1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
22 * Function to do a modulation and then get samples.
28 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
31 int divisor_used
= 95; // 125 KHz
32 // see if 'h' was specified
34 if (command
[strlen((char *) command
) - 1] == 'h')
35 divisor_used
= 88; // 134.8 KHz
37 sample_config sc
= { 0,0,1, divisor_used
, 0};
38 setSamplingConfig(&sc
);
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
45 LFSetupFPGAForADC(sc
.divisor
, 1);
47 // And a little more time for the tag to fully power up
50 // now modulate the reader field
51 while(*command
!= '\0' && *command
!= ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
54 SpinDelayUs(delay_off
);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
59 if(*(command
++) == '0')
60 SpinDelayUs(period_0
);
62 SpinDelayUs(period_1
);
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
66 SpinDelayUs(delay_off
);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
72 DoAcquisition_config(false);
77 /* blank r/w tag data stream
78 ...0000000000000000 01111111
79 1010101010101010101010101010101010101010101010101010101010101010
82 101010101010101[0]000...
84 [5555fe852c5555555555555555fe0000]
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
92 #define FSAMPLE 2000000
96 signed char *dest
= (signed char *)BigBuf_get_addr();
97 uint16_t n
= BigBuf_max_traceLen();
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
101 int i
, cycles
=0, samples
=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
117 // get TI tag data into the buffer
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
122 for (i
=0; i
<n
-1; i
++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
126 // after 16 cycles, measure the frequency
129 samples
=i
-samples
; // number of samples in these 16 cycles
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0
= (shift0
>>1) | (shift1
<< 31);
134 shift1
= (shift1
>>1) | (shift2
<< 31);
135 shift2
= (shift2
>>1) | (shift3
<< 31);
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
141 // low frequency represents a 1
143 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
144 // high frequency represents a 0
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3
= shift2
= shift1
= shift0
= 0;
152 // for each bit we receive, test if we've detected a valid tag
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
159 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
167 // if flag is set we have a tag
169 DbpString("Info: No valid tag detected.");
171 // put 64 bit data into shift1 and shift0
172 shift0
= (shift0
>>24) | (shift1
<< 8);
173 shift1
= (shift1
>>24) | (shift2
<< 8);
175 // align 16 bit crc into lower half of shift2
176 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
178 // if r/w tag, check ident match
179 if (shift3
& (1<<15) ) {
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
182 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
183 DbpString("Error: Ident mismatch!");
185 DbpString("Info: TI tag ident is valid");
188 DbpString("Info: TI tag is readonly");
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
197 crc
= update_crc16(crc
, (shift0
)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
201 crc
= update_crc16(crc
, (shift1
)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
208 if (crc
!= (shift2
&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
211 DbpString("Info: CRC is good");
216 void WriteTIbyte(uint8_t b
)
220 // modulate 8 bits out to the antenna
224 // stop modulating antenna
231 // stop modulating antenna
241 void AcquireTiType(void)
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
246 #define TIBUFLEN 1250
249 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
250 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
254 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
258 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
260 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC
->SSC_CMR
= 12;
267 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
269 AT91C_BASE_SSC
->SSC_TCMR
= 0;
270 AT91C_BASE_SSC
->SSC_TFMR
= 0;
277 // Charge TI tag for 50ms.
280 // stop modulating antenna and listen
287 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
288 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
289 i
++; if(i
>= TIBUFLEN
) break;
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
296 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
298 char *dest
= (char *)BigBuf_get_addr();
301 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
302 for (j
=0; j
<32; j
++) {
303 if(BigBuf
[i
] & (1 << j
)) {
312 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
313 // if crc provided, it will be written with the data verbatim (even if bogus)
314 // if not provided a valid crc will be computed from the data and written.
