]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
CHG, modified the configuration script
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17
18 // MIFARE
19 int compar_int(const void * a, const void * b) {
20 // didn't work: (the result is truncated to 32 bits)
21 //return (*(uint64_t*)b - *(uint64_t*)a);
22
23 // better:
24 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
25 else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
26 else return -1;
27 }
28
29 // Compare 16 Bits out of cryptostate
30 int Compare16Bits(const void * a, const void * b) {
31 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
32 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
33 else return -1;
34 }
35
36 typedef
37 struct {
38 union {
39 struct Crypto1State *slhead;
40 uint64_t *keyhead;
41 } head;
42 union {
43 struct Crypto1State *sltail;
44 uint64_t *keytail;
45 } tail;
46 uint32_t len;
47 uint32_t uid;
48 uint32_t blockNo;
49 uint32_t keyType;
50 uint32_t nt;
51 uint32_t ks1;
52 } StateList_t;
53
54
55 // wrapper function for multi-threaded lfsr_recovery32
56 void* nested_worker_thread(void *arg)
57 {
58 struct Crypto1State *p1;
59 StateList_t *statelist = arg;
60
61 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
62 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
63 statelist->len = p1 - statelist->head.slhead;
64 statelist->tail.sltail = --p1;
65 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
66
67 return statelist->head.slhead;
68 }
69
70 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
71 {
72 uint16_t i;
73 uint32_t uid;
74 UsbCommand resp;
75
76 StateList_t statelists[2];
77 struct Crypto1State *p1, *p2, *p3, *p4;
78
79 // flush queue
80
81 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
82 memcpy(c.d.asBytes, key, 6);
83 clearCommandBuffer();
84 SendCommand(&c);
85
86 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
87
88 // error during nested
89 if (resp.arg[0]) return resp.arg[0];
90
91 memcpy(&uid, resp.d.asBytes, 4);
92 PrintAndLog("UID: %08x Block:%d Key: %c", uid, (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8) ?'A':'B' );
93
94 for (i = 0; i < 2; i++) {
95 statelists[i].blockNo = resp.arg[2] & 0xff;
96 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
97 statelists[i].uid = uid;
98 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
99 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
100 }
101
102 // calc keys
103
104 pthread_t thread_id[2];
105
106 // create and run worker threads
107 for (i = 0; i < 2; i++) {
108 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
109 }
110
111 // wait for threads to terminate:
112 for (i = 0; i < 2; i++) {
113 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
114 }
115
116
117 // the first 16 Bits of the cryptostate already contain part of our key.
118 // Create the intersection of the two lists based on these 16 Bits and
119 // roll back the cryptostate
120 p1 = p3 = statelists[0].head.slhead;
121 p2 = p4 = statelists[1].head.slhead;
122 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
123 if (Compare16Bits(p1, p2) == 0) {
124 struct Crypto1State savestate, *savep = &savestate;
125 savestate = *p1;
126 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
127 *p3 = *p1;
128 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
129 p3++;
130 p1++;
131 }
132 savestate = *p2;
133 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
134 *p4 = *p2;
135 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
136 p4++;
137 p2++;
138 }
139 }
140 else {
141 while (Compare16Bits(p1, p2) == -1) p1++;
142 while (Compare16Bits(p1, p2) == 1) p2++;
143 }
144 }
145 p3->even = 0; p3->odd = 0;
146 p4->even = 0; p4->odd = 0;
147 statelists[0].len = p3 - statelists[0].head.slhead;
148 statelists[1].len = p4 - statelists[1].head.slhead;
149 statelists[0].tail.sltail=--p3;
150 statelists[1].tail.sltail=--p4;
151
152 // the statelists now contain possible keys. The key we are searching for must be in the
153 // intersection of both lists. Create the intersection:
