1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuning(void)
185 uint8_t LF_Results
[256];
186 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
187 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
202 for (i
=255; i
>=19; i
--) {
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
206 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
207 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
208 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
210 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results
[i
] > peak
) {
213 peak
= LF_Results
[i
];
219 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
235 void MeasureAntennaTuningHf(void)
237 int vHf
= 0; // in mV
239 DbpString("Measuring HF antenna, press button to exit");
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
247 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 Dbprintf("%d mV",vHf
);
250 if (BUTTON_PRESS()) break;
252 DbpString("cancelled");
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void ReadMem(int addr
)
261 const uint8_t *data
= ((uint8_t *)addr
);
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
267 /* osimage version information is linked in */
268 extern struct version_information version_information
;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
271 void SendVersion(void)
273 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
274 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
280 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
298 uint32_t compressed_data_section_size
= common_area
.arg1
;
299 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
302 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
304 void printUSBSpeed(uint32_t SpeedTestBufferSize
)
306 Dbprintf("USB Speed:");
307 Dbprintf(" Sending %d bytes payload...", SpeedTestBufferSize
);
309 uint8_t *test_data
= BigBuf_get_addr();
311 uint32_t start_time
= GetTickCount();
314 for(size_t i
=0; i
<SpeedTestBufferSize
; i
+= USB_CMD_DATA_SIZE
) {
315 size_t len
= MIN((SpeedTestBufferSize
- i
), USB_CMD_DATA_SIZE
);
316 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,0,len
,0,test_data
,len
);
320 uint32_t end_time
= GetTickCount();
322 Dbprintf(" Time elapsed: %dms, USB Transfer Speed PM3 -> Client = %d Bytes/s",
323 end_time
- start_time
,
324 1000* SpeedTestBufferSize
/ (end_time
- start_time
));
329 * Prints runtime information about the PM3.
331 void SendStatus(uint32_t SpeedTestBufferSize
)
333 BigBuf_print_status();
335 printConfig(); //LF Sampling config
336 printUSBSpeed(SpeedTestBufferSize
);
338 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
339 Dbprintf(" ToSendMax........%d",ToSendMax
);
340 Dbprintf(" ToSendBit........%d",ToSendBit
);
342 cmd_send(CMD_ACK
,1,0,0,0,0);
345 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
349 void StandAloneMode()
351 DbpString("Stand-alone mode! No PC necessary.");
352 // Oooh pretty -- notify user we're in elite samy mode now
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
358 LED(LED_ORANGE
, 200);
360 LED(LED_ORANGE
, 200);
369 #ifdef WITH_ISO14443a_StandAlone
370 void StandAloneMode14a()
373 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
376 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
377 int cardRead
[OPTS
] = {0};
378 uint8_t readUID
[10] = {0};
379 uint32_t uid_1st
[OPTS
]={0};
380 uint32_t uid_2nd
[OPTS
]={0};
381 uint32_t uid_tmp1
= 0;
382 uint32_t uid_tmp2
= 0;
383 iso14a_card_select_t hi14a_card
[OPTS
];
385 LED(selected
+ 1, 0);
393 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
397 LED(selected
+ 1, 0);
401 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
402 /* need this delay to prevent catching some weird data */
404 /* Code for reading from 14a tag */
405 uint8_t uid
[10] ={0};
407 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
412 if (BUTTON_PRESS()) {
413 if (cardRead
[selected
]) {
414 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
417 else if (cardRead
[(selected
+1)%OPTS
]) {
418 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
419 selected
= (selected
+1)%OPTS
;
420 break; // playing = 1;
423 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
427 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
431 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
432 memcpy(readUID
,uid
,10*sizeof(uint8_t));
433 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
434 // Set UID byte order
435 for (int i
=0; i
<4; i
++)
437 dst
= (uint8_t *)&uid_tmp2
;
438 for (int i
=0; i
<4; i
++)
440 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
441 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
445 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
446 uid_1st
[selected
] = (uid_tmp1
)>>8;
447 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
450 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
451 uid_1st
[selected
] = uid_tmp1
;
452 uid_2nd
[selected
] = uid_tmp2
;
458 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
459 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
462 LED(LED_ORANGE
, 200);
464 LED(LED_ORANGE
, 200);
467 LED(selected
+ 1, 0);
469 // Next state is replay:
472 cardRead
[selected
] = 1;
474 /* MF Classic UID clone */
475 else if (iGotoClone
==1)
479 LED(selected
+ 1, 0);
480 LED(LED_ORANGE
, 250);
484 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
486 // wait for button to be released
487 while(BUTTON_PRESS())
489 // Delay cloning until card is in place
492 Dbprintf("Starting clone. [Bank: %u]", selected
);
493 // need this delay to prevent catching some weird data
495 // Begin clone function here:
496 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
497 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
498 memcpy(c.d.asBytes, data, 16);