315 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
317 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
319 crc
= update_crc16(crc
, (idlo
)&0xff);
320 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
323 crc
= update_crc16(crc
, (idhi
)&0xff);
324 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
328 Dbprintf("Writing to tag: %x%08x, crc=%x",
329 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
342 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb firts
352 // finish with 15ms programming time
356 SpinDelay(50); // charge time
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo
)&0xff );
361 WriteTIbyte( (idlo
>>8 )&0xff );
362 WriteTIbyte( (idlo
>>16)&0xff );
363 WriteTIbyte( (idlo
>>24)&0xff );
364 WriteTIbyte( (idhi
)&0xff );
365 WriteTIbyte( (idhi
>>8 )&0xff );
366 WriteTIbyte( (idhi
>>16)&0xff );
367 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc
)&0xff ); // crc lo
369 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
373 SpinDelay(50); // programming time
377 // get TI tag data into the buffer
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
381 DbpString("Now use tiread to check");
384 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
387 uint8_t *tab
= BigBuf_get_addr();
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
392 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
394 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
395 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
402 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
404 DbpString("Stopped");
421 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
423 DbpString("Stopped");
440 #define DEBUG_FRAME_CONTENTS 1
441 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
445 // compose fc/8 fc/10 waveform
446 static void fc(int c
, int *n
) {
447 uint8_t *dest
= BigBuf_get_addr();
450 // for when we want an fc8 pattern every 4 logical bits
461 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
463 for (idx
=0; idx
<6; idx
++) {
475 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
477 for (idx
=0; idx
<5; idx
++) {
492 // prepare a waveform pattern in the buffer based on the ID given then
493 // simulate a HID tag until the button is pressed
494 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
498 HID tag bitstream format
499 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
500 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
501 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
502 A fc8 is inserted before every 4 bits
503 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
504 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
508 DbpString("Tags can only have 44 bits.");
512 // special start of frame marker containing invalid bit sequences
513 fc(8, &n
); fc(8, &n
); // invalid
514 fc(8, &n
); fc(10, &n
); // logical 0
515 fc(10, &n
); fc(10, &n
); // invalid
516 fc(8, &n
); fc(10, &n
); // logical 0
519 // manchester encode bits 43 to 32
520 for (i
=11; i
>=0; i
--) {
521 if ((i
%4)==3) fc(0,&n
);
523 fc(10, &n
); fc(8, &n
); // low-high transition
525 fc(8, &n
); fc(10, &n
); // high-low transition
530 // manchester encode bits 31 to 0
531 for (i
=31; i
>=0; i
--) {
532 if ((i
%4)==3) fc(0,&n
);
534 fc(10, &n
); fc(8, &n
); // low-high transition
536 fc(8, &n
); fc(10, &n
); // high-low transition
542 SimulateTagLowFrequency(n
, 0, ledcontrol
);
548 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
549 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
551 uint8_t *dest
= BigBuf_get_addr();
552 const size_t sizeOfBigBuff
= BigBuf_max_traceLen();
554 uint32_t hi2
=0, hi
=0, lo
=0;
556 // Configure to go in 125Khz listen mode
557 LFSetupFPGAForADC(95, true);
559 while(!BUTTON_PRESS()) {
562 if (ledcontrol
) LED_A_ON();
564 DoAcquisition_default(-1,true);
566 size
= sizeOfBigBuff
; //variable size will change after demod so re initialize it before use
567 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
570 // final loop, go over previously decoded manchester data and decode into usable tag ID
571 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
572 if (hi2
!= 0){ //extra large HID tags
573 Dbprintf("TAG ID: %x%08x%08x (%d)",
574 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
575 }else { //standard HID tags <38 bits
576 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
579 uint32_t cardnum
= 0;
580 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
582 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
584 while(lo2
> 1){ //find last bit set to 1 (format len bit)
592 cardnum
= (lo