154 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
155 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
156
157 uint64_t *p5, *p6, *p7;
158 p5 = p7 = statelists[0].head.keyhead;
159 p6 = statelists[1].head.keyhead;
160 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
161 if (compar_int(p5, p6) == 0) {
162 *p7++ = *p5++;
163 p6++;
164 }
165 else {
166 while (compar_int(p5, p6) == -1) p5++;
167 while (compar_int(p5, p6) == 1) p6++;
168 }
169 }
170 statelists[0].len = p7 - statelists[0].head.keyhead;
171 statelists[0].tail.keytail=--p7;
172
173 memset(resultKey, 0, 6);
174 // The list may still contain several key candidates. Test each of them with mfCheckKeys
175 for (i = 0; i < statelists[0].len; i++) {
176 uint8_t keyBlock[6];
177 uint64_t key64;
178 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
179 num_to_bytes(key64, 6, keyBlock);
180 key64 = 0;
181 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
182 num_to_bytes(key64, 6, resultKey);
183 break;
184 }
185 }
186
187 free(statelists[0].head.slhead);
188 free(statelists[1].head.slhead);
189 return 0;
190 }
191
192 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
193
194 *key = 0;
195
196 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
197 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
198
199 clearCommandBuffer();
200 SendCommand(&c);
201 UsbCommand resp;
202 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
203 if ((resp.arg[0] & 0xff) != 0x01) return 2;
204 *key = bytes_to_num(resp.d.asBytes, 6);
205 return 0;
206 }
207
208 // EMULATOR
209
210 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
211 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
212 clearCommandBuffer();
213 SendCommand(&c);
214 UsbCommand resp;
215 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
216 memcpy(data, resp.d.asBytes, blocksCount * 16);
217 return 0;
218 }
219
220 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
221 return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
222 }
223
224 int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
225 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
226 memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
227
228 clearCommandBuffer();
229 SendCommand(&c);
230 return 0;
231 }
232
233 // "MAGIC" CARD
234
235 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
236
237 uint8_t params = MAGIC_SINGLE;
238 uint8_t block0[16];
239 memset(block0, 0x00, sizeof(block0));
240
241
242 int old = mfCGetBlock(0, block0, params);
243 if (old == 0) {
244 PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
245 } else {
246 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
247 }
248
249 // fill in the new values
250 // UID
251 memcpy(block0, uid, 4);
252 // Mifare UID BCC
253 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
254 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
255 if ( sak != NULL )
256 block0[5]=sak[0];
257
258 if ( atqa != NULL ) {
259 block0[6]=atqa[1];
260 block0[7]=atqa[0];
261 }
262 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
263
264 if ( wipecard ) params |= MAGIC_WIPE;
265 if ( oldUID == NULL) params |= MAGIC_UID;
266
267 return mfCSetBlock(0, block0, oldUID, params);
268 }
269
270 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
271
272 uint8_t isOK = 0;
273 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
274 memcpy(c.d.asBytes, data, 16);
275 clearCommandBuffer();
276 SendCommand(&c);
277 UsbCommand resp;
278 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
279 isOK = resp.arg[0] & 0xff;
280 if (uid != NULL)
281 memcpy(uid, resp.d.asBytes, 4);
282 if (!isOK)
283 return 2;
284 } else {
285 PrintAndLog("Command execute timeout");
286 return 1;
287 }
288 return 0;
289 }
290
291 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
292 uint8_t isOK = 0;
293 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
294 clearCommandBuffer();
295 SendCommand(&c);
296 UsbCommand resp;
297 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
