]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
ADD: @micolous random nonce, adjusted to fit in. Icemanfork only uses Moebius attac...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12 #include "usb_cdc.h"
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18 #include "legicrf.h"
19 #include "lfsampling.h"
20 #include "BigBuf.h"
21 #include "mifareutil.h"
22
23 #ifdef WITH_LCD
24 #include "LCD.h"
25 #endif
26
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
31 #endif
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax = 0;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void ToSendReset(void)
46 {
47 ToSendMax = -1;
48 ToSendBit = 8;
49 }
50
51 void ToSendStuffBit(int b) {
52 if(ToSendBit >= 8) {
53 ++ToSendMax;
54 ToSend[ToSendMax] = 0;
55 ToSendBit = 0;
56 }
57
58 if(b)
59 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
60
61 ++ToSendBit;
62
63 if(ToSendMax >= sizeof(ToSend)) {
64 ToSendBit = 0;
65 DbpString("ToSendStuffBit overflowed!");
66 }
67 }
68
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax, ToSend, 0);
72 }
73
74 void print_result(char *name, uint8_t *buf, size_t len) {
75 uint8_t *p = buf;
76
77 if ( len % 16 == 0 ) {
78 for(; p-buf < len; p += 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
80 name,
81 p-buf,
82 len,
83 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
84 );
85 }
86 else {
87 for(; p-buf < len; p += 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
89 name,
90 p-buf,
91 len,
92 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
93 }
94 }
95
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
99
100 void DbpStringEx(char *str, uint32_t cmd){
101 byte_t len = strlen(str);
102 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
103 }
104
105 void DbpString(char *str) {
106 DbpStringEx(str, 0);
107 }
108
109 #if 0
110 void DbpIntegers(int x1, int x2, int x3) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
112 }
113 #endif
114 void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string[128] = {0x00};
117 va_list ap;
118
119 va_start(ap, fmt);
120 kvsprintf(fmt, output_string, 10, ap);
121 va_end(ap);
122
123 DbpStringEx(output_string, cmd);
124 }
125
126 void Dbprintf(const char *fmt, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string[128] = {0x00};
129 va_list ap;
130
131 va_start(ap, fmt);
132 kvsprintf(fmt, output_string, 10, ap);
133 va_end(ap);
134
135 DbpString(output_string);
136 }
137
138 // prints HEX & ASCII
139 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
140 int l=0, i;
141 char ascii[9];
142
143 while (len>0) {
144
145 l = (len>8) ? 8 : len;
146
147 memcpy(ascii,d,l);
148 ascii[l]=0;
149
150 // filter safe ascii
151 for (i=0; i<l; ++i)
152 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
153
154 if (bAsci)
155 Dbprintf("%-8s %*D",ascii,l,d," ");
156 else
157 Dbprintf("%*D",l,d," ");
158
159 len -= 8;
160 d += 8;
161 }
162 }
163
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
167 // return that.
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch)
170 {
171 uint32_t d;
172
173 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
174 AT91C_BASE_ADC->ADC_MR =
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
178
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
182 //
183 // The maths are:
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
185 //
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
187 //
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
189
190 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
191
192 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
193
194 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
195
196 d = AT91C_BASE_ADC->ADC_CDR[ch];
197 return d;
198 }
199
200 int AvgAdc(int ch) // was static - merlok
201 {
202 int i, a = 0;
203 for(i = 0; i < 32; ++i)
204 a += ReadAdc(ch);
205
206 return (a + 15) >> 5;
207 }
208
209
210 void MeasureAntennaTuning(void) {
211
212 uint8_t LF_Results[256];
213 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
214 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
215
216 memset(LF_Results, 0, sizeof(LF_Results));
217 LED_B_ON();
218
219 /*
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
226 */
227
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
230
231 for (i = 255; i >= 19; i--) {
232 WDT_HIT();
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
234 SpinDelay(20);
235 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
236 if (i==95) vLf125 = adcval; // voltage at 125Khz
237 if (i==89) vLf134 = adcval; // voltage at 134Khz
238
239 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results[i] > peak) {
241 peakv = adcval;
242 peak = LF_Results[i];
243 peakf = i;
244 }
245 }
246
247 LED_A_ON();
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
251 SpinDelay(20);
252 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
253
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256 LEDsoff();
257 }
258
259 void MeasureAntennaTuningHf(void) {
260 int vHf = 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
264
265 while ( !BUTTON_PRESS() ){
266 SpinDelay(20);
267 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
270 }
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
272 DbpString("cancelled");
273 }
274
275
276 void ReadMem(int addr) {
277 const uint8_t *data = ((uint8_t *)addr);
278
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
281 }
282
283 /* osimage version information is linked in */
284 extern struct version_information version_information;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
287 void SendVersion(void)
288 {
289 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
290 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
291
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
295 */
296 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
297
298 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
299 strcat(VersionString, "bootrom version information appears invalid\n");
300 } else {
301 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
302 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
303 }
304
305 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
306 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
307
308 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
309 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
310
311 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
312 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
313
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
316 uint32_t compressed_data_section_size = common_area.arg1;
317 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
318 }
319
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
323 {
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
326
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data = BigBuf_get_addr();
329 uint32_t end_time;
330
331 uint32_t start_time = end_time = GetTickCount();
332 uint32_t bytes_transferred = 0;
333
334 LED_B_ON();
335 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
337 end_time = GetTickCount();
338 bytes_transferred += USB_CMD_DATA_SIZE;
339 }
340 LED_B_OFF();
341
342 Dbprintf(" Time elapsed: %dms", end_time - start_time);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred / (end_time - start_time));
346
347 }
348
349 /**
350 * Prints runtime information about the PM3.