>>1)&0xFFFF;
596 cardnum
= (lo
>>1)&0x7FFFF;
597 fc
= ((hi
&0xF)<<12)|(lo
>>20);
600 cardnum
= (lo
>>1)&0xFFFF;
601 fc
= ((hi
&1)<<15)|(lo
>>17);
604 cardnum
= (lo
>>1)&0xFFFFF;
605 fc
= ((hi
&1)<<11)|(lo
>>21);
608 else { //if bit 38 is not set then 37 bit format is used
613 cardnum
= (lo
>>1)&0x7FFFF;
614 fc
= ((hi
&0xF)<<12)|(lo
>>20);
617 //Dbprintf("TAG ID: %x%08x (%d)",
618 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
619 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
620 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
621 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
624 if (ledcontrol
) LED_A_OFF();
634 DbpString("Stopped");
635 if (ledcontrol
) LED_A_OFF();
638 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
640 uint8_t *dest
= BigBuf_get_addr();
642 size_t size
=0, idx
=0;
643 int clk
=0, invert
=0, errCnt
=0;
645 // Configure to go in 125Khz listen mode
646 LFSetupFPGAForADC(95, true);
648 while(!BUTTON_PRESS()) {
651 if (ledcontrol
) LED_A_ON();
653 DoAcquisition_default(-1,true);
654 size
= BigBuf_max_traceLen();
655 //Dbprintf("DEBUG: Buffer got");
656 //askdemod and manchester decode
657 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
);
658 //Dbprintf("DEBUG: ASK Got");
662 lo
= Em410xDecode(dest
, &size
, &idx
);
663 //Dbprintf("DEBUG: EM GOT");
665 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
668 (uint32_t)(lo
&0xFFFF),
669 (uint32_t)((lo
>>16LL) & 0xFF),
670 (uint32_t)(lo
& 0xFFFFFF));
673 if (ledcontrol
) LED_A_OFF();
675 *low
=lo
& 0xFFFFFFFF;
679 //Dbprintf("DEBUG: No Tag");
688 DbpString("Stopped");
689 if (ledcontrol
) LED_A_OFF();
692 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
694 uint8_t *dest
= BigBuf_get_addr();
696 uint32_t code
=0, code2
=0;
698 uint8_t facilitycode
=0;
700 // Configure to go in 125Khz listen mode
701 LFSetupFPGAForADC(95, true);
703 while(!BUTTON_PRESS()) {
705 if (ledcontrol
) LED_A_ON();
706 DoAcquisition_default(-1,true);
707 //fskdemod and get start index
709 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
714 //0 10 20 30 40 50 60
716 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
717 //-----------------------------------------------------------------------------
718 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
720 //XSF(version)facility:codeone+codetwo
722 if(findone
){ //only print binary if we are doing one
723 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
724 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
725 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
726 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
727 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
728 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
729 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
731 code
= bytebits_to_byte(dest
+idx
,32);
732 code2
= bytebits_to_byte(dest
+idx
+32,32);
733 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
734 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
735 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
737 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
738 // if we're only looking for one tag
740 if (ledcontrol
) LED_A_OFF();
747 version
=facilitycode
=0;
753 DbpString("Stopped");
754 if (ledcontrol
) LED_A_OFF();
757 /*------------------------------
758 * T5555/T5557/T5567 routines
759 *------------------------------
762 /* T55x7 configuration register definitions */
763 #define T55x7_POR_DELAY 0x00000001
764 #define T55x7_ST_TERMINATOR 0x00000008
765 #define T55x7_PWD 0x00000010
766 #define T55x7_MAXBLOCK_SHIFT 5
767 #define T55x7_AOR 0x00000200
768 #define T55x7_PSKCF_RF_2 0
769 #define T55x7_PSKCF_RF_4 0x00000400
770 #define T55x7_PSKCF_RF_8 0x00000800
771 #define T55x7_MODULATION_DIRECT 0
772 #define T55x7_MODULATION_PSK1 0x00001000
773 #define T55x7_MODULATION_PSK2 0x00002000
774 #define T55x7_MODULATION_PSK3 0x00003000
775 #define T55x7_MODULATION_FSK1 0x00004000
776 #define T55x7_MODULATION_FSK2 0x00005000
777 #define T55x7_MODULATION_FSK1a 0x00006000
778 #define T55x7_MODULATION_FSK2a 0x00007000
779 #define T55x7_MODULATION_MANCHESTER 0x00008000
780 #define T55x7_MODULATION_BIPHASE 0x00010000
781 #define T55x7_BITRATE_RF_8 0
782 #define T55x7_BITRATE_RF_16 0x00040000
783 #define T55x7_BITRATE_RF_32 0x00080000
784 #define T55x7_BITRATE_RF_40 0x000C0000
785 #define T55x7_BITRATE_RF_50 0x00100000
786 #define T55x7_BITRATE_RF_64 0x00140000
787 #define T55x7_BITRATE_RF_100 0x00180000
788 #define T55x7_BITRATE_RF_128 0x001C0000
790 /* T5555 (Q5) configuration register definitions */
