2172 uint32_t cardINTREG = 0;
2173 uint8_t cardINTBLOCK = 0;
2174 struct Crypto1State mpcs = {0, 0};
2175 struct Crypto1State *pcs;
2176 pcs = &mpcs;
2177 uint32_t numReads = 0;//Counts numer of times reader read a block
2178 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2179 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2180 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2181 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2182
2183 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2184 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2185 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2186 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2187 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2188
2189 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2190 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2191
2192 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2193 // This can be used in a reader-only attack.
2194 // (it can also be retrieved via 'hf 14a list', but hey...
2195 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2196 uint8_t ar_nr_collected = 0;
2197
2198 // free eventually allocated BigBuf memory but keep Emulator Memory
2199 BigBuf_free_keep_EM();
2200 // clear trace
2201 clear_trace();
2202 set_tracing(TRUE);
2203
2204 // Authenticate response - nonce
2205 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2206
2207 //-- Determine the UID
2208 // Can be set from emulator memory, incoming data
2209 // and can be 7 or 4 bytes long
2210 if (flags & FLAG_4B_UID_IN_DATA)
2211 {
2212 // 4B uid comes from data-portion of packet
2213 memcpy(rUIDBCC1,datain,4);
2214 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2215
2216 } else if (flags & FLAG_7B_UID_IN_DATA) {
2217 // 7B uid comes from data-portion of packet
2218 memcpy(&rUIDBCC1[1],datain,3);
2219 memcpy(rUIDBCC2, datain+3, 4);
2220 _7BUID = true;
2221 } else {
2222 // get UID from emul memory
2223 emlGetMemBt(receivedCmd, 7, 1);
2224 _7BUID = !(receivedCmd[0] == 0x00);
2225 if (!_7BUID) { // ---------- 4BUID
2226 emlGetMemBt(rUIDBCC1, 0, 4);
2227 } else { // ---------- 7BUID
2228 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2229 emlGetMemBt(rUIDBCC2, 3, 4);
2230 }
2231 }
2232
2233 /*
2234 * Regardless of what method was used to set the UID, set fifth byte and modify
2235 * the ATQA for 4 or 7-byte UID
2236 */
2237 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2238 if (_7BUID) {
2239 rATQA[0] = 0x44;
2240 rUIDBCC1[0] = 0x88;
2241 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2242 }
2243
2244 // We need to listen to the high-frequency, peak-detected path.
2245 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2246
2247
2248 if (MF_DBGLEVEL >= 1) {
2249 if (!_7BUID) {
2250 Dbprintf("4B UID: %02x%02x%02x%02x",
2251 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2252 } else {
2253 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2254 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2255 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2256 }
2257 }
2258
2259 bool finished = FALSE;
2260 while (!BUTTON_PRESS() && !finished) {
2261 WDT_HIT();
2262
2263 // find reader field
2264 // Vref = 3300mV, and an 10:1 voltage divider on the input
2265 // can measure voltages up to 33000 mV
2266 if (cardSTATE == MFEMUL_NOFIELD) {
2267 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2268 if (vHf > MF_MINFIELDV) {
2269 cardSTATE_TO_IDLE();
2270 LED_A_ON();
2271 }
2272 }
2273 if(cardSTATE == MFEMUL_NOFIELD) continue;
2274
2275 //Now, get data
2276
2277 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2278 if (res == 2) { //Field is off!
2279 cardSTATE = MFEMUL_NOFIELD;
2280 LEDsoff();
2281 continue;
2282 } else if (res == 1) {
2283 break; //return value 1 means button press
2284 }
2285
2286 // REQ or WUP request in ANY state and WUP in HALTED state
2287 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2288 selTimer = GetTickCount();
2289 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2290 cardSTATE = MFEMUL_SELECT1;
2291
2292 // init crypto block
2293 LED_B_OFF();
2294 LED_C_OFF();
2295 crypto1_destroy(pcs);
2296 cardAUTHKEY = 0xff;
2297 continue;
2298 }
2299
2300 switch (cardSTATE) {
2301 case MFEMUL_NOFIELD:
2302 case MFEMUL_HALTED:
2303 case MFEMUL_IDLE:{
2304 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2305 break;
2306 }
2307 case MFEMUL_SELECT1:{
2308 // select all
2309 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2310 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2311 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2312 break;
2313 }
2314
2315 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2316 {
2317 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2318 }
2319 // select card
2320 if (len == 9 &&
2321 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2322 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2323 cuid = bytes_to_num(rUIDBCC1, 4);
2324 if (!_7BUID) {
2325 cardSTATE = MFEMUL_WORK;
2326 LED_B_ON();
2327 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2328 break;
2329 } else {
2330 cardSTATE = MFEMUL_SELECT2;
2331 }
2332 }
2333 break;
2334 }
2335 case MFEMUL_AUTH1:{
2336 if( len != 8)
2337 {
2338 cardSTATE_TO_IDLE();
2339 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2340 break;
2341 }
2342 uint32_t ar = bytes_to_num(receivedCmd, 4);
2343 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2344
2345 //Collect AR/NR
2346 if(ar_nr_collected < 2){
2347 if(ar_nr_responses[2] != ar)
2348 {// Avoid duplicates... probably not necessary, ar should vary.