351 **/
352 void SendStatus(void) {
353 BigBuf_print_status();
354 Fpga_print_status();
355 printConfig(); //LF Sampling config
356 printUSBSpeed();
357 Dbprintf("Various");
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
359 Dbprintf(" ToSendMax..........%d", ToSendMax);
360 Dbprintf(" ToSendBit..........%d", ToSendBit);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
362
363 cmd_send(CMD_ACK,1,0,0,0,0);
364 }
365
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
367
368 #define OPTS 2
369 void StandAloneMode()
370 {
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
373 LED(LED_RED, 200);
374 LED(LED_ORANGE, 200);
375 LED(LED_GREEN, 200);
376 LED(LED_ORANGE, 200);
377 LED(LED_RED, 200);
378 LED(LED_ORANGE, 200);
379 LED(LED_GREEN, 200);
380 LED(LED_ORANGE, 200);
381 LED(LED_RED, 200);
382 }
383 #endif
384
385 #ifdef WITH_ISO14443a_StandAlone
386 void StandAloneMode14a()
387 {
388 StandAloneMode();
389 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
390
391 int selected = 0;
392 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
393 int cardRead[OPTS] = {0};
394 uint8_t readUID[10] = {0};
395 uint32_t uid_1st[OPTS]={0};
396 uint32_t uid_2nd[OPTS]={0};
397 uint32_t uid_tmp1 = 0;
398 uint32_t uid_tmp2 = 0;
399 iso14a_card_select_t hi14a_card[OPTS];
400
401 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
402
403 LED(selected + 1, 0);
404
405 for (;;)
406 {
407 usb_poll();
408 WDT_HIT();
409 SpinDelay(300);
410
411 if (iGotoRecord == 1 || cardRead[selected] == 0)
412 {
413 iGotoRecord = 0;
414 LEDsoff();
415 LED(selected + 1, 0);
416 LED(LED_RED2, 0);
417
418 // record
419 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
420 /* need this delay to prevent catching some weird data */
421 SpinDelay(500);
422 /* Code for reading from 14a tag */
423 uint8_t uid[10] = {0};
424 uint32_t cuid = 0;
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
426
427 for ( ; ; )
428 {
429 WDT_HIT();
430 if (BUTTON_PRESS()) {
431 if (cardRead[selected]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
433 break;
434 }
435 else if (cardRead[(selected+1)%OPTS]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
437 selected = (selected+1)%OPTS;
438 break; // playing = 1;
439 }
440 else {
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
442 SpinDelay(300);
443 }
444 }
445 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
446 continue;
447 else
448 {
449 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
450 memcpy(readUID,uid,10*sizeof(uint8_t));
451 uint8_t *dst = (uint8_t *)&uid_tmp1;
452 // Set UID byte order
453 for (int i=0; i<4; i++)
454 dst[i] = uid[3-i];
455 dst = (uint8_t *)&uid_tmp2;
456 for (int i=0; i<4; i++)
457 dst[i] = uid[7-i];
458 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
459 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
460 }
461 else {
462 if (uid_tmp2) {
463 Dbprintf("Bank[%d] received a 7-byte UID",selected);
464 uid_1st[selected] = (uid_tmp1)>>8;
465 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
466 }
467 else {
468 Dbprintf("Bank[%d] received a 4-byte UID",selected);
469 uid_1st[selected] = uid_tmp1;
470 uid_2nd[selected] = uid_tmp2;
471 }
472 break;
473 }
474 }
475 }
476 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
477 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
478 LEDsoff();
479 LED(LED_GREEN, 200);
480 LED(LED_ORANGE, 200);
481 LED(LED_GREEN, 200);
482 LED(LED_ORANGE, 200);
483
484 LEDsoff();
485 LED(selected + 1, 0);
486
487 // Next state is replay:
488 playing = 1;
489
490 cardRead[selected] = 1;
491 }
492 /* MF Classic UID clone */
493 else if (iGotoClone==1)
494 {
495 iGotoClone=0;
496 LEDsoff();
497 LED(selected + 1, 0);
498 LED(LED_ORANGE, 250);
499
500 // record
501 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
502
503 // wait for button to be released
504 // Delay cloning until card is in place
505 while(BUTTON_PRESS())
506 WDT_HIT();
507
508 Dbprintf("Starting clone. [Bank: %u]", selected);
509 // need this delay to prevent catching some weird data
510 SpinDelay(500);
511 // Begin clone function here:
512 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
513 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
514 memcpy(c.d.asBytes, data, 16);