501 Block read is similar:
502 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
503 We need to imitate that call with blockNo 0 to set a uid.
505 The get and set commands are handled in this file:
506 // Work with "magic Chinese" card
507 case CMD_MIFARE_CSETBLOCK:
508 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
510 case CMD_MIFARE_CGETBLOCK:
511 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
514 mfCSetUID provides example logic for UID set workflow:
515 -Read block0 from card in field with MifareCGetBlock()
516 -Configure new values without replacing reserved bytes
517 memcpy(block0, uid, 4); // Copy UID bytes from byte array
519 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
520 Bytes 5-7 are reserved SAK and ATQA for mifare classic
521 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
523 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
524 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
525 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
526 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
527 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
531 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
532 memcpy(newBlock0
,oldBlock0
,16);
533 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
535 newBlock0
[0] = uid_1st
[selected
]>>24;
536 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
537 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
538 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
539 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
540 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
541 MifareCSetBlock(0, 0xFF,0, newBlock0
);
542 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
543 if (memcmp(testBlock0
,newBlock0
,16)==0)
545 DbpString("Cloned successfull!");
546 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
549 selected
= (selected
+1) % OPTS
;
552 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
557 LED(selected
+ 1, 0);
560 // Change where to record (or begin playing)
561 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
564 LED(selected
+ 1, 0);
566 // Begin transmitting
570 DbpString("Playing");
573 int button_action
= BUTTON_HELD(1000);
574 if (button_action
== 0) { // No button action, proceed with sim
575 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
576 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
577 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
578 DbpString("Mifare Classic");
579 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
581 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
582 DbpString("Mifare Ultralight");
583 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
585 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
586 DbpString("Mifare DESFire");
587 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
590 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
591 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
594 else if (button_action
== BUTTON_SINGLE_CLICK
) {
595 selected
= (selected
+ 1) % OPTS
;
596 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
600 else if (button_action
== BUTTON_HOLD
) {
601 Dbprintf("Playtime over. Begin cloning...");
608 /* We pressed a button so ignore it here with a delay */
611 LED(selected
+ 1, 0);
614 while(BUTTON_PRESS())
620 // samy's sniff and repeat routine
624 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
626 int high
[OPTS
], low
[OPTS
];
631 // Turn on selected LED
632 LED(selected
+ 1, 0);
639 // Was our button held down or pressed?
