]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Minor dox
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19
20
21 /**
22 * Function to do a modulation and then get samples.
23 * @param delay_off
24 * @param period_0
25 * @param period_1
26 * @param command
27 */
28 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
29 {
30
31 int divisor_used = 95; // 125 KHz
32 // see if 'h' was specified
33
34 if (command[strlen((char *) command) - 1] == 'h')
35 divisor_used = 88; // 134.8 KHz
36
37 sample_config sc = { 0,0,1, divisor_used, 0};
38 setSamplingConfig(&sc);
39
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
43 SpinDelay(2500);
44
45 LFSetupFPGAForADC(sc.divisor, 1);
46
47 // And a little more time for the tag to fully power up
48 SpinDelay(2000);
49
50 // now modulate the reader field
51 while(*command != '\0' && *command != ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
53 LED_D_OFF();
54 SpinDelayUs(delay_off);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
56
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
58 LED_D_ON();
59 if(*(command++) == '0')
60 SpinDelayUs(period_0);
61 else
62 SpinDelayUs(period_1);
63 }
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
65 LED_D_OFF();
66 SpinDelayUs(delay_off);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
68
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
70
71 // now do the read
72 DoAcquisition_config(false);
73 }
74
75
76
77 /* blank r/w tag data stream
78 ...0000000000000000 01111111
79 1010101010101010101010101010101010101010101010101010101010101010
80 0011010010100001
81 01111111
82 101010101010101[0]000...
83
84 [5555fe852c5555555555555555fe0000]
85 */
86 void ReadTItag(void)
87 {
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
92 #define FSAMPLE 2000000
93 #define FREQLO 123200
94 #define FREQHI 134200
95
96 signed char *dest = (signed char *)BigBuf_get_addr();
97 uint16_t n = BigBuf_max_traceLen();
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
100
101 int i, cycles=0, samples=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
106
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
110
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
116
117 // get TI tag data into the buffer
118 AcquireTiType();
119
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
121
122 for (i=0; i<n-1; i++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest[i]<0) && (dest[i+1]>0) ) {
125 cycles++;
126 // after 16 cycles, measure the frequency
127 if (cycles>15) {
128 cycles=0;
129 samples=i-samples; // number of samples in these 16 cycles
130
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0 = (shift0>>1) | (shift1 << 31);
134 shift1 = (shift1>>1) | (shift2 << 31);
135 shift2 = (shift2>>1) | (shift3 << 31);
136 shift3 >>= 1;
137
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
141 // low frequency represents a 1
142 shift3 |= (1<<31);
143 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
144 // high frequency represents a 0
145 } else {
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3 = shift2 = shift1 = shift0 = 0;
149 }
150 samples = i;
151
152 // for each bit we receive, test if we've detected a valid tag
153
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
159 cycles = 0xF0B; //use this as a flag (ugly but whatever)
160 break;
161 }
162 }
163 }
164 }
165 }
166
167 // if flag is set we have a tag
168 if (cycles!=0xF0B) {
169 DbpString("Info: No valid tag detected.");
170 } else {
171 // put 64 bit data into shift1 and shift0
172 shift0 = (shift0>>24) | (shift1 << 8);
173 shift1 = (shift1>>24) | (shift2 << 8);
174
175 // align 16 bit crc into lower half of shift2
176 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
177
178 // if r/w tag, check ident match
179 if (shift3 & (1<<15) ) {
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
182 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
183 DbpString("Error: Ident mismatch!");
184 } else {
185 DbpString("Info: TI tag ident is valid");
186 }
187 } else {
188 DbpString("Info: TI tag is readonly");
189 }
190
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
194 // calculate CRC
195 uint32_t crc=0;
196
197 crc = update_crc16(crc, (shift0)&0xff);
198 crc = update_crc16(crc, (shift0>>8)&0xff);
199 crc = update_crc16(crc, (shift0>>16)&0xff);
200 crc = update_crc16(crc, (shift0>>24)&0xff);
201 crc = update_crc16(crc, (shift1)&0xff);
202 crc = update_crc16(crc, (shift1>>8)&0xff);
203 crc = update_crc16(crc, (shift1>>16)&0xff);
204 crc = update_crc16(crc, (shift1>>24)&0xff);
205
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
208 if (crc != (shift2&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
210 } else {
211 DbpString("Info: CRC is good");
212 }
213 }
214 }
215
216 void WriteTIbyte(uint8_t b)
217 {
218 int i = 0;
219
220 // modulate 8 bits out to the antenna
221 for (i=0; i<8; i++)
222 {
223 if (b&(1<<i)) {
224 // stop modulating antenna
225 LOW(GPIO_SSC_DOUT);
226 SpinDelayUs(1000);
227 // modulate antenna
228 HIGH(GPIO_SSC_DOUT);
229 SpinDelayUs(1000);
230 } else {
231 // stop modulating antenna
232 LOW(GPIO_SSC_DOUT);
233 SpinDelayUs(300);
234 // modulate antenna
235 HIGH(GPIO_SSC_DOUT);
236 SpinDelayUs(1700);
237 }
238 }
239 }
240
241 void AcquireTiType(void)
242 {
243 int i, j, n;
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
246 #define TIBUFLEN 1250
247
248 // clear buffer
249 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
250 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
251
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
254 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
255
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
258 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
259
260 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
262
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC->SSC_CMR = 12;
266
267 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
269 AT91C_BASE_SSC->SSC_TCMR = 0;
270 AT91C_BASE_SSC->SSC_TFMR = 0;
271
272 LED_D_ON();
273
274 // modulate antenna
275 HIGH(GPIO_SSC_DOUT);
276
277 // Charge TI tag for 50ms.
278 SpinDelay(50);
279
280 // stop modulating antenna and listen
281 LOW(GPIO_SSC_DOUT);
282
283 LED_D_OFF();
284
285 i = 0;
286 for(;;) {
287 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
288 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
289 i++; if(i >= TIBUFLEN) break;
290 }
291 WDT_HIT();
292 }
293
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
296 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
297
298 char *dest = (char *)BigBuf_get_addr();
299 n = TIBUFLEN*32;
300 // unpack buffer
301 for (i=TIBUFLEN-1; i>=0; i--) {
302 for (j=0; j<32; j++) {
303 if(BigBuf[i] & (1 << j)) {
304 dest[--n] = 1;
305 } else {
306 dest[--n] = -1;
307 }
308 }
309 }
310 }
311
312 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
313 // if crc provided, it will be written with the data verbatim (even if bogus)
314 // if not provided a valid crc will be computed from the data and written.