298 isOK = resp.arg[0] & 0xff;
299 memcpy(data, resp.d.asBytes, 16);
300 if (!isOK) return 2;
301 } else {
302 PrintAndLog("Command execute timeout");
303 return 1;
304 }
305 return 0;
306 }
307
308 // SNIFFER
309
310 // constants
311 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
312
313 // variables
314 char logHexFileName[FILE_PATH_SIZE] = {0x00};
315 static uint8_t traceCard[4096] = {0x00};
316 static char traceFileName[FILE_PATH_SIZE] = {0x00};
317 static int traceState = TRACE_IDLE;
318 static uint8_t traceCurBlock = 0;
319 static uint8_t traceCurKey = 0;
320
321 struct Crypto1State *traceCrypto1 = NULL;
322
323 struct Crypto1State *revstate = NULL;
324
325 uint64_t key = 0;
326 uint32_t ks2 = 0;
327 uint32_t ks3 = 0;
328
329 uint32_t uid = 0; // serial number
330 uint32_t nt =0; // tag challenge
331 uint32_t nr_enc =0; // encrypted reader challenge
332 uint32_t ar_enc =0; // encrypted reader response
333 uint32_t at_enc =0; // encrypted tag response
334
335 int isTraceCardEmpty(void) {
336 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
337 }
338
339 int isBlockEmpty(int blockN) {
340 for (int i = 0; i < 16; i++)
341 if (traceCard[blockN * 16 + i] != 0) return 0;
342
343 return 1;
344 }
345
346 int isBlockTrailer(int blockN) {
347 return ((blockN & 0x03) == 0x03);
348 }
349
350 int loadTraceCard(uint8_t *tuid) {
351 FILE * f;
352 char buf[64] = {0x00};
353 uint8_t buf8[64] = {0x00};
354 int i, blockNum;
355
356 if (!isTraceCardEmpty())
357 saveTraceCard();
358
359 memset(traceCard, 0x00, 4096);
360 memcpy(traceCard, tuid + 3, 4);
361
362 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
363
364 f = fopen(traceFileName, "r");
365 if (!f) return 1;
366
367 blockNum = 0;
368
369 while(!feof(f)){
370
371 memset(buf, 0, sizeof(buf));
372 if (fgets(buf, sizeof(buf), f) == NULL) {
373 PrintAndLog("File reading error.");
374 fclose(f);
375 return 2;
376 }
377
378 if (strlen(buf) < 32){
379 if (feof(f)) break;
380 PrintAndLog("File content error. Block data must include 32 HEX symbols");
381 fclose(f);
382 return 2;
383 }
384 for (i = 0; i < 32; i += 2)
385 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
386
387 memcpy(traceCard + blockNum * 16, buf8, 16);
388
389 blockNum++;
390 }
391 fclose(f);
392
393 return 0;
394 }
395
396 int saveTraceCard(void) {
397 FILE * f;
398
399 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
400
401 f = fopen(traceFileName, "w+");
402 if ( !f ) return 1;
403
404 for (int i = 0; i < 64; i++) { // blocks
405 for (int j = 0; j < 16; j++) // bytes
406 fprintf(f, "%02x", *(traceCard + i * 16 + j));
407 fprintf(f,"\n");
408 }
409 fclose(f);
410 return 0;
411 }
412
413 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
414
415 if (traceCrypto1)
416 crypto1_destroy(traceCrypto1);
417
418 traceCrypto1 = NULL;
419
420 if (wantSaveToEmlFile)
421 loadTraceCard(tuid);
422
423 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
424 traceCard[5] = sak;
425 memcpy(&traceCard[6], atqa, 2);
426 traceCurBlock = 0;
427 uid = bytes_to_num(tuid + 3, 4);
428
429 traceState = TRACE_IDLE;
430
431 return 0;
432 }
433
434 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
435 uint8_t bt = 0;
436 int i;
437
438 if (len != 1) {
439 for (i = 0; i < len; i++)
440 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
441 } else {
442 bt = 0;
443 for (i = 0; i < 4; i++)
444 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
445
446 data[0] = bt;
447 }
448 return;
449 }
450
451
452 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
453 uint8_t data[64];
454
455 if (traceState == TRACE_ERROR) return 1;
456 if (len > 64) {
457 traceState = TRACE_ERROR;
458 return 1;
459 }
460
461 memcpy(data, data_src, len);
462 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
463 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
464 PrintAndLog("dec> %s", sprint_hex(data, len));
465 AddLogHex(logHexFileName, "dec> ", data, len);
466 }
467
468 switch (traceState) {
469 case TRACE_IDLE:
470 // check packet crc16!