2349 ar_nr_responses[ar_nr_collected*4] = cuid;
2350 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2351 ar_nr_responses[ar_nr_collected*4+2] = ar;
2352 ar_nr_responses[ar_nr_collected*4+3] = nr;
2353 ar_nr_collected++;
2354 }
2355 }
2356
2357 // --- crypto
2358 crypto1_word(pcs, ar , 1);
2359 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2360
2361 // test if auth OK
2362 if (cardRr != prng_successor(nonce, 64)){
2363 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2364 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2365 cardRr, prng_successor(nonce, 64));
2366 // Shouldn't we respond anything here?
2367 // Right now, we don't nack or anything, which causes the
2368 // reader to do a WUPA after a while. /Martin
2369 // -- which is the correct response. /piwi
2370 cardSTATE_TO_IDLE();
2371 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2372 break;
2373 }
2374
2375 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2376
2377 num_to_bytes(ans, 4, rAUTH_AT);
2378 // --- crypto
2379 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2380 LED_C_ON();
2381 cardSTATE = MFEMUL_WORK;
2382 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2383 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2384 GetTickCount() - authTimer);
2385 break;
2386 }
2387 case MFEMUL_SELECT2:{
2388 if (!len) {
2389 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2390 break;
2391 }
2392 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2393 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2394 break;
2395 }
2396
2397 // select 2 card
2398 if (len == 9 &&
2399 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2400 EmSendCmd(rSAK, sizeof(rSAK));
2401 cuid = bytes_to_num(rUIDBCC2, 4);
2402 cardSTATE = MFEMUL_WORK;
2403 LED_B_ON();
2404 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2405 break;
2406 }
2407
2408 // i guess there is a command). go into the work state.
2409 if (len != 4) {
2410 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2411 break;
2412 }
2413 cardSTATE = MFEMUL_WORK;
2414 //goto lbWORK;
2415 //intentional fall-through to the next case-stmt
2416 }
2417
2418 case MFEMUL_WORK:{
2419 if (len == 0) {
2420 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2421 break;
2422 }
2423
2424 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2425
2426 if(encrypted_data) {
2427 // decrypt seqence
2428 mf_crypto1_decrypt(pcs, receivedCmd, len);
2429 }
2430
2431 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2432 authTimer = GetTickCount();
2433 cardAUTHSC = receivedCmd[1] / 4; // received block num
2434 cardAUTHKEY = receivedCmd[0] - 0x60;
2435 crypto1_destroy(pcs);//Added by martin
2436 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2437
2438 if (!encrypted_data) { // first authentication
2439 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2440
2441 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2442 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2443 } else { // nested authentication
2444 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2445 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2446 num_to_bytes(ans, 4, rAUTH_AT);
2447 }
2448 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2449 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2450 cardSTATE = MFEMUL_AUTH1;
2451 break;
2452 }
2453
2454 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2455 // BUT... ACK --> NACK
2456 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2457 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2458 break;
2459 }
2460
2461 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2462 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2463 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2464 break;
2465 }
2466
2467 if(len != 4) {
2468 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2469 break;
2470 }
2471
2472 if(receivedCmd[0] == 0x30 // read block
2473 || receivedCmd[0] == 0xA0 // write block
2474 || receivedCmd[0] == 0xC0 // inc
2475 || receivedCmd[0] == 0xC1 // dec
2476 || receivedCmd[0] == 0xC2 // restore
2477 || receivedCmd[0] == 0xB0) { // transfer
2478 if (receivedCmd[1] >= 16 * 4) {
2479 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2480 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2481 break;
2482 }
2483
2484 if (receivedCmd[1] / 4 != cardAUTHSC) {
2485 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2486 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2487 break;
2488 }
2489 }
2490 // read block
2491 if (receivedCmd[0] == 0x30) {
2492 if (MF_DBGLEVEL >= 4) {
2493 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2494 }
2495 emlGetMem(response, receivedCmd[1], 1);
2496 AppendCrc14443a(response, 16);
2497 mf_crypto1_encrypt(pcs, response, 18, response_par);