315 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
316 {
317 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
318 if(crc == 0) {
319 crc = update_crc16(crc, (idlo)&0xff);
320 crc = update_crc16(crc, (idlo>>8)&0xff);
321 crc = update_crc16(crc, (idlo>>16)&0xff);
322 crc = update_crc16(crc, (idlo>>24)&0xff);
323 crc = update_crc16(crc, (idhi)&0xff);
324 crc = update_crc16(crc, (idhi>>8)&0xff);
325 crc = update_crc16(crc, (idhi>>16)&0xff);
326 crc = update_crc16(crc, (idhi>>24)&0xff);
327 }
328 Dbprintf("Writing to tag: %x%08x, crc=%x",
329 (unsigned int) idhi, (unsigned int) idlo, crc);
330
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
338 LED_A_ON();
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb firts
352 // finish with 15ms programming time
353
354 // modulate antenna
355 HIGH(GPIO_SSC_DOUT);
356 SpinDelay(50); // charge time
357
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo )&0xff );
361 WriteTIbyte( (idlo>>8 )&0xff );
362 WriteTIbyte( (idlo>>16)&0xff );
363 WriteTIbyte( (idlo>>24)&0xff );
364 WriteTIbyte( (idhi )&0xff );
365 WriteTIbyte( (idhi>>8 )&0xff );
366 WriteTIbyte( (idhi>>16)&0xff );
367 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc )&0xff ); // crc lo
369 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
372 HIGH(GPIO_SSC_DOUT);
373 SpinDelay(50); // programming time
374
375 LED_A_OFF();
376
377 // get TI tag data into the buffer
378 AcquireTiType();
379
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
381 DbpString("Now use tiread to check");
382 }
383
384 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
385 {
386 int i;
387 uint8_t *tab = BigBuf_get_addr();
388
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
391
392 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
393
394 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
395 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
396
397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
399
400 i = 0;
401 for(;;) {
402 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
403 if(BUTTON_PRESS()) {
404 DbpString("Stopped");
405 return;
406 }
407 WDT_HIT();
408 }
409
410 if (ledcontrol)
411 LED_D_ON();
412
413 if(tab[i])
414 OPEN_COIL();
415 else
416 SHORT_COIL();
417
418 if (ledcontrol)
419 LED_D_OFF();
420
421 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
422 if(BUTTON_PRESS()) {
423 DbpString("Stopped");
424 return;
425 }
426 WDT_HIT();
427 }
428
429 i++;
430 if(i == period) {
431 i = 0;
432 if (gap) {
433 SHORT_COIL();
434 SpinDelayUs(gap);
435 }
436 }
437 }
438 }
439
440 #define DEBUG_FRAME_CONTENTS 1
441 void SimulateTagLowFrequencyBidir(int divisor, int t0)
442 {
443 }
444
445 // compose fc/8 fc/10 waveform
446 static void fc(int c, int *n) {
447 uint8_t *dest = BigBuf_get_addr();
448 int idx;
449
450 // for when we want an fc8 pattern every 4 logical bits
451 if(c==0) {
452 dest[((*n)++)]=1;
453 dest[((*n)++)]=1;
454 dest[((*n)++)]=0;
455 dest[((*n)++)]=0;
456 dest[((*n)++)]=0;
457 dest[((*n)++)]=0;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 }
461 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
462 if(c==8) {
463 for (idx=0; idx<6; idx++) {
464 dest[((*n)++)]=1;
465 dest[((*n)++)]=1;
466 dest[((*n)++)]=0;
467 dest[((*n)++)]=0;
468 dest[((*n)++)]=0;
469 dest[((*n)++)]=0;
470 dest[((*n)++)]=0;
471 dest[((*n)++)]=0;
472 }
473 }
474
475 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
476 if(c==10) {
477 for (idx=0; idx<5; idx++) {
478 dest[((*n)++)]=1;
479 dest[((*n)++)]=1;
480 dest[((*n)++)]=1;
481 dest[((*n)++)]=0;
482 dest[((*n)++)]=0;
483 dest[((*n)++)]=0;
484 dest[((*n)++)]=0;
485 dest[((*n)++)]=0;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 }
489 }
490 }
491
492 // prepare a waveform pattern in the buffer based on the ID given then
493 // simulate a HID tag until the button is pressed
494 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
495 {
496 int n=0, i=0;
497 /*
498 HID tag bitstream format
499 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
500 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
501 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
502 A fc8 is inserted before every 4 bits
503 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
504 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
505 */
506
507 if (hi>0xFFF) {
508 DbpString("Tags can only have 44 bits.");
509 return;
510 }
511 fc(0,&n);
512 // special start of frame marker containing invalid bit sequences
513 fc(8, &n); fc(8, &n); // invalid
514 fc(8, &n); fc(10, &n); // logical 0
515 fc(10, &n); fc(10, &n); // invalid
516 fc(8, &n); fc(10, &n); // logical 0
517
518 WDT_HIT();
519 // manchester encode bits 43 to 32
520 for (i=11; i>=0; i--) {
521 if ((i%4)==3) fc(0,&n);
522 if ((hi>>i)&1) {
523 fc(10, &n); fc(8, &n); // low-high transition
524 } else {
525 fc(8, &n); fc(10, &n); // high-low transition
526 }
527 }
528
529 WDT_HIT();
530 // manchester encode bits 31 to 0
531 for (i=31; i>=0; i--) {
532 if ((i%4)==3) fc(0,&n);
533 if ((lo>>i)&1) {
534 fc(10, &n); fc(8, &n); // low-high transition
535 } else {
536 fc(8, &n); fc(10, &n); // high-low transition
537 }
538 }
539
540 if (ledcontrol)
541 LED_A_ON();
542 SimulateTagLowFrequency(n, 0, ledcontrol);
543
544 if (ledcontrol)
545 LED_A_OFF();
546 }
547