640 int button_pressed
= BUTTON_HELD(1000);
643 // Button was held for a second, begin recording
644 if (button_pressed
> 0 && cardRead
== 0)
647 LED(selected
+ 1, 0);
651 DbpString("Starting recording");
653 // wait for button to be released
654 while(BUTTON_PRESS())
657 /* need this delay to prevent catching some weird data */
660 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
661 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
664 LED(selected
+ 1, 0);
665 // Finished recording
667 // If we were previously playing, set playing off
668 // so next button push begins playing what we recorded
675 else if (button_pressed
> 0 && cardRead
== 1)
678 LED(selected
+ 1, 0);
682 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
684 // wait for button to be released
685 while(BUTTON_PRESS())
688 /* need this delay to prevent catching some weird data */
691 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
692 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
695 LED(selected
+ 1, 0);
696 // Finished recording
698 // If we were previously playing, set playing off
699 // so next button push begins playing what we recorded
706 // Change where to record (or begin playing)
707 else if (button_pressed
)
709 // Next option if we were previously playing
711 selected
= (selected
+ 1) % OPTS
;
715 LED(selected
+ 1, 0);
717 // Begin transmitting
721 DbpString("Playing");
722 // wait for button to be released
723 while(BUTTON_PRESS())
725 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
726 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
727 DbpString("Done playing");
728 if (BUTTON_HELD(1000) > 0)
730 DbpString("Exiting");
735 /* We pressed a button so ignore it here with a delay */
738 // when done, we're done playing, move to next option
739 selected
= (selected
+ 1) % OPTS
;
742 LED(selected
+ 1, 0);
745 while(BUTTON_PRESS())
754 Listen and detect an external reader. Determine the best location
758 Inside the ListenReaderField() function, there is two mode.
759 By default, when you call the function, you will enter mode 1.
760 If you press the PM3 button one time, you will enter mode 2.
761 If you press the PM3 button a second time, you will exit the function.
763 DESCRIPTION OF MODE 1:
764 This mode just listens for an external reader field and lights up green
765 for HF and/or red for LF. This is the original mode of the detectreader
768 DESCRIPTION OF MODE 2:
769 This mode will visually represent, using the LEDs, the actual strength of the
770 current compared to the maximum current detected. Basically, once you know
771 what kind of external reader is present, it will help you spot the best location to place
772 your antenna. You will probably not get some good results if there is a LF and a HF reader
773 at the same place! :-)
777 static const char LIGHT_SCHEME
[] = {
778 0x0, /* ---- | No field detected */
779 0x1, /* X--- | 14% of maximum current detected */
780 0x2, /* -X-- | 29% of maximum current detected */
781 0x4, /* --X- | 43% of maximum current detected */
782 0x8, /* ---X | 57% of maximum current detected */
783 0xC, /* --XX | 71% of maximum current detected */
784 0xE, /* -XXX | 86% of maximum current detected */
785 0xF, /* XXXX | 100% of maximum current detected */
787 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
789 void ListenReaderField(int limit
)
791 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
792 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
793 int mode
=1, display_val
, display_max
, i
;
797 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
800 // switch off FPGA - we don't want to measure our own signal
801 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
802 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
806 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
808 if(limit
!= HF_ONLY
) {
809 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
813 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
815 if (limit
!= LF_ONLY
) {
816 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
821 if (BUTTON_PRESS()) {
826 DbpString("Signal Strength Mode");
830 DbpString("Stopped");
838 if (limit
!= HF_ONLY
) {
840 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
846 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
847 // see if there's a significant change
848 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
849 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
856 if (limit
!= LF_ONLY
) {
858 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
864 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
865 // see if there's a significant change
866 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
867 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
875 if (limit
== LF_ONLY
) {
877 display_max
= lf_max
;
878 } else if (limit
== HF_ONLY
) {
880 display_max
= hf_max
;
881 } else { /* Pick one at random */
882 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
884 display_max
= hf_max
;
887 display_max
= lf_max
;
890 for (i
=0; i
<LIGHT_LEN
; i
++) {
891 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
892 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
893 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