791 #define T5555_ST_TERMINATOR 0x00000001
792 #define T5555_MAXBLOCK_SHIFT 0x00000001
793 #define T5555_MODULATION_MANCHESTER 0
794 #define T5555_MODULATION_PSK1 0x00000010
795 #define T5555_MODULATION_PSK2 0x00000020
796 #define T5555_MODULATION_PSK3 0x00000030
797 #define T5555_MODULATION_FSK1 0x00000040
798 #define T5555_MODULATION_FSK2 0x00000050
799 #define T5555_MODULATION_BIPHASE 0x00000060
800 #define T5555_MODULATION_DIRECT 0x00000070
801 #define T5555_INVERT_OUTPUT 0x00000080
802 #define T5555_PSK_RF_2 0
803 #define T5555_PSK_RF_4 0x00000100
804 #define T5555_PSK_RF_8 0x00000200
805 #define T5555_USE_PWD 0x00000400
806 #define T5555_USE_AOR 0x00000800
807 #define T5555_BITRATE_SHIFT 12
808 #define T5555_FAST_WRITE 0x00004000
809 #define T5555_PAGE_SELECT 0x00008000
812 * Relevant times in microsecond
813 * To compensate antenna falling times shorten the write times
814 * and enlarge the gap ones.
816 #define START_GAP 250
817 #define WRITE_GAP 160
818 #define WRITE_0 144 // 192
819 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
821 // Write one bit to card
822 void T55xxWriteBit(int bit
)
824 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
825 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
826 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
828 SpinDelayUs(WRITE_0
);
830 SpinDelayUs(WRITE_1
);
831 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
832 SpinDelayUs(WRITE_GAP
);
835 // Write one card block in page 0, no lock
836 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
838 //unsigned int i; //enio adjustment 12/10/14
841 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
842 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
843 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
845 // Give it a bit of time for the resonant antenna to settle.
846 // And for the tag to fully power up
849 // Now start writting
850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
851 SpinDelayUs(START_GAP
);
855 T55xxWriteBit(0); //Page 0
858 for (i
= 0x80000000; i
!= 0; i
>>= 1)
859 T55xxWriteBit(Pwd
& i
);
865 for (i
= 0x80000000; i
!= 0; i
>>= 1)
866 T55xxWriteBit(Data
& i
);
869 for (i
= 0x04; i
!= 0; i
>>= 1)
870 T55xxWriteBit(Block
& i
);
872 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
873 // so wait a little more)
874 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
875 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
877 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
880 // Read one card block in page 0
881 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
883 uint8_t *dest
= BigBuf_get_addr();
884 //int m=0, i=0; //enio adjustment 12/10/14
886 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
887 m
= BigBuf_max_traceLen();
888 // Clear destination buffer before sending the command
889 memset(dest
, 128, m
);
890 // Connect the A/D to the peak-detected low-frequency path.
891 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
892 // Now set up the SSC to get the ADC samples that are now streaming at us.
896 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
897 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
899 // Give it a bit of time for the resonant antenna to settle.
900 // And for the tag to fully power up
903 // Now start writting
904 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
905 SpinDelayUs(START_GAP
);
909 T55xxWriteBit(0); //Page 0
912 for (i
= 0x80000000; i
!= 0; i
>>= 1)
913 T55xxWriteBit(Pwd
& i
);
918 for (i
= 0x04; i
!= 0; i
>>= 1)
919 T55xxWriteBit(Block
& i
);
921 // Turn field on to read the response
922 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
923 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
925 // Now do the acquisition
928 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
929 AT91C_BASE_SSC
->SSC_THR
= 0x43;
931 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
932 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
933 // we don't care about actual value, only if it's more or less than a
934 // threshold essentially we capture zero crossings for later analysis
935 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
941 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
946 // Read card traceability data (page 1)
947 void T55xxReadTrace(void){
948 uint8_t *dest
= BigBuf_get_addr();
951 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
952 m
= BigBuf_max_traceLen();
953 // Clear destination buffer before sending the command
954 memset(dest
, 128, m
);
955 // Connect the A/D to the peak-detected low-frequency path.