548 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
549 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
550 {
551 uint8_t *dest = BigBuf_get_addr();
552 const size_t sizeOfBigBuff = BigBuf_max_traceLen();
553 size_t size = 0;
554 uint32_t hi2=0, hi=0, lo=0;
555 int idx=0;
556 // Configure to go in 125Khz listen mode
557 LFSetupFPGAForADC(95, true);
558
559 while(!BUTTON_PRESS()) {
560
561 WDT_HIT();
562 if (ledcontrol) LED_A_ON();
563
564 DoAcquisition_default(-1,true);
565 // FSK demodulator
566 size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
567 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
568
569 if (idx>0 && lo>0){
570 // final loop, go over previously decoded manchester data and decode into usable tag ID
571 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
572 if (hi2 != 0){ //extra large HID tags
573 Dbprintf("TAG ID: %x%08x%08x (%d)",
574 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
575 }else { //standard HID tags <38 bits
576 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
577 uint8_t bitlen = 0;
578 uint32_t fc = 0;
579 uint32_t cardnum = 0;
580 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
581 uint32_t lo2=0;
582 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
583 uint8_t idx3 = 1;
584 while(lo2 > 1){ //find last bit set to 1 (format len bit)
585 lo2=lo2 >> 1;
586 idx3++;
587 }
588 bitlen = idx3+19;
589 fc =0;
590 cardnum=0;
591 if(bitlen == 26){
592 cardnum = (lo>>1)&0xFFFF;
593 fc = (lo>>17)&0xFF;
594 }
595 if(bitlen == 37){
596 cardnum = (lo>>1)&0x7FFFF;
597 fc = ((hi&0xF)<<12)|(lo>>20);
598 }
599 if(bitlen == 34){
600 cardnum = (lo>>1)&0xFFFF;
601 fc= ((hi&1)<<15)|(lo>>17);
602 }
603 if(bitlen == 35){
604 cardnum = (lo>>1)&0xFFFFF;
605 fc = ((hi&1)<<11)|(lo>>21);
606 }
607 }
608 else { //if bit 38 is not set then 37 bit format is used
609 bitlen= 37;
610 fc =0;
611 cardnum=0;
612 if(bitlen==37){
613 cardnum = (lo>>1)&0x7FFFF;
614 fc = ((hi&0xF)<<12)|(lo>>20);
615 }
616 }
617 //Dbprintf("TAG ID: %x%08x (%d)",
618 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
619 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
620 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
621 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
622 }
623 if (findone){
624 if (ledcontrol) LED_A_OFF();
625 *high = hi;
626 *low = lo;
627 return;
628 }
629 // reset
630 hi2 = hi = lo = 0;
631 }
632 WDT_HIT();
633 }
634 DbpString("Stopped");
635 if (ledcontrol) LED_A_OFF();
636 }
637
638 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
639 {
640 uint8_t *dest = BigBuf_get_addr();
641
642 size_t size=0, idx=0;
643 int clk=0, invert=0, errCnt=0;
644 uint64_t lo=0;
645 // Configure to go in 125Khz listen mode
646 LFSetupFPGAForADC(95, true);
647
648 while(!BUTTON_PRESS()) {
649
650 WDT_HIT();
651 if (ledcontrol) LED_A_ON();
652
653 DoAcquisition_default(-1,true);
654 size = BigBuf_max_traceLen();
655 //Dbprintf("DEBUG: Buffer got");
656 //askdemod and manchester decode
657 errCnt = askmandemod(dest, &size, &clk, &invert);
658 //Dbprintf("DEBUG: ASK Got");
659 WDT_HIT();
660
661 if (errCnt>=0){
662 lo = Em410xDecode(dest, &size, &idx);
663 //Dbprintf("DEBUG: EM GOT");
664 if (lo>0){
665 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
666 (uint32_t)(lo>>32),
667 (uint32_t)lo,
668 (uint32_t)(lo&0xFFFF),
669 (uint32_t)((lo>>16LL) & 0xFF),
670 (uint32_t)(lo & 0xFFFFFF));
671 }
672 if (findone){
673 if (ledcontrol) LED_A_OFF();
674 *high=lo>>32;
675 *low=lo & 0xFFFFFFFF;
676 return;
677 }
678 } else{
679 //Dbprintf("DEBUG: No Tag");
680 }
681 WDT_HIT();
682 lo = 0;
683 clk=0;
684 invert=0;
685 errCnt=0;
686 size=0;
687 }
688 DbpString("Stopped");
689 if (ledcontrol) LED_A_OFF();
690 }
691
692 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
693 {
694 uint8_t *dest = BigBuf_get_addr();
695 int idx=0;
696 uint32_t code=0, code2=0;
697 uint8_t version=0;
698 uint8_t facilitycode=0;
699 uint16_t number=0;
700 // Configure to go in 125Khz listen mode
701 LFSetupFPGAForADC(95, true);
702
703 while(!BUTTON_PRESS()) {
704 WDT_HIT();
705 if (ledcontrol) LED_A_ON();
706 DoAcquisition_default(-1,true);
707 //fskdemod and get start index
708 WDT_HIT();
709 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
710 if (idx>0){
711 //valid tag found
712
713 //Index map
714 //0 10 20 30 40 50 60
715 //| | | | | | |
716 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
717 //-----------------------------------------------------------------------------
718 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
719 //
720 //XSF(version)facility:codeone+codetwo
721 //Handle the data
722 if(findone){ //only print binary if we are doing one
723 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
724 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
725 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
726 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
727 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
728 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
729 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
730 }
731 code = bytebits_to_byte(dest+idx,32);
732 code2 = bytebits_to_byte(dest+idx+32,32);
733 version = bytebits_to_byte(dest+idx+27,8); //14,4
734 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
735 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