515 SendCommand(&c);
516
517 Block read is similar:
518 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
519 We need to imitate that call with blockNo 0 to set a uid.
520
521 The get and set commands are handled in this file:
522 // Work with "magic Chinese" card
523 case CMD_MIFARE_CSETBLOCK:
524 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
525 break;
526 case CMD_MIFARE_CGETBLOCK:
527 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
528 break;
529
530 mfCSetUID provides example logic for UID set workflow:
531 -Read block0 from card in field with MifareCGetBlock()
532 -Configure new values without replacing reserved bytes
533 memcpy(block0, uid, 4); // Copy UID bytes from byte array
534 // Mifare UID BCC
535 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
536 Bytes 5-7 are reserved SAK and ATQA for mifare classic
537 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
538 */
539 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
540 // arg0 = Flags, arg1=blockNo
541 MifareCGetBlock(params, 0, oldBlock0);
542 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
543 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
544 playing = 1;
545 }
546 else {
547 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
548 memcpy(newBlock0,oldBlock0,16);
549 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
550
551 newBlock0[0] = uid_1st[selected]>>24;
552 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
553 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
554 newBlock0[3] = 0xFF & (uid_1st[selected]);
555 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
556
557 // arg0 = workFlags, arg1 = blockNo, datain
558 MifareCSetBlock(params, 0, newBlock0);
559 MifareCGetBlock(params, 0, testBlock0);
560
561 if (memcmp(testBlock0, newBlock0, 16)==0) {
562 DbpString("Cloned successfull!");
563 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
564 playing = 0;
565 iGotoRecord = 1;
566 selected = (selected + 1) % OPTS;
567 } else {
568 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
569 playing = 1;
570 }
571 }
572 LEDsoff();
573 LED(selected + 1, 0);
574 }
575 // Change where to record (or begin playing)
576 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
577 {
578 LEDsoff();
579 LED(selected + 1, 0);
580
581 // Begin transmitting
582 if (playing)
583 {
584 LED(LED_GREEN, 0);
585 DbpString("Playing");
586 for ( ; ; ) {
587 WDT_HIT();
588 int button_action = BUTTON_HELD(1000);
589 if (button_action == 0) { // No button action, proceed with sim
590 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
591 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
592 num_to_bytes(uid_1st[selected], 3, data);
593 num_to_bytes(uid_2nd[selected], 4, data);
594
595 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
596 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
597 DbpString("Mifare Classic");
598 SimulateIso14443aTag(1, flags, data); // Mifare Classic
599 }
600 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
601 DbpString("Mifare Ultralight");
602 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
603 }
604 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
605 DbpString("Mifare DESFire");
606 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
607 }
608 else {
609 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
610 SimulateIso14443aTag(1, flags, data);
611 }
612 }
613 else if (button_action == BUTTON_SINGLE_CLICK) {
614 selected = (selected + 1) % OPTS;
615 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
616 iGotoRecord = 1;
617 break;
618 }
619 else if (button_action == BUTTON_HOLD) {
620 Dbprintf("Playtime over. Begin cloning...");
621 iGotoClone = 1;
622 break;
623 }
624 WDT_HIT();
625 }
626
627 /* We pressed a button so ignore it here with a delay */
628 SpinDelay(300);
629 LEDsoff();
630 LED(selected + 1, 0);
631 }
632 else
633 while(BUTTON_PRESS())
634 WDT_HIT();
635 }
636 }
637 }
638 #elif WITH_LF
639 // samy's sniff and repeat routine
640 void SamyRun()
641 {
642 StandAloneMode();
643 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
644
645 int high[OPTS], low[OPTS];
646 int selected = 0;
647 int playing = 0;
648 int cardRead = 0;
649
650 // Turn on selected LED
651 LED(selected + 1, 0);
652
653 for (;;) {
654 usb_poll();
655 WDT_HIT();
656
657 // Was our button held down or pressed?