956 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
957 // Now set up the SSC to get the ADC samples that are now streaming at us.
961 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
962 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
964 // Give it a bit of time for the resonant antenna to settle.
965 // And for the tag to fully power up
968 // Now start writting
969 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
970 SpinDelayUs(START_GAP
);
974 T55xxWriteBit(1); //Page 1
976 // Turn field on to read the response
977 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
978 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
980 // Now do the acquisition
983 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
984 AT91C_BASE_SSC
->SSC_THR
= 0x43;
986 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
987 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
993 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
998 /*-------------- Cloning routines -----------*/
999 // Copy HID id to card and setup block 0 config
1000 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1002 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1006 // Ensure no more than 84 bits supplied
1008 DbpString("Tags can only have 84 bits.");
1011 // Build the 6 data blocks for supplied 84bit ID
1013 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1014 for (int i
=0;i
<4;i
++) {
1015 if (hi2
& (1<<(19-i
)))
1016 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1018 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1022 for (int i
=0;i
<16;i
++) {
1023 if (hi2
& (1<<(15-i
)))
1024 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1026 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1030 for (int i
=0;i
<16;i
++) {
1031 if (hi
& (1<<(31-i
)))
1032 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1034 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1038 for (int i
=0;i
<16;i
++) {
1039 if (hi
& (1<<(15-i
)))
1040 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1042 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1046 for (int i
=0;i
<16;i
++) {
1047 if (lo
& (1<<(31-i
)))
1048 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1050 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1054 for (int i
=0;i
<16;i
++) {
1055 if (lo
& (1<<(15-i
)))
1056 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1058 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1062 // Ensure no more than 44 bits supplied
1064 DbpString("Tags can only have 44 bits.");
1068 // Build the 3 data blocks for supplied 44bit ID
1071 data1
= 0x1D000000; // load preamble
1073 for (int i
=0;i
<12;i
++) {
1074 if (hi
& (1<<(11-i
)))
1075 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1077 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1081 for (int i
=0;i
<16;i
++) {
1082 if (lo
& (1<<(31-i
)))
1083 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1085 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1089 for (int i
=0;i
<16;i
++) {
1090 if (lo
& (1<<(15-i
)))
1091 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1093 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1098 // Program the data blocks for supplied ID
1099 // and the block 0 for HID format
1100 T55xxWriteBlock(data1
,1,0,0);
1101 T55xxWriteBlock(data2
,2,0,0);
1102 T55xxWriteBlock(data3
,3,0,0);
1104 if (longFMT
) { // if long format there are 6 blocks
1105 T55xxWriteBlock(data4
,4,0,0);
1106 T55xxWriteBlock(data5
,5,0,0);
1107 T55xxWriteBlock(data6
,6,0,0);
1110 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1111 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1112 T55x7_MODULATION_FSK2a
|
1113 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1121 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1123 int data1
=0, data2
=0; //up to six blocks for long format
1125 data1
= hi
; // load preamble
1129 // Program the data blocks for supplied ID
1130 // and the block 0 for HID format
1131 T55xxWriteBlock(data1
,1,0,0);
1132 T55xxWriteBlock(data2
,2,0,0);
1135 T55xxWriteBlock(0x00147040,0,0,0);
1141 // Define 9bit header for EM410x tags
1142 #define EM410X_HEADER 0x1FF
1143 #define EM410X_ID_LENGTH 40
1145 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1148 uint64_t id
= EM410X_HEADER
;
1149 uint64_t rev_id
= 0; // reversed ID
1150 int c_parity
[4]; // column parity
1151 int r_parity
= 0; // row parity
1154 // Reverse ID bits given as parameter (for simpler operations)
1155 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1157 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1160 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1165 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1166 id_bit
= rev_id
& 1;
1169 // Don't write row parity bit at start of parsing
1171 id
= (id
<< 1) | r_parity
;
1172 // Start counting parity for new row
1179 // First elements in column?