736
737 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
738 // if we're only looking for one tag
739 if (findone){
740 if (ledcontrol) LED_A_OFF();
741 //LED_A_OFF();
742 *high=code;
743 *low=code2;
744 return;
745 }
746 code=code2=0;
747 version=facilitycode=0;
748 number=0;
749 idx=0;
750 }
751 WDT_HIT();
752 }
753 DbpString("Stopped");
754 if (ledcontrol) LED_A_OFF();
755 }
756
757 /*------------------------------
758 * T5555/T5557/T5567 routines
759 *------------------------------
760 */
761
762 /* T55x7 configuration register definitions */
763 #define T55x7_POR_DELAY 0x00000001
764 #define T55x7_ST_TERMINATOR 0x00000008
765 #define T55x7_PWD 0x00000010
766 #define T55x7_MAXBLOCK_SHIFT 5
767 #define T55x7_AOR 0x00000200
768 #define T55x7_PSKCF_RF_2 0
769 #define T55x7_PSKCF_RF_4 0x00000400
770 #define T55x7_PSKCF_RF_8 0x00000800
771 #define T55x7_MODULATION_DIRECT 0
772 #define T55x7_MODULATION_PSK1 0x00001000
773 #define T55x7_MODULATION_PSK2 0x00002000
774 #define T55x7_MODULATION_PSK3 0x00003000
775 #define T55x7_MODULATION_FSK1 0x00004000
776 #define T55x7_MODULATION_FSK2 0x00005000
777 #define T55x7_MODULATION_FSK1a 0x00006000
778 #define T55x7_MODULATION_FSK2a 0x00007000
779 #define T55x7_MODULATION_MANCHESTER 0x00008000
780 #define T55x7_MODULATION_BIPHASE 0x00010000
781 #define T55x7_BITRATE_RF_8 0
782 #define T55x7_BITRATE_RF_16 0x00040000
783 #define T55x7_BITRATE_RF_32 0x00080000
784 #define T55x7_BITRATE_RF_40 0x000C0000
785 #define T55x7_BITRATE_RF_50 0x00100000
786 #define T55x7_BITRATE_RF_64 0x00140000
787 #define T55x7_BITRATE_RF_100 0x00180000
788 #define T55x7_BITRATE_RF_128 0x001C0000
789
790 /* T5555 (Q5) configuration register definitions */
791 #define T5555_ST_TERMINATOR 0x00000001
792 #define T5555_MAXBLOCK_SHIFT 0x00000001
793 #define T5555_MODULATION_MANCHESTER 0
794 #define T5555_MODULATION_PSK1 0x00000010
795 #define T5555_MODULATION_PSK2 0x00000020
796 #define T5555_MODULATION_PSK3 0x00000030
797 #define T5555_MODULATION_FSK1 0x00000040
798 #define T5555_MODULATION_FSK2 0x00000050
799 #define T5555_MODULATION_BIPHASE 0x00000060
800 #define T5555_MODULATION_DIRECT 0x00000070
801 #define T5555_INVERT_OUTPUT 0x00000080
802 #define T5555_PSK_RF_2 0
803 #define T5555_PSK_RF_4 0x00000100
804 #define T5555_PSK_RF_8 0x00000200
805 #define T5555_USE_PWD 0x00000400
806 #define T5555_USE_AOR 0x00000800
807 #define T5555_BITRATE_SHIFT 12
808 #define T5555_FAST_WRITE 0x00004000
809 #define T5555_PAGE_SELECT 0x00008000
810
811 /*
812 * Relevant times in microsecond
813 * To compensate antenna falling times shorten the write times
814 * and enlarge the gap ones.
815 */
816 #define START_GAP 250
817 #define WRITE_GAP 160
818 #define WRITE_0 144 // 192
819 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
820
821 // Write one bit to card
822 void T55xxWriteBit(int bit)
823 {
824 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
825 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
826 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
827 if (bit == 0)
828 SpinDelayUs(WRITE_0);
829 else
830 SpinDelayUs(WRITE_1);
831 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
832 SpinDelayUs(WRITE_GAP);
833 }
834
835 // Write one card block in page 0, no lock
836 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
837 {
838 //unsigned int i; //enio adjustment 12/10/14
839 uint32_t i;
840
841 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
842 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
843 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
844
845 // Give it a bit of time for the resonant antenna to settle.
846 // And for the tag to fully power up
847 SpinDelay(150);
848
849 // Now start writting
850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
851 SpinDelayUs(START_GAP);
852
853 // Opcode
854 T55xxWriteBit(1);
855 T55xxWriteBit(0); //Page 0
856 if (PwdMode == 1){
857 // Pwd
858 for (i = 0x80000000; i != 0; i >>= 1)
859 T55xxWriteBit(Pwd & i);
860 }
861 // Lock bit
862 T55xxWriteBit(0);
863
864 // Data
865 for (i = 0x80000000; i != 0; i >>= 1)
866 T55xxWriteBit(Data & i);
867
868 // Block
869 for (i = 0x04; i != 0; i >>= 1)
870 T55xxWriteBit(Block & i);
871
872 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
873 // so wait a little more)
874 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
875 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
876 SpinDelay(20);
877 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
878 }
879
880 // Read one card block in page 0
881 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
882 {
883 uint8_t *dest = BigBuf_get_addr();
884 //int m=0, i=0; //enio adjustment 12/10/14
885 uint32_t m=0, i=0;
886 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
887 m = BigBuf_max_traceLen();
888 // Clear destination buffer before sending the command
889 memset(dest, 128, m);
890 // Connect the A/D to the peak-detected low-frequency path.
891 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
892 // Now set up the SSC to get the ADC samples that are now streaming at us.
893 FpgaSetupSsc();
894
895 LED_D_ON();
896 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
897 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
898
899 // Give it a bit of time for the resonant antenna to settle.