894 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
895 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
903 void UsbPacketReceived(uint8_t *packet
, int len
)
905 UsbCommand
*c
= (UsbCommand
*)packet
;
907 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
911 case CMD_SET_LF_SAMPLING_CONFIG
:
912 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
914 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
915 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
917 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
918 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
920 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
921 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
923 case CMD_HID_DEMOD_FSK
:
924 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
926 case CMD_HID_SIM_TAG
:
927 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
929 case CMD_FSK_SIM_TAG
:
930 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
932 case CMD_ASK_SIM_TAG
:
933 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
935 case CMD_PSK_SIM_TAG
:
936 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
938 case CMD_HID_CLONE_TAG
:
939 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
941 case CMD_IO_DEMOD_FSK
:
942 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
944 case CMD_IO_CLONE_TAG
:
945 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
947 case CMD_EM410X_DEMOD
:
948 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
950 case CMD_EM410X_WRITE_TAG
:
951 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
953 case CMD_READ_TI_TYPE
:
956 case CMD_WRITE_TI_TYPE
:
957 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
959 case CMD_SIMULATE_TAG_125K
:
961 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
964 case CMD_LF_SIMULATE_BIDIR
:
965 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
967 case CMD_INDALA_CLONE_TAG
:
968 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
970 case CMD_INDALA_CLONE_TAG_L
:
971 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
973 case CMD_T55XX_READ_BLOCK
:
974 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
976 case CMD_T55XX_WRITE_BLOCK
:
977 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
978 cmd_send(CMD_ACK
,0,0,0,0,0);
980 case CMD_T55XX_READ_TRACE
:
983 case CMD_PCF7931_READ
:
985 cmd_send(CMD_ACK
,0,0,0,0,0);
987 case CMD_EM4X_READ_WORD
:
988 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
990 case CMD_EM4X_WRITE_WORD
:
991 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
993 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
994 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
999 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1000 SnoopHitag(c
->arg
[0]);
1002 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1003 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1005 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1006 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1010 #ifdef WITH_ISO15693
1011 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1012 AcquireRawAdcSamplesIso15693();
1014 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1015 RecordRawAdcSamplesIso15693();
1018 case CMD_ISO_15693_COMMAND
:
1019 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1022 case CMD_ISO_15693_FIND_AFI
:
1023 BruteforceIso15693Afi(c
->arg
[0]);
1026 case CMD_ISO_15693_DEBUG
:
1027 SetDebugIso15693(c
->arg
[0]);
1030 case CMD_READER_ISO_15693
:
1031 ReaderIso15693(c
->arg
[0]);
1033 case CMD_SIMTAG_ISO_15693
:
1034 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1039 case CMD_SIMULATE_TAG_LEGIC_RF
:
1040 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1043 case CMD_WRITER_LEGIC_RF
:
1044 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1047 case CMD_READER_LEGIC_RF
:
1048 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1052 #ifdef WITH_ISO14443b
1053 case CMD_READ_SRI512_TAG
:
1054 ReadSTMemoryIso14443b(0x0F);
1056 case CMD_READ_SRIX4K_TAG
:
1057 ReadSTMemoryIso14443b(0x7F);
1059 case CMD_SNOOP_ISO_14443B
:
1062 case CMD_SIMULATE_TAG_ISO_14443B
:
1063 SimulateIso14443bTag();
1065 case CMD_ISO_14443B_COMMAND
:
1066 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1070 #ifdef WITH_ISO14443a
1071 case CMD_SNOOP_ISO_14443a
:
1072 SnoopIso14443a(c
->arg
[0]);
1074 case CMD_READER_ISO_14443a
:
1077 case CMD_SIMULATE_TAG_ISO_14443a
:
1078 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1081 case CMD_EPA_PACE_COLLECT_NONCE
:
1082 EPA_PACE_Collect_Nonce(c
);
1084 case CMD_EPA_PACE_REPLAY
:
1088 case CMD_READER_MIFARE
:
1089 ReaderMifare(c
->arg
[0]);
1091 case CMD_MIFARE_READBL
:
1092 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1094 case CMD_MIFAREU_READBL
:
1095 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1097 case CMD_MIFAREUC_AUTH
:
1098 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1100 case CMD_MIFAREU_READCARD
:
1101 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1103 case CMD_MIFAREUC_SETPWD
:
1104 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1106 case CMD_MIFARE_READSC
:
1107 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1109 case CMD_MIFARE_WRITEBL
:
