1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" //test
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
76 /* blank r/w tag data stream
77 ...0000000000000000 01111111
78 1010101010101010101010101010101010101010101010101010101010101010
81 101010101010101[0]000...
83 [5555fe852c5555555555555555fe0000]
87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
91 #define FSAMPLE 2000000
95 signed char *dest
= (signed char *)BigBuf_get_addr();
96 uint16_t n
= BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
100 int i
, cycles
=0, samples
=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
116 // get TI tag data into the buffer
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
121 for (i
=0; i
<n
-1; i
++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
125 // after 16 cycles, measure the frequency
128 samples
=i
-samples
; // number of samples in these 16 cycles
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0
= (shift0
>>1) | (shift1
<< 31);
133 shift1
= (shift1
>>1) | (shift2
<< 31);
134 shift2
= (shift2
>>1) | (shift3
<< 31);
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
140 // low frequency represents a 1
142 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
143 // high frequency represents a 0
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3
= shift2
= shift1
= shift0
= 0;
151 // for each bit we receive, test if we've detected a valid tag
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
158 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
166 // if flag is set we have a tag
168 DbpString("Info: No valid tag detected.");
170 // put 64 bit data into shift1 and shift0
171 shift0
= (shift0
>>24) | (shift1
<< 8);
172 shift1
= (shift1
>>24) | (shift2
<< 8);
174 // align 16 bit crc into lower half of shift2
175 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
177 // if r/w tag, check ident match
178 if (shift3
& (1<<15) ) {
179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
181 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
182 DbpString("Error: Ident mismatch!");
184 DbpString("Info: TI tag ident is valid");
187 DbpString("Info: TI tag is readonly");
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
196 crc
= update_crc16(crc
, (shift0
)&0xff);
197 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
200 crc
= update_crc16(crc
, (shift1
)&0xff);
201 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
205 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
206 if (crc
!= (shift2
&0xffff)) {
207 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
209 DbpString("Info: CRC is good");
214 void WriteTIbyte(uint8_t b
)
218 // modulate 8 bits out to the antenna
222 // stop modulating antenna
229 // stop modulating antenna
239 void AcquireTiType(void)
242 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
243 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
244 #define TIBUFLEN 1250
247 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
249 //clear buffer now so it does not interfere with timing later
250 BigBuf_Clear_ext(false);
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
254 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
258 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
260 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC
->SSC_CMR
= 12;
267 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
269 AT91C_BASE_SSC
->SSC_TCMR
= 0;
270 AT91C_BASE_SSC
->SSC_TFMR
= 0;
277 // Charge TI tag for 50ms.
280 // stop modulating antenna and listen
287 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
288 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
289 i
++; if(i
>= TIBUFLEN
) break;
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
296 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
298 char *dest
= (char *)BigBuf_get_addr();
302 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
303 for (j
= 0; j
< 32; j
++) {
304 if(buf
[i
] & (1 << j
)) {
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
320 crc
= update_crc16(crc
, (idlo
)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
324 crc
= update_crc16(crc
, (idhi
)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
329 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
342 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb first
352 // finish with 15ms programming time
356 SpinDelay(50); // charge time
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo
)&0xff );
361 WriteTIbyte( (idlo
>>8 )&0xff );
362 WriteTIbyte( (idlo
>>16)&0xff );
363 WriteTIbyte( (idlo
>>24)&0xff );
364 WriteTIbyte( (idhi
)&0xff );
365 WriteTIbyte( (idhi
>>8 )&0xff );
366 WriteTIbyte( (idhi
>>16)&0xff );
367 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc
)&0xff ); // crc lo
369 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
373 SpinDelay(50); // programming time
377 // get TI tag data into the buffer
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
381 DbpString("Now use 'lf ti read' to check");
384 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
387 uint8_t *tab
= BigBuf_get_addr();
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
392 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
393 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
394 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
396 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
397 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
401 //wait until SSC_CLK goes HIGH
402 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
403 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
404 DbpString("Stopped");