900 // And for the tag to fully power up
901 SpinDelay(150);
902
903 // Now start writting
904 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
905 SpinDelayUs(START_GAP);
906
907 // Opcode
908 T55xxWriteBit(1);
909 T55xxWriteBit(0); //Page 0
910 if (PwdMode == 1){
911 // Pwd
912 for (i = 0x80000000; i != 0; i >>= 1)
913 T55xxWriteBit(Pwd & i);
914 }
915 // Lock bit
916 T55xxWriteBit(0);
917 // Block
918 for (i = 0x04; i != 0; i >>= 1)
919 T55xxWriteBit(Block & i);
920
921 // Turn field on to read the response
922 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
923 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
924
925 // Now do the acquisition
926 i = 0;
927 for(;;) {
928 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
929 AT91C_BASE_SSC->SSC_THR = 0x43;
930 }
931 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
932 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
933 // we don't care about actual value, only if it's more or less than a
934 // threshold essentially we capture zero crossings for later analysis
935 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
936 i++;
937 if (i >= m) break;
938 }
939 }
940
941 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
942 LED_D_OFF();
943 DbpString("DONE!");
944 }
945
946 // Read card traceability data (page 1)
947 void T55xxReadTrace(void){
948 uint8_t *dest = BigBuf_get_addr();
949 int m=0, i=0;
950
951 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
952 m = BigBuf_max_traceLen();
953 // Clear destination buffer before sending the command
954 memset(dest, 128, m);
955 // Connect the A/D to the peak-detected low-frequency path.
956 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
957 // Now set up the SSC to get the ADC samples that are now streaming at us.
958 FpgaSetupSsc();
959
960 LED_D_ON();
961 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
962 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
963
964 // Give it a bit of time for the resonant antenna to settle.
965 // And for the tag to fully power up
966 SpinDelay(150);
967
968 // Now start writting
969 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
970 SpinDelayUs(START_GAP);
971
972 // Opcode
973 T55xxWriteBit(1);
974 T55xxWriteBit(1); //Page 1
975
976 // Turn field on to read the response
977 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
978 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
979
980 // Now do the acquisition
981 i = 0;
982 for(;;) {
983 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
984 AT91C_BASE_SSC->SSC_THR = 0x43;
985 }
986 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
987 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
988 i++;
989 if (i >= m) break;
990 }
991 }
992
993 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
994 LED_D_OFF();
995 DbpString("DONE!");
996 }
997
998 /*-------------- Cloning routines -----------*/
999 // Copy HID id to card and setup block 0 config
1000 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1001 {
1002 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1003 int last_block = 0;
1004
1005 if (longFMT){
1006 // Ensure no more than 84 bits supplied
1007 if (hi2>0xFFFFF) {
1008 DbpString("Tags can only have 84 bits.");
1009 return;
1010 }
1011 // Build the 6 data blocks for supplied 84bit ID
1012 last_block = 6;
1013 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1014 for (int i=0;i<4;i++) {
1015 if (hi2 & (1<<(19-i)))
1016 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1017 else
1018 data1 |= (1<<((3-i)*2)); // 0 -> 01
1019 }
1020
1021 data2 = 0;
1022 for (int i=0;i<16;i++) {
1023 if (hi2 & (1<<(15-i)))
1024 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1025 else
1026 data2 |= (1<<((15-i)*2)); // 0 -> 01
1027 }
1028
1029 data3 = 0;
1030 for (int i=0;i<16;i++) {
1031 if (hi & (1<<(31-i)))
1032 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1033 else
1034 data3 |= (1<<((15-i)*2)); // 0 -> 01
1035 }
1036
1037 data4 = 0;
1038 for (int i=0;i<16;i++) {
1039 if (hi & (1<<(15-i)))
1040 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1041 else
1042 data4 |= (1<<((15-i)*2)); // 0 -> 01
1043 }
1044
1045 data5 = 0;
1046 for (int i=0;i<16;i++) {
1047 if (lo & (1<<(31-i)))
1048 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1049 else
1050 data5 |= (1<<((15-i)*2)); // 0 -> 01
1051 }
1052
1053 data6 = 0;
1054 for (int i=0;i<16;i++) {
1055 if (lo & (1<<(15-i)))
1056 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1057 else
1058 data6 |= (1<<((15-i)*2)); // 0 -> 01
1059 }
1060 }
1061 else {
1062 // Ensure no more than 44 bits supplied
1063 if (hi>0xFFF) {
1064 DbpString("Tags can only have 44 bits.");
1065 return;
1066 }
1067
1068 // Build the 3 data blocks for supplied 44bit ID
1069 last_block = 3;
1070
1071 data1 = 0x1D000000; // load preamble
1072
1073 for (int i=0;i<12;i++) {
1074 if (hi & (1<<(11-i)))
1075 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1076 else
1077 data1 |= (1<<((11-i)*2)); // 0 -> 01
1078 }
1079
1080 data2 = 0;
1081 for (int i=0;i<16;i++) {
1082 if (lo & (1<<(31-i)))
1083 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1084 else
1085 data2 |= (1<<((15-i)*2)); // 0 -> 01
1086 }
1087
1088 data3 = 0;
1089 for (int i=0;i<16;i++) {
1090 if (lo & (1<<(15-i)))
1091 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1092 else
1093 data3 |= (1<<((15-i)*2)); // 0 -> 01
1094 }
1095 }
1096
1097 LED_D_ON();
1098 // Program the data blocks for supplied ID
1099 // and the block 0 for HID format
1100 T55xxWriteBlock(data1,1,0,0);
1101 T55xxWriteBlock(data2,2,0,0);
1102 T55xxWriteBlock(data3,3,0,0);
1103
1104 if (longFMT) { // if long format there are 6 blocks
1105 T55xxWriteBlock(data4,4,0,0);
1106 T55xxWriteBlock(data5,5,0,0);
1107 T55xxWriteBlock(data6,6,0,0);
1108 }
1109
1110 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1111 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1112 T55x7_MODULATION_FSK2a |
1113 last_block << T55x7_MAXBLOCK_SHIFT,
1114 0,0,0);
1115
1116 LED_D_OFF();
1117
1118 DbpString("DONE!");
1119 }
1120
1121 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1122 {
1123 int data1=0, data2=0; //up to six blocks for long format
1124
1125 data1 = hi; // load preamble
1126 data2 = lo;
1127
1128 LED_D_ON();
1129 // Program the data blocks for supplied ID
1130 // and the block 0 for HID format
1131 T55xxWriteBlock(data1,1,0,0);
1132 T55xxWriteBlock(data2,2,0,0);
1133
1134 //Config Block
1135 T55xxWriteBlock(0x00147040,0,0,0);
1136 LED_D_OFF();
1137
1138 DbpString("DONE!");
1139 }
1140
1141 // Define 9bit header for EM410x tags
1142 #define EM410X_HEADER 0x1FF
1143 #define EM410X_ID_LENGTH 40
1144
1145 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1146 {
1147 int i, id_bit;
1148 uint64_t id = EM410X_HEADER;
1149 uint64_t rev_id = 0; // reversed ID
1150 int c_parity[4]; // column parity
1151 int r_parity = 0; // row parity
1152 uint32_t clock = 0;
1153
1154 // Reverse ID bits given as parameter (for simpler operations)
1155 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1156 if (i < 32) {
1157 rev_id = (rev_id << 1) | (id_lo & 1);
1158 id_lo >>= 1;
1159 } else {
1160 rev_id = (rev_id << 1) | (id_hi & 1);
1161 id_hi >>= 1;
1162 }
1163 }
1164
1165 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1166 id_bit = rev_id & 1;
1167
1168 if (i % 4 == 0) {
1169 // Don't write row parity bit at start of parsing
1170 if (i)
1171 id = (id << 1) | r_parity;
1172 // Start counting parity for new row
1173 r_parity = id_bit;
1174 } else {
1175 // Count row parity
1176 r_parity ^= id_bit;
1177 }
1178
1179 // First elements in column?