1110 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1112 //case CMD_MIFAREU_WRITEBL_COMPAT:
1113 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1115 case CMD_MIFAREU_WRITEBL
:
1116 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1118 case CMD_MIFARE_NESTED
:
1119 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1121 case CMD_MIFARE_CHKKEYS
:
1122 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1124 case CMD_SIMULATE_MIFARE_CARD
:
1125 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1129 case CMD_MIFARE_SET_DBGMODE
:
1130 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1132 case CMD_MIFARE_EML_MEMCLR
:
1133 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1135 case CMD_MIFARE_EML_MEMSET
:
1136 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1138 case CMD_MIFARE_EML_MEMGET
:
1139 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_MIFARE_EML_CARDLOAD
:
1142 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 // Work with "magic Chinese" card
1146 case CMD_MIFARE_CSETBLOCK
:
1147 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1149 case CMD_MIFARE_CGETBLOCK
:
1150 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1152 case CMD_MIFARE_CIDENT
:
1157 case CMD_MIFARE_SNIFFER
:
1158 SniffMifare(c
->arg
[0]);
1164 // Makes use of ISO14443a FPGA Firmware
1165 case CMD_SNOOP_ICLASS
:
1168 case CMD_SIMULATE_TAG_ICLASS
:
1169 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1171 case CMD_READER_ICLASS
:
1172 ReaderIClass(c
->arg
[0]);
1174 case CMD_READER_ICLASS_REPLAY
:
1175 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1177 case CMD_ICLASS_EML_MEMSET
:
1178 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1182 case CMD_BUFF_CLEAR
:
1186 case CMD_MEASURE_ANTENNA_TUNING
:
1187 MeasureAntennaTuning();
1190 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1191 MeasureAntennaTuningHf();
1194 case CMD_LISTEN_READER_FIELD
:
1195 ListenReaderField(c
->arg
[0]);
1198 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1199 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1201 LED_D_OFF(); // LED D indicates field ON or OFF
1204 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1207 uint8_t *BigBuf
= BigBuf_get_addr();
1208 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1209 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1210 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1212 // Trigger a finish downloading signal with an ACK frame
1213 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1217 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1218 uint8_t *b
= BigBuf_get_addr();
1219 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1220 cmd_send(CMD_ACK
,0,0,0,0,0);
1227 case CMD_SET_LF_DIVISOR
:
1228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1229 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1232 case CMD_SET_ADC_MUX
:
1234 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1235 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1236 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1237 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1245 SendStatus(c
->arg
[0]);
1248 cmd_send(CMD_ACK
,0,0,0,0,0);
1258 case CMD_SETUP_WRITE
:
1259 case CMD_FINISH_WRITE
:
1260 case CMD_HARDWARE_RESET
:
1264 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1266 // We're going to reset, and the bootrom will take control.
1270 case CMD_START_FLASH
:
1271 if(common_area
.flags
.bootrom_present
) {
1272 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1275 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1279 case CMD_DEVICE_INFO
: {
1280 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1281 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1282 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1286 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1291 void __attribute__((noreturn
)) AppMain(void)
1295 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1296 /* Initialize common area */
1297 memset(&common_area
, 0, sizeof(common_area
));
1298 common_area
.magic
= COMMON_AREA_MAGIC
;
1299 common_area
.version
= 1;
1301 common_area
.flags
.osimage_present
= 1;
1311 // The FPGA gets its clock from us from PCK0 output, so set that up.
1312 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1313 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1314 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1315 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1316 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1317 AT91C_PMC_PRES_CLK_4
;
1318 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1321 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1323 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1325 // Load the FPGA image, which we have stored in our flash.
1326 // (the HF version by default)
1327 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1335 byte_t rx
[sizeof(UsbCommand
)];
1340 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1342 UsbPacketReceived(rx
,rx_len
);
1348 #ifndef WITH_ISO14443a_StandAlone
1349 if (BUTTON_HELD(1000) > 0)
1353 #ifdef WITH_ISO14443a
1354 #ifdef WITH_ISO14443a_StandAlone
1355 if (BUTTON_HELD(1000) > 0)
1356 StandAloneMode14a();