658 int button_pressed = BUTTON_HELD(1000);
659 SpinDelay(300);
660
661 // Button was held for a second, begin recording
662 if (button_pressed > 0 && cardRead == 0)
663 {
664 LEDsoff();
665 LED(selected + 1, 0);
666 LED(LED_RED2, 0);
667
668 // record
669 DbpString("Starting recording");
670
671 // wait for button to be released
672 while(BUTTON_PRESS())
673 WDT_HIT();
674
675 /* need this delay to prevent catching some weird data */
676 SpinDelay(500);
677
678 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
679 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
680
681 LEDsoff();
682 LED(selected + 1, 0);
683 // Finished recording
684 // If we were previously playing, set playing off
685 // so next button push begins playing what we recorded
686 playing = 0;
687 cardRead = 1;
688 }
689 else if (button_pressed > 0 && cardRead == 1) {
690 LEDsoff();
691 LED(selected + 1, 0);
692 LED(LED_ORANGE, 0);
693
694 // record
695 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
696
697 // wait for button to be released
698 while(BUTTON_PRESS())
699 WDT_HIT();
700
701 /* need this delay to prevent catching some weird data */
702 SpinDelay(500);
703
704 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
705 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
706
707 LEDsoff();
708 LED(selected + 1, 0);
709 // Finished recording
710
711 // If we were previously playing, set playing off
712 // so next button push begins playing what we recorded
713 playing = 0;
714 cardRead = 0;
715 }
716
717 // Change where to record (or begin playing)
718 else if (button_pressed) {
719 // Next option if we were previously playing
720 if (playing)
721 selected = (selected + 1) % OPTS;
722 playing = !playing;
723
724 LEDsoff();
725 LED(selected + 1, 0);
726
727 // Begin transmitting
728 if (playing)
729 {
730 LED(LED_GREEN, 0);
731 DbpString("Playing");
732 // wait for button to be released
733 while(BUTTON_PRESS())
734 WDT_HIT();
735
736 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
737 CmdHIDsimTAG(high[selected], low[selected], 0);
738 DbpString("Done playing");
739
740 if (BUTTON_HELD(1000) > 0) {
741 DbpString("Exiting");
742 LEDsoff();
743 return;
744 }
745
746 /* We pressed a button so ignore it here with a delay */
747 SpinDelay(300);
748
749 // when done, we're done playing, move to next option
750 selected = (selected + 1) % OPTS;
751 playing = !playing;
752 LEDsoff();
753 LED(selected + 1, 0);
754 }
755 else
756 while(BUTTON_PRESS())
757 WDT_HIT();
758 }
759 }
760 }
761
762 #endif
763 /*
764 OBJECTIVE
765 Listen and detect an external reader. Determine the best location
766 for the antenna.
767
768 INSTRUCTIONS:
769 Inside the ListenReaderField() function, there is two mode.
770 By default, when you call the function, you will enter mode 1.
771 If you press the PM3 button one time, you will enter mode 2.
772 If you press the PM3 button a second time, you will exit the function.
773
774 DESCRIPTION OF MODE 1:
775 This mode just listens for an external reader field and lights up green
776 for HF and/or red for LF. This is the original mode of the detectreader
777 function.