1180 if (i < 4)
1181 // Fill out first elements
1182 c_parity[i] = id_bit;
1183 else
1184 // Count column parity
1185 c_parity[i % 4] ^= id_bit;
1186
1187 // Insert ID bit
1188 id = (id << 1) | id_bit;
1189 rev_id >>= 1;
1190 }
1191
1192 // Insert parity bit of last row
1193 id = (id << 1) | r_parity;
1194
1195 // Fill out column parity at the end of tag
1196 for (i = 0; i < 4; ++i)
1197 id = (id << 1) | c_parity[i];
1198
1199 // Add stop bit
1200 id <<= 1;
1201
1202 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1203 LED_D_ON();
1204
1205 // Write EM410x ID
1206 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1207 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1208
1209 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1210 if (card) {
1211 // Clock rate is stored in bits 8-15 of the card value
1212 clock = (card & 0xFF00) >> 8;
1213 Dbprintf("Clock rate: %d", clock);
1214 switch (clock)
1215 {
1216 case 32:
1217 clock = T55x7_BITRATE_RF_32;
1218 break;
1219 case 16:
1220 clock = T55x7_BITRATE_RF_16;
1221 break;
1222 case 0:
1223 // A value of 0 is assumed to be 64 for backwards-compatibility
1224 // Fall through...
1225 case 64:
1226 clock = T55x7_BITRATE_RF_64;
1227 break;
1228 default:
1229 Dbprintf("Invalid clock rate: %d", clock);
1230 return;
1231 }
1232
1233 // Writing configuration for T55x7 tag
1234 T55xxWriteBlock(clock |
1235 T55x7_MODULATION_MANCHESTER |
1236 2 << T55x7_MAXBLOCK_SHIFT,
1237 0, 0, 0);
1238 }
1239 else
1240 // Writing configuration for T5555(Q5) tag
1241 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1242 T5555_MODULATION_MANCHESTER |
1243 2 << T5555_MAXBLOCK_SHIFT,
1244 0, 0, 0);
1245
1246 LED_D_OFF();
1247 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1248 (uint32_t)(id >> 32), (uint32_t)id);
1249 }
1250
1251 // Clone Indala 64-bit tag by UID to T55x7
1252 void CopyIndala64toT55x7(int hi, int lo)
1253 {
1254
1255 //Program the 2 data blocks for supplied 64bit UID
1256 // and the block 0 for Indala64 format
1257 T55xxWriteBlock(hi,1,0,0);
1258 T55xxWriteBlock(lo,2,0,0);
1259 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1260 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1261 T55x7_MODULATION_PSK1 |
1262 2 << T55x7_MAXBLOCK_SHIFT,
1263 0, 0, 0);
1264 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1265 // T5567WriteBlock(0x603E1042,0);
1266
1267 DbpString("DONE!");
1268
1269 }
1270
1271 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1272 {
1273
1274 //Program the 7 data blocks for supplied 224bit UID
1275 // and the block 0 for Indala224 format
1276 T55xxWriteBlock(uid1,1,0,0);
1277 T55xxWriteBlock(uid2,2,0,0);
1278 T55xxWriteBlock(uid3,3,0,0);
1279 T55xxWriteBlock(uid4,4,0,0);
1280 T55xxWriteBlock(uid5,5,0,0);
1281 T55xxWriteBlock(uid6,6,0,0);
1282 T55xxWriteBlock(uid7,7,0,0);
1283 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1284 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1285 T55x7_MODULATION_PSK1 |
1286 7 << T55x7_MAXBLOCK_SHIFT,
1287 0,0,0);
1288 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1289 // T5567WriteBlock(0x603E10E2,0);
1290
1291 DbpString("DONE!");
1292
1293 }
1294
1295
1296 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1297 #define max(x,y) ( x<y ? y:x)
1298
1299 int DemodPCF7931(uint8_t **outBlocks) {
1300 uint8_t BitStream[256];
1301 uint8_t Blocks[8][16];
1302 uint8_t *GraphBuffer = BigBuf_get_addr();
1303 int GraphTraceLen = BigBuf_max_traceLen();
1304 int i, j, lastval, bitidx, half_switch;
1305 int clock = 64;
1306 int tolerance = clock / 8;
1307 int pmc, block_done;
1308 int lc, warnings = 0;
1309 int num_blocks = 0;
1310 int lmin=128, lmax=128;
1311 uint8_t dir;
1312
1313 LFSetupFPGAForADC(95, true);
1314 DoAcquisition_default(0, 0);
1315
1316
1317 lmin = 64;
1318 lmax = 192;
1319
1320 i = 2;
1321
1322 /* Find first local max/min */
1323 if(GraphBuffer[1] > GraphBuffer[0]) {
1324 while(i < GraphTraceLen) {
1325 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1326 break;
1327 i++;
1328 }
1329 dir = 0;
1330 }
1331 else {
1332 while(i < GraphTraceLen) {
1333 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1334 break;
1335 i++;
1336 }
1337 dir = 1;
1338 }
1339
1340 lastval = i++;
1341 half_switch = 0;
1342 pmc = 0;
1343 block_done = 0;
1344
1345 for (bitidx = 0; i < GraphTraceLen; i++)
1346 {
1347 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1348 {
1349 lc = i - lastval;
1350 lastval = i;
1351
1352 // Switch depending on lc length:
1353 // Tolerance is 1/8 of clock rate (arbitrary)
1354 if (abs(lc-clock/4) < tolerance) {
1355 // 16T0
1356 if((i - pmc) == lc) { /* 16T0 was previous one */
1357 /* It's a PMC ! */
1358 i += (128+127+16+32+33+16)-1;
1359 lastval = i;
1360 pmc = 0;
1361 block_done = 1;
1362 }
1363 else {
1364 pmc = i;
1365 }
1366 } else if (abs(lc-clock/2) < tolerance) {
1367 // 32TO
1368 if((i - pmc) == lc) { /* 16T0 was previous one */
1369 /* It's a PMC ! */
1370 i += (128+127+16+32+33)-1;
1371 lastval = i;
1372 pmc = 0;
1373 block_done = 1;
1374 }
1375 else if(half_switch == 1) {
1376 BitStream[bitidx++] = 0;
1377 half_switch = 0;
1378 }
1379 else
1380 half_switch++;
1381 } else if (abs(lc-clock) < tolerance) {
1382 // 64TO
1383 BitStream[bitidx++] = 1;
1384 } else {
1385 // Error
1386 warnings++;
1387 if (warnings > 10)
1388 {
1389 Dbprintf("Error: too many detection errors, aborting.");
1390 return 0;
1391 }
1392 }
1393
1394 if(block_done == 1) {
1395 if(bitidx == 128) {
1396 for(j=0; j<16; j++) {
1397 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1398 64*BitStream[j*8+6]+
1399 32*BitStream[j*8+5]+
1400 16*BitStream[j*8+4]+
1401 8*BitStream[j*8+3]+