1181 // Fill out first elements
1182 c_parity
[i
] = id_bit
;
1184 // Count column parity
1185 c_parity
[i
% 4] ^= id_bit
;
1188 id
= (id
<< 1) | id_bit
;
1192 // Insert parity bit of last row
1193 id
= (id
<< 1) | r_parity
;
1195 // Fill out column parity at the end of tag
1196 for (i
= 0; i
< 4; ++i
)
1197 id
= (id
<< 1) | c_parity
[i
];
1202 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1206 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1207 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1209 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1211 // Clock rate is stored in bits 8-15 of the card value
1212 clock
= (card
& 0xFF00) >> 8;
1213 Dbprintf("Clock rate: %d", clock
);
1217 clock
= T55x7_BITRATE_RF_32
;
1220 clock
= T55x7_BITRATE_RF_16
;
1223 // A value of 0 is assumed to be 64 for backwards-compatibility
1226 clock
= T55x7_BITRATE_RF_64
;
1229 Dbprintf("Invalid clock rate: %d", clock
);
1233 // Writing configuration for T55x7 tag
1234 T55xxWriteBlock(clock
|
1235 T55x7_MODULATION_MANCHESTER
|
1236 2 << T55x7_MAXBLOCK_SHIFT
,
1240 // Writing configuration for T5555(Q5) tag
1241 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1242 T5555_MODULATION_MANCHESTER
|
1243 2 << T5555_MAXBLOCK_SHIFT
,
1247 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1248 (uint32_t)(id
>> 32), (uint32_t)id
);
1251 // Clone Indala 64-bit tag by UID to T55x7
1252 void CopyIndala64toT55x7(int hi
, int lo
)
1255 //Program the 2 data blocks for supplied 64bit UID
1256 // and the block 0 for Indala64 format
1257 T55xxWriteBlock(hi
,1,0,0);
1258 T55xxWriteBlock(lo
,2,0,0);
1259 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1260 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1261 T55x7_MODULATION_PSK1
|
1262 2 << T55x7_MAXBLOCK_SHIFT
,
1264 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1265 // T5567WriteBlock(0x603E1042,0);
1271 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1274 //Program the 7 data blocks for supplied 224bit UID
1275 // and the block 0 for Indala224 format
1276 T55xxWriteBlock(uid1
,1,0,0);
1277 T55xxWriteBlock(uid2
,2,0,0);
1278 T55xxWriteBlock(uid3
,3,0,0);
1279 T55xxWriteBlock(uid4
,4,0,0);
1280 T55xxWriteBlock(uid5
,5,0,0);
1281 T55xxWriteBlock(uid6
,6,0,0);
1282 T55xxWriteBlock(uid7
,7,0,0);
1283 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1284 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1285 T55x7_MODULATION_PSK1
|
1286 7 << T55x7_MAXBLOCK_SHIFT
,
1288 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1289 // T5567WriteBlock(0x603E10E2,0);
1296 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1297 #define max(x,y) ( x<y ? y:x)
1299 int DemodPCF7931(uint8_t **outBlocks
) {
1300 uint8_t BitStream
[256];
1301 uint8_t Blocks
[8][16];
1302 uint8_t *GraphBuffer
= BigBuf_get_addr();
1303 int GraphTraceLen
= BigBuf_max_traceLen();
1304 int i
, j
, lastval
, bitidx
, half_switch
;
1306 int tolerance
= clock
/ 8;
1307 int pmc
, block_done
;
1308 int lc
, warnings
= 0;
1310 int lmin
=128, lmax
=128;
1313 LFSetupFPGAForADC(95, true);
1314 DoAcquisition_default(0, 0);
1322 /* Find first local max/min */
1323 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1324 while(i
< GraphTraceLen
) {
1325 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1332 while(i
< GraphTraceLen
) {
1333 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1345 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1347 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1352 // Switch depending on lc length:
1353 // Tolerance is 1/8 of clock rate (arbitrary)
1354 if (abs(lc
-clock
/4) < tolerance
) {
1356 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1358 i
+= (128+127+16+32+33+16)-1;
1366 } else if (abs(lc
-clock
/2) < tolerance
) {
1368 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1370 i
+= (128+127+16+32+33)-1;
1375 else if(half_switch
== 1) {
1376 BitStream
[bitidx
++] = 0;
1381 } else if (abs(lc
-clock
) < tolerance
) {
1383 BitStream
[bitidx
++] = 1;
1389 Dbprintf("Error: too many detection errors, aborting.");
1394 if(block_done
== 1) {
1396 for(j
=0; j
<16; j
++) {
1397 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1398 64*BitStream
[j
*8+6]+
1399 32*BitStream
[j
*8+5]+
1400 16*BitStream
[j
*8+4]+
1412 if(i
< GraphTraceLen
)
1414 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1421 if(num_blocks
== 4) break;
1423 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1427 int IsBlock0PCF7931(uint8_t *Block
) {
1428 // Assume RFU means 0 :)