778
779 DESCRIPTION OF MODE 2:
780 This mode will visually represent, using the LEDs, the actual strength of the
781 current compared to the maximum current detected. Basically, once you know
782 what kind of external reader is present, it will help you spot the best location to place
783 your antenna. You will probably not get some good results if there is a LF and a HF reader
784 at the same place! :-)
785
786 LIGHT SCHEME USED:
787 */
788 static const char LIGHT_SCHEME[] = {
789 0x0, /* ---- | No field detected */
790 0x1, /* X--- | 14% of maximum current detected */
791 0x2, /* -X-- | 29% of maximum current detected */
792 0x4, /* --X- | 43% of maximum current detected */
793 0x8, /* ---X | 57% of maximum current detected */
794 0xC, /* --XX | 71% of maximum current detected */
795 0xE, /* -XXX | 86% of maximum current detected */
796 0xF, /* XXXX | 100% of maximum current detected */
797 };
798 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
799
800 void ListenReaderField(int limit) {
801 #define LF_ONLY 1
802 #define HF_ONLY 2
803 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
804
805 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
806 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
807 int mode=1, display_val, display_max, i;
808
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
812
813 LEDsoff();
814
815 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
816
817 if(limit != HF_ONLY) {
818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
819 lf_baseline = lf_av;
820 }
821
822 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
823
824 if (limit != LF_ONLY) {
825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
826 hf_baseline = hf_av;
827 }
828
829 for(;;) {
830 if (BUTTON_PRESS()) {
831 SpinDelay(500);
832 switch (mode) {
833 case 1:
834 mode=2;
835 DbpString("Signal Strength Mode");
836 break;
837 case 2:
838 default:
839 DbpString("Stopped");
840 LEDsoff();
841 return;
842 break;
843 }
844 }
845 WDT_HIT();
846
847 if (limit != HF_ONLY) {
848 if(mode == 1) {
849 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
850 LED_D_ON();
851 else
852 LED_D_OFF();
853 }
854
855 lf_av_new = AvgAdc(ADC_CHAN_LF);
856 // see if there's a significant change
857 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
859 lf_av = lf_av_new;
860 if (lf_av > lf_max)
861 lf_max = lf_av;
862 }
863 }
864
865 if (limit != LF_ONLY) {
866 if (mode == 1){
867 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
868 LED_B_ON();
869 else
870 LED_B_OFF();
871 }
872
873 hf_av_new = AvgAdc(ADC_CHAN_HF);
874 // see if there's a significant change
875 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
877 hf_av = hf_av_new;
878 if (hf_av > hf_max)
879 hf_max = hf_av;
880 }
881 }
882
883 if(mode == 2) {
884 if (limit == LF_ONLY) {
885 display_val = lf_av;
886 display_max = lf_max;
887 } else if (limit == HF_ONLY) {
888 display_val = hf_av;
889 display_max = hf_max;
890 } else { /* Pick one at random */
891 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
892 display_val = hf_av;
893 display_max = hf_max;
894 } else {
895 display_val = lf_av;
896 display_max = lf_max;
897 }
898 }
899 for (i=0; i<LIGHT_LEN; i++) {
900 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
901 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
905 break;
906 }
907 }
908 }
909 }
910 }
911
912 void UsbPacketReceived(uint8_t *packet, int len)
913 {
914 UsbCommand *c = (UsbCommand *)packet;
915
916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
917
918 switch(c->cmd) {
919 #ifdef WITH_LF
920 case CMD_SET_LF_SAMPLING_CONFIG:
921 setSamplingConfig((sample_config *) c->d.asBytes);
922 break;
923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
924 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
925 break;
926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
927 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
928 break;
929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
930 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
931 break;
932 case CMD_HID_DEMOD_FSK:
933 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
934 break;
935 case CMD_HID_SIM_TAG:
936 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
937 break;
938 case CMD_FSK_SIM_TAG:
939 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
940 break;
941 case CMD_ASK_SIM_TAG:
942 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
943 break;
944 case CMD_PSK_SIM_TAG:
945 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
946 break;
947 case CMD_HID_CLONE_TAG:
948 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
949 break;
950 case CMD_IO_DEMOD_FSK:
951 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
952 break;
953 case CMD_IO_CLONE_TAG:
954 CopyIOtoT55x7(c->arg[0], c->arg[1]);
955 break;
956 case CMD_EM410X_DEMOD:
957 CmdEM410xdemod(c->arg[0], 0, 0, 1);
958 break;
959 case CMD_EM410X_WRITE_TAG:
960 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