471 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
472 PrintAndLog("dec> CRC ERROR!!!");
473 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
474 traceState = TRACE_ERROR; // do not decrypt the next commands
475 return 1;
476 }
477
478 // AUTHENTICATION
479 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
480 traceState = TRACE_AUTH1;
481 traceCurBlock = data[1];
482 traceCurKey = data[0] == 60 ? 1:0;
483 return 0;
484 }
485
486 // READ
487 if ((len ==4) && ((data[0] == 0x30))) {
488 traceState = TRACE_READ_DATA;
489 traceCurBlock = data[1];
490 return 0;
491 }
492
493 // WRITE
494 if ((len ==4) && ((data[0] == 0xA0))) {
495 traceState = TRACE_WRITE_OK;
496 traceCurBlock = data[1];
497 return 0;
498 }
499
500 // HALT
501 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
502 traceState = TRACE_ERROR; // do not decrypt the next commands
503 return 0;
504 }
505
506 return 0;
507 break;
508
509 case TRACE_READ_DATA:
510 if (len == 18) {
511 traceState = TRACE_IDLE;
512
513 if (isBlockTrailer(traceCurBlock)) {
514 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
515 } else {
516 memcpy(traceCard + traceCurBlock * 16, data, 16);
517 }
518 if (wantSaveToEmlFile) saveTraceCard();
519 return 0;
520 } else {
521 traceState = TRACE_ERROR;
522 return 1;
523 }
524 break;
525
526 case TRACE_WRITE_OK:
527 if ((len == 1) && (data[0] == 0x0a)) {
528 traceState = TRACE_WRITE_DATA;
529
530 return 0;
531 } else {
532 traceState = TRACE_ERROR;
533 return 1;
534 }
535 break;
536
537 case TRACE_WRITE_DATA:
538 if (len == 18) {
539 traceState = TRACE_IDLE;
540
541 memcpy(traceCard + traceCurBlock * 16, data, 16);
542 if (wantSaveToEmlFile) saveTraceCard();
543 return 0;
544 } else {
545 traceState = TRACE_ERROR;
546 return 1;
547 }
548 break;
549
550 case TRACE_AUTH1:
551 if (len == 4) {
552 traceState = TRACE_AUTH2;
553 nt = bytes_to_num(data, 4);
554 return 0;
555 } else {
556 traceState = TRACE_ERROR;
557 return 1;
558 }
559 break;
560
561 case TRACE_AUTH2:
562 if (len == 8) {
563 traceState = TRACE_AUTH_OK;
564
565 nr_enc = bytes_to_num(data, 4);
566 ar_enc = bytes_to_num(data + 4, 4);
567 return 0;
568 } else {
569 traceState = TRACE_ERROR;
570 return 1;
571 }
572 break;
573
574 case TRACE_AUTH_OK:
575 if (len ==4) {
576 traceState = TRACE_IDLE;
577
578 at_enc = bytes_to_num(data, 4);
579
580 // decode key here)
581 ks2 = ar_enc ^ prng_successor(nt, 64);
582 ks3 = at_enc ^ prng_successor(nt, 96);
583 revstate = lfsr_recovery64(ks2, ks3);
584 lfsr_rollback_word(revstate, 0, 0);
585 lfsr_rollback_word(revstate, 0, 0);
586 lfsr_rollback_word(revstate, nr_enc, 1);
587 lfsr_rollback_word(revstate, uid ^ nt, 0);
588
589 crypto1_get_lfsr(revstate, &key);
590 printf("Key: %012"llx"\n",key);
591 AddLogUint64(logHexFileName, "key: ", key);
592
593 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
594 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
595
596 if (traceCurKey) {
597 num_to_bytes(key, 6, traceCard + blockShift + 10);
598 } else {
599 num_to_bytes(key, 6, traceCard + blockShift);
600 }
601 if (wantSaveToEmlFile) saveTraceCard();
602
603 if (traceCrypto1) {
604 crypto1_destroy(traceCrypto1);
605 }
606
607 // set cryptosystem state
608 traceCrypto1 = lfsr_recovery64(ks2, ks3);
609
610 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
611
612 /* traceCrypto1 = crypto1_create(key); // key in lfsr
613 crypto1_word(traceCrypto1, nt ^ uid, 0);
614 crypto1_word(traceCrypto1, ar, 1);
615 crypto1_word(traceCrypto1, 0, 0);
616 crypto1_word(traceCrypto1, 0, 0);*/
617
618 return 0;
619 } else {
620 traceState = TRACE_ERROR;
621 return 1;
622 }
623 break;
624
625 default:
626 traceState = TRACE_ERROR;
627 return 1;
628 }
629
630 return 0;
631 }
632
633 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
634 /*
635 uint32_t nt; // tag challenge
636 uint32_t nr_enc; // encrypted reader challenge
637 uint32_t ar_enc; // encrypted reader response
638 uint32_t at_enc; // encrypted tag response
639 */
640
641 struct Crypto1State *pcs = NULL;
642
643 ks2 = ar_enc ^ prng_successor(nt, 64);
644 ks3 = at_enc ^ prng_successor(nt, 96);
645
646 PrintAndLog("Decrypting data with:");
647 PrintAndLog(" nt: %08x",nt);
648 PrintAndLog(" ar_enc: %08x",ar_enc);
649 PrintAndLog(" at_enc: %08x",at_enc);
650 PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data,len) );
651
652 pcs = lfsr_recovery64(ks2, ks3);
653 mf_crypto1_decrypt(pcs, data, len, FALSE);
654 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
655 crypto1_destroy(pcs);
656 return 0;
657 }
Impressum, Datenschutz