1429 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1431 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1436 int IsBlock1PCF7931(uint8_t *Block
) {
1437 // Assume RFU means 0 :)
1438 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1439 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1447 void ReadPCF7931() {
1448 uint8_t Blocks
[8][17];
1449 uint8_t tmpBlocks
[4][16];
1450 int i
, j
, ind
, ind2
, n
;
1457 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1460 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1461 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1464 if(error
==10 && num_blocks
== 0) {
1465 Dbprintf("Error, no tag or bad tag");
1468 else if (tries
==20 || error
==10) {
1469 Dbprintf("Error reading the tag");
1470 Dbprintf("Here is the partial content");
1475 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1476 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1477 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1479 for(i
=0; i
<n
; i
++) {
1480 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1482 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1486 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1487 Blocks
[0][ALLOC
] = 1;
1488 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1489 Blocks
[1][ALLOC
] = 1;
1490 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1492 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1494 // Handle following blocks
1495 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1498 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1499 Blocks
[ind2
][ALLOC
] = 1;
1507 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1508 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1509 for(j
=0; j
<max_blocks
; j
++) {
1510 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1511 // Found an identical block
1512 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1515 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1516 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1517 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1518 Blocks
[ind2
][ALLOC
] = 1;
1520 if(num_blocks
== max_blocks
) goto end
;
1523 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1524 if(ind2
> max_blocks
)
1526 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1527 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1528 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1529 Blocks
[ind2
][ALLOC
] = 1;
1531 if(num_blocks
== max_blocks
) goto end
;
1540 if (BUTTON_PRESS()) return;
1541 } while (num_blocks
!= max_blocks
);
1543 Dbprintf("-----------------------------------------");
1544 Dbprintf("Memory content:");
1545 Dbprintf("-----------------------------------------");
1546 for(i
=0; i
<max_blocks
; i
++) {
1547 if(Blocks
[i
][ALLOC
]==1)
1548 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1549 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1550 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1552 Dbprintf("<missing block %d>", i
);
1554 Dbprintf("-----------------------------------------");
1560 //-----------------------------------
1561 // EM4469 / EM4305 routines
1562 //-----------------------------------
1563 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1564 #define FWD_CMD_WRITE 0xA
1565 #define FWD_CMD_READ 0x9
1566 #define FWD_CMD_DISABLE 0x5
1569 uint8_t forwardLink_data
[64]; //array of forwarded bits
1570 uint8_t * forward_ptr
; //ptr for forward message preparation
1571 uint8_t fwd_bit_sz
; //forwardlink bit counter
1572 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1574 //====================================================================
1575 // prepares command bits
1577 //====================================================================
1578 //--------------------------------------------------------------------
1579 uint8_t Prepare_Cmd( uint8_t cmd
) {
1580 //--------------------------------------------------------------------
1582 *forward_ptr
++ = 0; //start bit
1583 *forward_ptr
++ = 0; //second pause for 4050 code
1585 *forward_ptr
++ = cmd
;
1587 *forward_ptr
++ = cmd
;
1589 *forward_ptr
++ = cmd
;
1591 *forward_ptr
++ = cmd
;
1593 return 6; //return number of emited bits
1596 //====================================================================
1597 // prepares address bits
1599 //====================================================================
1601 //--------------------------------------------------------------------
1602 uint8_t Prepare_Addr( uint8_t addr
) {
1603 //--------------------------------------------------------------------