961 break;
962 case CMD_READ_TI_TYPE:
963 ReadTItag();
964 break;
965 case CMD_WRITE_TI_TYPE:
966 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
967 break;
968 case CMD_SIMULATE_TAG_125K:
969 LED_A_ON();
970 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
971 LED_A_OFF();
972 break;
973 case CMD_LF_SIMULATE_BIDIR:
974 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
975 break;
976 case CMD_INDALA_CLONE_TAG:
977 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
978 break;
979 case CMD_INDALA_CLONE_TAG_L:
980 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
981 break;
982 case CMD_T55XX_READ_BLOCK:
983 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
984 break;
985 case CMD_T55XX_WRITE_BLOCK:
986 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
987 break;
988 case CMD_T55XX_WAKEUP:
989 T55xxWakeUp(c->arg[0]);
990 break;
991 case CMD_T55XX_RESET_READ:
992 T55xxResetRead();
993 break;
994 case CMD_PCF7931_READ:
995 ReadPCF7931();
996 break;
997 case CMD_PCF7931_WRITE:
998 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
999 break;
1000 case CMD_EM4X_READ_WORD:
1001 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1002 break;
1003 case CMD_EM4X_WRITE_WORD:
1004 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1005 break;
1006 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1008 break;
1009 case CMD_VIKING_CLONE_TAG:
1010 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1011 break;
1012 #endif
1013
1014 #ifdef WITH_HITAG
1015 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1016 SnoopHitag(c->arg[0]);
1017 break;
1018 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1019 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1020 break;
1021 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1022 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1023 break;
1024 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1025 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1026 break;
1027 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1028 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1029 break;
1030 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
1031 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1032 break;
1033 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
1034 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1035 break;
1036 #endif
1037
1038 #ifdef WITH_ISO15693
1039 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1040 AcquireRawAdcSamplesIso15693();
1041 break;
1042 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1043 RecordRawAdcSamplesIso15693();
1044 break;
1045 case CMD_ISO_15693_COMMAND:
1046 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1047 break;
1048 case CMD_ISO_15693_FIND_AFI:
1049 BruteforceIso15693Afi(c->arg[0]);
1050 break;
1051 case CMD_ISO_15693_DEBUG:
1052 SetDebugIso15693(c->arg[0]);
1053 break;
1054 case CMD_READER_ISO_15693:
1055 ReaderIso15693(c->arg[0]);
1056 break;
1057 case CMD_SIMTAG_ISO_15693:
1058 SimTagIso15693(c->arg[0], c->d.asBytes);
1059 break;
1060 #endif
1061
1062 #ifdef WITH_LEGICRF
1063 case CMD_SIMULATE_TAG_LEGIC_RF:
1064 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1065 break;
1066 case CMD_WRITER_LEGIC_RF:
1067 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1068 break;
1069 case CMD_READER_LEGIC_RF:
1070 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
1071 break;
1072 case CMD_LEGIC_INFO:
1073 LegicRfInfo();
1074 break;
1075 case CMD_LEGIC_ESET:
1076 LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes);
1077 break;
1078 #endif
1079
1080 #ifdef WITH_ISO14443b
1081 case CMD_READ_SRI_TAG:
1082 ReadSTMemoryIso14443b(c->arg[0]);
1083 break;
1084 case CMD_SNOOP_ISO_14443B:
1085 SnoopIso14443b();
1086 break;
1087 case CMD_SIMULATE_TAG_ISO_14443B:
1088 SimulateIso14443bTag(c->arg[0]);
1089 break;
1090 case CMD_ISO_14443B_COMMAND:
1091 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1092 SendRawCommand14443B_Ex(c);
1093 break;
1094 #endif
1095
1096 #ifdef WITH_ISO14443a
1097 case CMD_SNOOP_ISO_14443a:
1098 SniffIso14443a(c->arg[0]);
1099 break;
1100 case CMD_READER_ISO_14443a:
1101 ReaderIso14443a(c);
1102 break;
1103 case CMD_SIMULATE_TAG_ISO_14443a:
1104 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1105 break;
1106 case CMD_EPA_PACE_COLLECT_NONCE:
1107 EPA_PACE_Collect_Nonce(c);
1108 break;
1109 case CMD_EPA_PACE_REPLAY:
1110 EPA_PACE_Replay(c);
1111 break;
1112 case CMD_READER_MIFARE:
1113 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
1114 break;
1115 case CMD_MIFARE_READBL:
1116 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1117 break;
1118 case CMD_MIFAREU_READBL:
1119 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1120 break;
1121 case CMD_MIFAREUC_AUTH:
1122 MifareUC_Auth(c->arg[0],c->d.asBytes);
1123 break;
1124 case CMD_MIFAREU_READCARD:
1125 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1126 break;