1402 4*BitStream[j*8+2]+
1403 2*BitStream[j*8+1]+
1404 BitStream[j*8];
1405 }
1406 num_blocks++;
1407 }
1408 bitidx = 0;
1409 block_done = 0;
1410 half_switch = 0;
1411 }
1412 if(i < GraphTraceLen)
1413 {
1414 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1415 else dir = 1;
1416 }
1417 }
1418 if(bitidx==255)
1419 bitidx=0;
1420 warnings = 0;
1421 if(num_blocks == 4) break;
1422 }
1423 memcpy(outBlocks, Blocks, 16*num_blocks);
1424 return num_blocks;
1425 }
1426
1427 int IsBlock0PCF7931(uint8_t *Block) {
1428 // Assume RFU means 0 :)
1429 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1430 return 1;
1431 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1432 return 1;
1433 return 0;
1434 }
1435
1436 int IsBlock1PCF7931(uint8_t *Block) {
1437 // Assume RFU means 0 :)
1438 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1439 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1440 return 1;
1441
1442 return 0;
1443 }
1444
1445 #define ALLOC 16
1446
1447 void ReadPCF7931() {
1448 uint8_t Blocks[8][17];
1449 uint8_t tmpBlocks[4][16];
1450 int i, j, ind, ind2, n;
1451 int num_blocks = 0;
1452 int max_blocks = 8;
1453 int ident = 0;
1454 int error = 0;
1455 int tries = 0;
1456
1457 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1458
1459 do {
1460 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1461 n = DemodPCF7931((uint8_t**)tmpBlocks);
1462 if(!n)
1463 error++;
1464 if(error==10 && num_blocks == 0) {
1465 Dbprintf("Error, no tag or bad tag");
1466 return;
1467 }
1468 else if (tries==20 || error==10) {
1469 Dbprintf("Error reading the tag");
1470 Dbprintf("Here is the partial content");
1471 goto end;
1472 }
1473
1474 for(i=0; i<n; i++)
1475 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1476 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1477 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1478 if(!ident) {
1479 for(i=0; i<n; i++) {
1480 if(IsBlock0PCF7931(tmpBlocks[i])) {
1481 // Found block 0 ?
1482 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1483 // Found block 1!
1484 // \o/
1485 ident = 1;
1486 memcpy(Blocks[0], tmpBlocks[i], 16);
1487 Blocks[0][ALLOC] = 1;
1488 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1489 Blocks[1][ALLOC] = 1;
1490 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1491 // Debug print
1492 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1493 num_blocks = 2;
1494 // Handle following blocks
1495 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1496 if(j==n) j=0;
1497 if(j==i) break;
1498 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1499 Blocks[ind2][ALLOC] = 1;
1500 }
1501 break;
1502 }
1503 }
1504 }
1505 }
1506 else {
1507 for(i=0; i<n; i++) { // Look for identical block in known blocks
1508 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1509 for(j=0; j<max_blocks; j++) {
1510 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1511 // Found an identical block
1512 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1513 if(ind2 < 0)
1514 ind2 = max_blocks;
1515 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1516 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1517 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1518 Blocks[ind2][ALLOC] = 1;
1519 num_blocks++;
1520 if(num_blocks == max_blocks) goto end;
1521 }
1522 }
1523 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1524 if(ind2 > max_blocks)
1525 ind2 = 0;
1526 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1527 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1528 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1529 Blocks[ind2][ALLOC] = 1;
1530 num_blocks++;
1531 if(num_blocks == max_blocks) goto end;
1532 }
1533 }
1534 }
1535 }
1536 }
1537 }
1538 }
1539 tries++;
1540 if (BUTTON_PRESS()) return;
1541 } while (num_blocks != max_blocks);
1542 end:
1543 Dbprintf("-----------------------------------------");
1544 Dbprintf("Memory content:");
1545 Dbprintf("-----------------------------------------");
1546 for(i=0; i<max_blocks; i++) {
1547 if(Blocks[i][ALLOC]==1)
1548 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1549 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1550 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1551 else
1552 Dbprintf("<missing block %d>", i);
1553 }
1554 Dbprintf("-----------------------------------------");
1555
1556 return ;
1557 }
1558
1559
1560 //-----------------------------------
1561 // EM4469 / EM4305 routines
1562 //-----------------------------------
1563 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1564 #define FWD_CMD_WRITE 0xA
1565 #define FWD_CMD_READ 0x9
1566 #define FWD_CMD_DISABLE 0x5
1567
1568
1569 uint8_t forwardLink_data[64]; //array of forwarded bits
1570 uint8_t * forward_ptr; //ptr for forward message preparation
1571 uint8_t fwd_bit_sz; //forwardlink bit counter
1572 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1573
1574 //====================================================================
1575 // prepares command bits
1576 // see EM4469 spec
1577 //====================================================================
1578 //--------------------------------------------------------------------
1579 uint8_t Prepare_Cmd( uint8_t cmd ) {
1580 //--------------------------------------------------------------------
1581
1582 *forward_ptr++ = 0; //start bit
1583 *forward_ptr++ = 0; //second pause for 4050 code
1584
1585 *forward_ptr++ = cmd;
1586 cmd >>= 1;
1587 *forward_ptr++ = cmd;
1588 cmd >>= 1;
1589 *forward_ptr++ = cmd;
1590 cmd >>= 1;
1591 *forward_ptr++ = cmd;
1592
1593 return 6; //return number of emited bits
1594 }
1595