1605 register uint8_t line_parity
;
1610 *forward_ptr
++ = addr
;
1611 line_parity
^= addr
;
1615 *forward_ptr
++ = (line_parity
& 1);
1617 return 7; //return number of emited bits
1620 //====================================================================
1621 // prepares data bits intreleaved with parity bits
1623 //====================================================================
1625 //--------------------------------------------------------------------
1626 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1627 //--------------------------------------------------------------------
1629 register uint8_t line_parity
;
1630 register uint8_t column_parity
;
1631 register uint8_t i
, j
;
1632 register uint16_t data
;
1637 for(i
=0; i
<4; i
++) {
1639 for(j
=0; j
<8; j
++) {
1640 line_parity
^= data
;
1641 column_parity
^= (data
& 1) << j
;
1642 *forward_ptr
++ = data
;
1645 *forward_ptr
++ = line_parity
;
1650 for(j
=0; j
<8; j
++) {
1651 *forward_ptr
++ = column_parity
;
1652 column_parity
>>= 1;
1656 return 45; //return number of emited bits
1659 //====================================================================
1660 // Forward Link send function
1661 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1662 // fwd_bit_count set with number of bits to be sent
1663 //====================================================================
1664 void SendForward(uint8_t fwd_bit_count
) {
1666 fwd_write_ptr
= forwardLink_data
;
1667 fwd_bit_sz
= fwd_bit_count
;
1672 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1673 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1674 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1676 // Give it a bit of time for the resonant antenna to settle.
1677 // And for the tag to fully power up
1680 // force 1st mod pulse (start gap must be longer for 4305)
1681 fwd_bit_sz
--; //prepare next bit modulation
1683 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1684 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1685 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1686 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1687 SpinDelayUs(16*8); //16 cycles on (8us each)
1689 // now start writting
1690 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1691 if(((*fwd_write_ptr
++) & 1) == 1)
1692 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1694 //These timings work for 4469/4269/4305 (with the 55*8 above)
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1696 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1697 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1698 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1699 SpinDelayUs(9*8); //16 cycles on (8us each)
1704 void EM4xLogin(uint32_t Password
) {
1706 uint8_t fwd_bit_count
;
1708 forward_ptr
= forwardLink_data
;
1709 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1710 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1712 SendForward(fwd_bit_count
);
1714 //Wait for command to complete
1719 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1721 uint8_t fwd_bit_count
;
1722 uint8_t *dest
= BigBuf_get_addr();
1725 //If password mode do login
1726 if (PwdMode
== 1) EM4xLogin(Pwd
);
1728 forward_ptr
= forwardLink_data
;
1729 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1730 fwd_bit_count
+= Prepare_Addr( Address
);
1732 m
= BigBuf_max_traceLen();
1733 // Clear destination buffer before sending the command
1734 memset(dest
, 128, m
);
1735 // Connect the A/D to the peak-detected low-frequency path.
1736 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1737 // Now set up the SSC to get the ADC samples that are now streaming at us.
1740 SendForward(fwd_bit_count
);
1742 // Now do the acquisition
1745 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1746 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1748 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1749 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1754 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1758 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1760 uint8_t fwd_bit_count
;
1762 //If password mode do login
1763 if (PwdMode
== 1) EM4xLogin(Pwd
);
1765 forward_ptr
= forwardLink_data
;
1766 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1767 fwd_bit_count
+= Prepare_Addr( Address
);
1768 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1770 SendForward(fwd_bit_count
);
1772 //Wait for write to complete
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off