1127 case CMD_MIFAREUC_SETPWD:
1128 MifareUSetPwd(c->arg[0], c->d.asBytes);
1129 break;
1130 case CMD_MIFARE_READSC:
1131 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1132 break;
1133 case CMD_MIFARE_WRITEBL:
1134 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1135 break;
1136 //case CMD_MIFAREU_WRITEBL_COMPAT:
1137 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1138 //break;
1139 case CMD_MIFAREU_WRITEBL:
1140 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1141 break;
1142 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1143 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
1145 case CMD_MIFARE_NESTED:
1146 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1147 break;
1148 case CMD_MIFARE_CHKKEYS:
1149 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_SIMULATE_MIFARE_CARD:
1152 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154
1155 // emulator
1156 case CMD_MIFARE_SET_DBGMODE:
1157 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_EML_MEMCLR:
1160 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1161 break;
1162 case CMD_MIFARE_EML_MEMSET:
1163 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1164 break;
1165 case CMD_MIFARE_EML_MEMGET:
1166 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1167 break;
1168 case CMD_MIFARE_EML_CARDLOAD:
1169 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1170 break;
1171
1172 // Work with "magic Chinese" card
1173 case CMD_MIFARE_CSETBLOCK:
1174 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1175 break;
1176 case CMD_MIFARE_CGETBLOCK:
1177 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1178 break;
1179 case CMD_MIFARE_CIDENT:
1180 MifareCIdent();
1181 break;
1182
1183 // mifare sniffer
1184 case CMD_MIFARE_SNIFFER:
1185 SniffMifare(c->arg[0]);
1186 break;
1187
1188 //mifare desfire
1189 case CMD_MIFARE_DESFIRE_READBL: break;
1190 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1191 case CMD_MIFARE_DESFIRE_AUTH1:
1192 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1193 break;
1194 case CMD_MIFARE_DESFIRE_AUTH2:
1195 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1196 break;
1197 case CMD_MIFARE_DES_READER:
1198 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1199 break;
1200 case CMD_MIFARE_DESFIRE_INFO:
1201 MifareDesfireGetInformation();
1202 break;
1203 case CMD_MIFARE_DESFIRE:
1204 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1205 break;
1206 case CMD_MIFARE_COLLECT_NONCES:
1207 break;
1208 #endif
1209 #ifdef WITH_EMV
1210 case CMD_EMV_TRANSACTION:
1211 EMVTransaction();
1212 break;
1213 case CMD_EMV_GET_RANDOM_NUM:
1214 //EMVgetUDOL();
1215 break;
1216 case CMD_EMV_LOAD_VALUE:
1217 EMVloadvalue(c->arg[0], c->d.asBytes);
1218 break;
1219 case CMD_EMV_DUMP_CARD:
1220 EMVdumpcard();
1221 #endif
1222 #ifdef WITH_ICLASS
1223 // Makes use of ISO14443a FPGA Firmware
1224 case CMD_SNOOP_ICLASS:
1225 SnoopIClass();
1226 break;
1227 case CMD_SIMULATE_TAG_ICLASS:
1228 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1229 break;
1230 case CMD_READER_ICLASS:
1231 ReaderIClass(c->arg[0]);
1232 break;
1233 case CMD_READER_ICLASS_REPLAY:
1234 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1235 break;
1236 case CMD_ICLASS_EML_MEMSET:
1237 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1238 break;
1239 case CMD_ICLASS_WRITEBLOCK:
1240 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1241 break;
1242 case CMD_ICLASS_READCHECK: // auth step 1
1243 iClass_ReadCheck(c->arg[0], c->arg[1]);
1244 break;
1245 case CMD_ICLASS_READBLOCK:
1246 iClass_ReadBlk(c->arg[0]);
1247 break;
1248 case CMD_ICLASS_AUTHENTICATION: //check
1249 iClass_Authentication(c->d.asBytes);
1250 break;
1251 case CMD_ICLASS_DUMP:
1252 iClass_Dump(c->arg[0], c->arg[1]);
1253 break;
1254 case CMD_ICLASS_CLONE:
1255 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1256 break;
1257 #endif
1258 #ifdef WITH_HFSNOOP
1259 case CMD_HF_SNIFFER:
1260 HfSnoop(c->arg[0], c->arg[1]);
1261 break;
1262 #endif
1263
1264 case CMD_BUFF_CLEAR:
1265 BigBuf_Clear();
1266 break;
1267
1268 case CMD_MEASURE_ANTENNA_TUNING:
1269 MeasureAntennaTuning();
1270 break;
1271
1272 case CMD_MEASURE_ANTENNA_TUNING_HF:
1273 MeasureAntennaTuningHf();
1274 break;
1275
1276 case CMD_LISTEN_READER_FIELD:
1277 ListenReaderField(c->arg[0]);
1278 break;
1279
1280 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1281 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1282 SpinDelay(200);
1283 LED_D_OFF(); // LED D indicates field ON or OFF
1284 break;
1285
1286 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1287 LED_B_ON();
1288 uint8_t *BigBuf = BigBuf_get_addr();
1289 size_t len = 0;
1290 size_t startidx = c->arg[0];
1291 uint8_t isok = FALSE;
1292 // arg0 = startindex
1293 // arg1 = length bytes to transfer
1294 // arg2 = RFU
1295 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1296
