]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/crypto1.c
FIX: "hf list legic" annotation now correct prints byte and value for "legic write...
[proxmark3-svn] / armsrc / crypto1.c
1 /* crypto1.c
2
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
7
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
16 MA 02110-1301, US
17
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
19 */
20 #include "crapto1.h"
21 #include <stdlib.h>
22
23 void crypto1_create(struct Crypto1State *s, uint64_t key)
24 {
25 // struct Crypto1State *s = malloc(sizeof(*s));
26 int i;
27
28 for(i = 47;s && i > 0; i -= 2) {
29 s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
30 s->even = s->even << 1 | BIT(key, i ^ 7);
31 }
32 }
33 void crypto1_destroy(struct Crypto1State *state)
34 {
35 // free(state);
36 state->odd = 0;
37 state->even = 0;
38 }
39 void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
40 {
41 int i;
42 for(*lfsr = 0, i = 23; i >= 0; --i) {
43 *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
44 *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
45 }
46 }
47 uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
48 {
49 uint32_t feedin;
50 uint32_t tmp;
51 uint8_t ret = filter(s->odd);
52
53 feedin = ret & !!is_encrypted;
54 feedin ^= !!in;
55 feedin ^= LF_POLY_ODD & s->odd;
56 feedin ^= LF_POLY_EVEN & s->even;
57 s->even = s->even << 1 | parity(feedin);
58
59 tmp = s->odd;
60 s->odd = s->even;
61 s->even = tmp;
62
63 return ret;
64 }
65 uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
66 {
67 /*
68 uint8_t i, ret = 0;
69
70 for (i = 0; i < 8; ++i)
71 ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
72 */
73 // unfold loop 20161012
74 uint8_t ret = 0;
75 ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
76 ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
77 ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
78 ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
79 ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
80 ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
81 ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
82 ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
83 return ret;
84 }
85 uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
86 {
87 /*
88 uint32_t i, ret = 0;
89
90 for (i = 0; i < 32; ++i)
91 ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
92 */
93 //unfold loop 2016012
94 uint32_t ret = 0;
95 ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
96 ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
97 ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
98 ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
99 ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
100 ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
101 ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
102 ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
103
104 ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
105 ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
106 ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
107 ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
108 ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
109 ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
110 ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
111 ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
112
113 ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
114 ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
115 ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
116 ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
117 ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
118 ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
119 ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
120 ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
121
122 ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
123 ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
124 ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
125 ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
126 ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
127 ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
128 ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
129 ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
130 return ret;
131 }
132
133 /* prng_successor
134 * helper used to obscure the keystream during authentication
135 */
136 uint32_t prng_successor(uint32_t x, uint32_t n)
137 {
138 SWAPENDIAN(x);
139 while(n--)
140 x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
141
142 return SWAPENDIAN(x);
143 }
Impressum, Datenschutz