2498 EmSendCmdPar(response, 18, response_par);
2499 numReads++;
2500 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2501 Dbprintf("%d reads done, exiting", numReads);
2502 finished = true;
2503 }
2504 break;
2505 }
2506 // write block
2507 if (receivedCmd[0] == 0xA0) {
2508 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2509 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2510 cardSTATE = MFEMUL_WRITEBL2;
2511 cardWRBL = receivedCmd[1];
2512 break;
2513 }
2514 // increment, decrement, restore
2515 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2516 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2517 if (emlCheckValBl(receivedCmd[1])) {
2518 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2519 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2520 break;
2521 }
2522 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2523 if (receivedCmd[0] == 0xC1)
2524 cardSTATE = MFEMUL_INTREG_INC;
2525 if (receivedCmd[0] == 0xC0)
2526 cardSTATE = MFEMUL_INTREG_DEC;
2527 if (receivedCmd[0] == 0xC2)
2528 cardSTATE = MFEMUL_INTREG_REST;
2529 cardWRBL = receivedCmd[1];
2530 break;
2531 }
2532 // transfer
2533 if (receivedCmd[0] == 0xB0) {
2534 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2535 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2536 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2537 else
2538 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2539 break;
2540 }
2541 // halt
2542 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2543 LED_B_OFF();
2544 LED_C_OFF();
2545 cardSTATE = MFEMUL_HALTED;
2546 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2547 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2548 break;
2549 }
2550 // RATS
2551 if (receivedCmd[0] == 0xe0) {//RATS
2552 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2553 break;
2554 }
2555 // command not allowed
2556 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2557 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2558 break;
2559 }
2560 case MFEMUL_WRITEBL2:{
2561 if (len == 18){
2562 mf_crypto1_decrypt(pcs, receivedCmd, len);
2563 emlSetMem(receivedCmd, cardWRBL, 1);
2564 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2565 cardSTATE = MFEMUL_WORK;
2566 } else {
2567 cardSTATE_TO_IDLE();
2568 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2569 }
2570 break;
2571 }
2572
2573 case MFEMUL_INTREG_INC:{
2574 mf_crypto1_decrypt(pcs, receivedCmd, len);
2575 memcpy(&ans, receivedCmd, 4);
2576 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2577 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2578 cardSTATE_TO_IDLE();
2579 break;
2580 }
2581 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2582 cardINTREG = cardINTREG + ans;
2583 cardSTATE = MFEMUL_WORK;
2584 break;
2585 }
2586 case MFEMUL_INTREG_DEC:{
2587 mf_crypto1_decrypt(pcs, receivedCmd, len);
2588 memcpy(&ans, receivedCmd, 4);
2589 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2590 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2591 cardSTATE_TO_IDLE();
2592 break;
2593 }
2594 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2595 cardINTREG = cardINTREG - ans;
2596 cardSTATE = MFEMUL_WORK;
2597 break;
2598 }
2599 case MFEMUL_INTREG_REST:{
2600 mf_crypto1_decrypt(pcs, receivedCmd, len);
2601 memcpy(&ans, receivedCmd, 4);
2602 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2603 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2604 cardSTATE_TO_IDLE();
2605 break;
2606 }
2607 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2608 cardSTATE = MFEMUL_WORK;
2609 break;
2610 }
2611 }
2612 }
2613
2614 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2615 LEDsoff();
2616
2617 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2618 {
2619 //May just aswell send the collected ar_nr in the response aswell
2620 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2621 }
2622
2623 if(flags & FLAG_NR_AR_ATTACK)
2624 {
2625 if(ar_nr_collected > 1) {
2626 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2627 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2628 ar_nr_responses[0], // UID
2629 ar_nr_responses[1], //NT
2630 ar_nr_responses[2], //AR1
2631 ar_nr_responses[3], //NR1
2632 ar_nr_responses[6], //AR2
2633 ar_nr_responses[7] //NR2
2634 );
2635 } else {
2636 Dbprintf("Failed to obtain two AR/NR pairs!");
2637 if(ar_nr_collected >0) {
2638 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2639 ar_nr_responses[0], // UID
2640 ar_nr_responses[1], //NT
2641 ar_nr_responses[2], //AR1
2642 ar_nr_responses[3] //NR1
2643 );
2644 }
2645 }
2646 }
2647 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2648 }
2649
2650
2651
2652 //-----------------------------------------------------------------------------
2653 // MIFARE sniffer.