1297 for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1298 len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE);
1299 isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len);
1300 if (!isok)
1301 Dbprintf("transfer to client failed :: | bytes %d", len);
1302 }
1303 // Trigger a finish downloading signal with an ACK frame
1304 cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config));
1305 LED_B_OFF();
1306 break;
1307 }
1308 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1309 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1310 // to be able to use this one for uploading data to device
1311 // arg1 = 0 upload for LF usage
1312 // 1 upload for HF usage
1313 if ( c->arg[1] == 0 )
1314 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1315 else
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1317 uint8_t *b = BigBuf_get_addr();
1318 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1319 cmd_send(CMD_ACK,1,0,0,0,0);
1320 break;
1321 }
1322 case CMD_DOWNLOAD_EML_BIGBUF: {
1323 LED_B_ON();
1324 uint8_t *cardmem = BigBuf_get_EM_addr();
1325 size_t len = 0;
1326 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1327 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1328 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1329 }
1330 // Trigger a finish downloading signal with an ACK frame
1331 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1332 LED_B_OFF();
1333 break;
1334 }
1335 case CMD_READ_MEM:
1336 ReadMem(c->arg[0]);
1337 break;
1338
1339 case CMD_SET_LF_DIVISOR:
1340 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1341 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1342 break;
1343
1344 case CMD_SET_ADC_MUX:
1345 switch(c->arg[0]) {
1346 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1347 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1348 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1349 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1350 }
1351 break;
1352
1353 case CMD_VERSION:
1354 SendVersion();
1355 break;
1356 case CMD_STATUS:
1357 SendStatus();
1358 break;
1359 case CMD_PING:
1360 cmd_send(CMD_ACK,0,0,0,0,0);
1361 break;
1362 #ifdef WITH_LCD
1363 case CMD_LCD_RESET:
1364 LCDReset();
1365 break;
1366 case CMD_LCD:
1367 LCDSend(c->arg[0]);
1368 break;
1369 #endif
1370 case CMD_SETUP_WRITE:
1371 case CMD_FINISH_WRITE:
1372 case CMD_HARDWARE_RESET:
1373 usb_disable();
1374 SpinDelay(2000);
1375 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1376 for(;;) {
1377 // We're going to reset, and the bootrom will take control.
1378 }
1379 break;
1380
1381 case CMD_START_FLASH:
1382 if(common_area.flags.bootrom_present) {
1383 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1384 }
1385 usb_disable();
1386 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1387 for(;;);
1388 break;
1389
1390 case CMD_DEVICE_INFO: {
1391 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1392 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1393 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1394 break;
1395 }
1396 default:
1397 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1398 break;
1399 }
1400 }
1401
1402 void __attribute__((noreturn)) AppMain(void)
1403 {
1404 SpinDelay(100);
1405 clear_trace();
1406 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1407 /* Initialize common area */
1408 memset(&common_area, 0, sizeof(common_area));
1409 common_area.magic = COMMON_AREA_MAGIC;
1410 common_area.version = 1;
1411 }
1412 common_area.flags.osimage_present = 1;
1413
1414 LEDsoff();
1415
1416 // Init USB device
1417 usb_enable();
1418
1419 // The FPGA gets its clock from us from PCK0 output, so set that up.
1420 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1421 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1422 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1423 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1424 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1425 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1426
1427 // Reset SPI
1428 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1429 // Reset SSC
1430 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1431
1432 // Load the FPGA image, which we have stored in our flash.
1433 // (the HF version by default)
1434 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1435
1436 StartTickCount();
1437
1438 #ifdef WITH_LCD
1439 LCDInit();
1440 #endif
1441
1442 byte_t rx[sizeof(UsbCommand)];
1443 size_t rx_len;
1444
1445 for(;;) {
1446 if ( usb_poll_validate_length() ) {
1447 rx_len = usb_read(rx, sizeof(UsbCommand));
1448
1449 if (rx_len)
1450 UsbPacketReceived(rx, rx_len);
1451 }
1452 WDT_HIT();
1453
1454 #ifdef WITH_LF
1455 #ifndef WITH_ISO14443a_StandAlone
1456 if (BUTTON_HELD(1000) > 0)
1457 SamyRun();
1458 #endif
1459 #endif
1460 #ifdef WITH_ISO14443a
1461 #ifdef WITH_ISO14443a_StandAlone
1462 if (BUTTON_HELD(1000) > 0)
1463 StandAloneMode14a();
1464 #endif
1465 #endif
1466 }
1467 }
Impressum, Datenschutz