1596 //====================================================================
1597 // prepares address bits
1598 // see EM4469 spec
1599 //====================================================================
1600
1601 //--------------------------------------------------------------------
1602 uint8_t Prepare_Addr( uint8_t addr ) {
1603 //--------------------------------------------------------------------
1604
1605 register uint8_t line_parity;
1606
1607 uint8_t i;
1608 line_parity = 0;
1609 for(i=0;i<6;i++) {
1610 *forward_ptr++ = addr;
1611 line_parity ^= addr;
1612 addr >>= 1;
1613 }
1614
1615 *forward_ptr++ = (line_parity & 1);
1616
1617 return 7; //return number of emited bits
1618 }
1619
1620 //====================================================================
1621 // prepares data bits intreleaved with parity bits
1622 // see EM4469 spec
1623 //====================================================================
1624
1625 //--------------------------------------------------------------------
1626 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1627 //--------------------------------------------------------------------
1628
1629 register uint8_t line_parity;
1630 register uint8_t column_parity;
1631 register uint8_t i, j;
1632 register uint16_t data;
1633
1634 data = data_low;
1635 column_parity = 0;
1636
1637 for(i=0; i<4; i++) {
1638 line_parity = 0;
1639 for(j=0; j<8; j++) {
1640 line_parity ^= data;
1641 column_parity ^= (data & 1) << j;
1642 *forward_ptr++ = data;
1643 data >>= 1;
1644 }
1645 *forward_ptr++ = line_parity;
1646 if(i == 1)
1647 data = data_hi;
1648 }
1649
1650 for(j=0; j<8; j++) {
1651 *forward_ptr++ = column_parity;
1652 column_parity >>= 1;
1653 }
1654 *forward_ptr = 0;
1655
1656 return 45; //return number of emited bits
1657 }
1658
1659 //====================================================================
1660 // Forward Link send function
1661 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1662 // fwd_bit_count set with number of bits to be sent
1663 //====================================================================
1664 void SendForward(uint8_t fwd_bit_count) {
1665
1666 fwd_write_ptr = forwardLink_data;
1667 fwd_bit_sz = fwd_bit_count;
1668
1669 LED_D_ON();
1670
1671 //Field on
1672 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1673 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1674 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1675
1676 // Give it a bit of time for the resonant antenna to settle.
1677 // And for the tag to fully power up
1678 SpinDelay(150);
1679
1680 // force 1st mod pulse (start gap must be longer for 4305)
1681 fwd_bit_sz--; //prepare next bit modulation
1682 fwd_write_ptr++;
1683 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1684 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1685 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1686 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1687 SpinDelayUs(16*8); //16 cycles on (8us each)
1688
1689 // now start writting
1690 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1691 if(((*fwd_write_ptr++) & 1) == 1)
1692 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1693 else {
1694 //These timings work for 4469/4269/4305 (with the 55*8 above)
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1696 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1697 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1698 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1699 SpinDelayUs(9*8); //16 cycles on (8us each)
1700 }
1701 }
1702 }
1703
1704 void EM4xLogin(uint32_t Password) {
1705
1706 uint8_t fwd_bit_count;
1707
1708 forward_ptr = forwardLink_data;
1709 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1710 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1711
1712 SendForward(fwd_bit_count);
1713
1714 //Wait for command to complete
1715 SpinDelay(20);
1716
1717 }
1718
1719 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1720
1721 uint8_t fwd_bit_count;
1722 uint8_t *dest = BigBuf_get_addr();
1723 int m=0, i=0;
1724
1725 //If password mode do login
1726 if (PwdMode == 1) EM4xLogin(Pwd);
1727
1728 forward_ptr = forwardLink_data;
1729 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1730 fwd_bit_count += Prepare_Addr( Address );
1731
1732 m = BigBuf_max_traceLen();
1733 // Clear destination buffer before sending the command
1734 memset(dest, 128, m);
1735 // Connect the A/D to the peak-detected low-frequency path.
1736 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1737 // Now set up the SSC to get the ADC samples that are now streaming at us.
1738 FpgaSetupSsc();
1739
1740 SendForward(fwd_bit_count);
1741
1742 // Now do the acquisition
1743 i = 0;
1744 for(;;) {
1745 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1746 AT91C_BASE_SSC->SSC_THR = 0x43;
1747 }
1748 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1749 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1750 i++;
1751 if (i >= m) break;
1752 }
1753 }
1754 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1755 LED_D_OFF();
1756 }
1757
1758 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1759
1760 uint8_t fwd_bit_count;
1761
1762 //If password mode do login
1763 if (PwdMode == 1) EM4xLogin(Pwd);
1764
1765 forward_ptr = forwardLink_data;
1766 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1767 fwd_bit_count += Prepare_Addr( Address );
1768 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1769
1770 SendForward(fwd_bit_count);
1771
1772 //Wait for write to complete
1773 SpinDelay(20);
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1775 LED_D_OFF();
1776 }
Impressum, Datenschutz