2654 //
2655 //-----------------------------------------------------------------------------
2656 void RAMFUNC SniffMifare(uint8_t param) {
2657 // param:
2658 // bit 0 - trigger from first card answer
2659 // bit 1 - trigger from first reader 7-bit request
2660
2661 // C(red) A(yellow) B(green)
2662 LEDsoff();
2663 // init trace buffer
2664 clear_trace();
2665 set_tracing(TRUE);
2666
2667 // The command (reader -> tag) that we're receiving.
2668 // The length of a received command will in most cases be no more than 18 bytes.
2669 // So 32 should be enough!
2670 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2671 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2672 // The response (tag -> reader) that we're receiving.
2673 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2674 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2675
2676 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2677 // into trace, along with its length and other annotations.
2678 //uint8_t *trace = (uint8_t *)BigBuf;
2679
2680 // free eventually allocated BigBuf memory
2681 BigBuf_free();
2682 // allocate the DMA buffer, used to stream samples from the FPGA
2683 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2684 uint8_t *data = dmaBuf;
2685 uint8_t previous_data = 0;
2686 int maxDataLen = 0;
2687 int dataLen = 0;
2688 bool ReaderIsActive = FALSE;
2689 bool TagIsActive = FALSE;
2690
2691 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2692
2693 // Set up the demodulator for tag -> reader responses.
2694 DemodInit(receivedResponse, receivedResponsePar);
2695
2696 // Set up the demodulator for the reader -> tag commands
2697 UartInit(receivedCmd, receivedCmdPar);
2698
2699 // Setup for the DMA.
2700 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2701
2702 LED_D_OFF();
2703
2704 // init sniffer
2705 MfSniffInit();
2706
2707 // And now we loop, receiving samples.
2708 for(uint32_t sniffCounter = 0; TRUE; ) {
2709
2710 if(BUTTON_PRESS()) {
2711 DbpString("cancelled by button");
2712 break;
2713 }
2714
2715 LED_A_ON();
2716 WDT_HIT();
2717
2718 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2719 // check if a transaction is completed (timeout after 2000ms).
2720 // if yes, stop the DMA transfer and send what we have so far to the client
2721 if (MfSniffSend(2000)) {
2722 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2723 sniffCounter = 0;
2724 data = dmaBuf;
2725 maxDataLen = 0;
2726 ReaderIsActive = FALSE;
2727 TagIsActive = FALSE;
2728 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2729 }
2730 }
2731
2732 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2733 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2734 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2735 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2736 } else {
2737 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2738 }
2739 // test for length of buffer
2740 if(dataLen > maxDataLen) { // we are more behind than ever...
2741 maxDataLen = dataLen;
2742 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2743 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2744 break;
2745 }
2746 }
2747 if(dataLen < 1) continue;
2748
2749 // primary buffer was stopped ( <-- we lost data!
2750 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2751 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2752 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2753 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2754 }
2755 // secondary buffer sets as primary, secondary buffer was stopped
2756 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2757 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2758 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2759 }
2760
2761 LED_A_OFF();
2762
2763 if (sniffCounter & 0x01) {
2764
2765 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2766 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2767 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2768 LED_C_INV();
2769 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
2770
2771 /* And ready to receive another command. */
2772 UartReset();
2773
2774 /* And also reset the demod code */
2775 DemodReset();
2776 }
2777 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2778 }
2779
2780 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2781 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2782 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2783 LED_C_INV();
2784
2785 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
2786
2787 // And ready to receive another response.
2788 DemodReset();
2789 }
2790 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2791 }
2792 }
2793
2794 previous_data = *data;
2795 sniffCounter++;
2796 data++;
2797 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2798 data = dmaBuf;
2799 }
2800
2801 } // main cycle
2802
2803 DbpString("COMMAND FINISHED");
2804
2805 FpgaDisableSscDma();
2806 MfSniffEnd();
2807
2808 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2809 LEDsoff();
2810 }
Impressum, Datenschutz