409 if (ledcontrol
) LED_D_ON();
416 if (ledcontrol
) LED_D_OFF();
418 //wait until SSC_CLK goes LOW
419 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
420 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
421 DbpString("Stopped");
439 #define DEBUG_FRAME_CONTENTS 1
440 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
444 // compose fc/8 fc/10 waveform (FSK2)
445 static void fc(int c
, int *n
)
447 uint8_t *dest
= BigBuf_get_addr();
450 // for when we want an fc8 pattern every 4 logical bits
462 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
464 for (idx
=0; idx
<6; idx
++) {
476 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
478 for (idx
=0; idx
<5; idx
++) {
492 // compose fc/X fc/Y waveform (FSKx)
493 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
495 uint8_t *dest
= BigBuf_get_addr();
496 uint8_t halfFC
= fc
/2;
497 uint8_t wavesPerClock
= clock
/fc
;
498 uint8_t mod
= clock
% fc
; //modifier
499 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
500 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
501 // loop through clock - step field clock
502 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
503 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
504 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
505 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
508 if (mod
>0) (*modCnt
)++;
509 if ((mod
>0) && modAdjOk
){ //fsk2
510 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
511 memset(dest
+(*n
), 0, fc
-halfFC
);
512 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
516 if (mod
>0 && !modAdjOk
){ //fsk1
517 memset(dest
+(*n
), 0, mod
-(mod
/2));
518 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
523 // prepare a waveform pattern in the buffer based on the ID given then
524 // simulate a HID tag until the button is pressed
525 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
529 HID tag bitstream format
530 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
531 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
532 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
533 A fc8 is inserted before every 4 bits
534 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
535 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
539 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
543 // special start of frame marker containing invalid bit sequences
544 fc(8, &n
); fc(8, &n
); // invalid
545 fc(8, &n
); fc(10, &n
); // logical 0
546 fc(10, &n
); fc(10, &n
); // invalid
547 fc(8, &n
); fc(10, &n
); // logical 0
550 // manchester encode bits 43 to 32
551 for (i
=11; i
>=0; i
--) {
552 if ((i
%4)==3) fc(0,&n
);
554 fc(10, &n
); fc(8, &n
); // low-high transition
556 fc(8, &n
); fc(10, &n
); // high-low transition
561 // manchester encode bits 31 to 0
562 for (i
=31; i
>=0; i
--) {
563 if ((i
%4)==3) fc(0,&n
);
565 fc(10, &n
); fc(8, &n
); // low-high transition
567 fc(8, &n
); fc(10, &n
); // high-low transition
571 if (ledcontrol
) LED_A_ON();
572 SimulateTagLowFrequency(n
, 0, ledcontrol
);
573 if (ledcontrol
) LED_A_OFF();
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a FSK tag until the button is pressed
578 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
579 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
583 uint8_t fcHigh
= arg1
>> 8;
584 uint8_t fcLow
= arg1
& 0xFF;
586 uint8_t clk
= arg2
& 0xFF;
587 uint8_t invert
= (arg2
>> 8) & 1;
589 for (i
=0; i
<size
; i
++){
590 if (BitStream
[i
] == invert
){
591 fcAll(fcLow
, &n
, clk
, &modCnt
);
593 fcAll(fcHigh
, &n
, clk
, &modCnt
);
596 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
598 if (ledcontrol
) LED_A_ON();
599 SimulateTagLowFrequency(n
, 0, ledcontrol
);
600 if (ledcontrol
) LED_A_OFF();
603 // compose ask waveform for one bit(ASK)
604 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
606 uint8_t *dest
= BigBuf_get_addr();
607 uint8_t halfClk
= clock
/2;
608 // c = current bit 1 or 0
610 memset(dest
+(*n
), c
, halfClk
);
611 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
613 memset(dest
+(*n
), c
, clock
);
618 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
620 uint8_t *dest
= BigBuf_get_addr();
621 uint8_t halfClk
= clock
/2;
623 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
624 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
626 memset(dest
+(*n
), c
^ *phase
, clock
);
632 // args clock, ask/man or askraw, invert, transmission separator
633 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
637 uint8_t clk
= (arg1
>> 8) & 0xFF;
638 uint8_t encoding
= arg1
& 0xFF;
639 uint8_t separator
= arg2
& 1;
640 uint8_t invert
= (arg2
>> 8) & 1;
642 if (encoding
==2){ //biphase
644 for (i
=0; i
<size
; i
++){
645 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
647 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
648 for (i
=0; i
<size
; i
++){
649 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
652 } else { // ask/manchester || ask/raw
653 for (i
=0; i
<size
; i
++){
654 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
656 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
657 for (i
=0; i
<size
; i
++){
658 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
663 if (separator
==1) Dbprintf("sorry but separator option not yet available");
665 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
667 if (ledcontrol
) LED_A_ON();
668 SimulateTagLowFrequency(n
, 0, ledcontrol
);
669 if (ledcontrol
) LED_A_OFF();
672 //carrier can be 2,4 or 8
673 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
675 uint8_t *dest
= BigBuf_get_addr();
676 uint8_t halfWave
= waveLen
/2;
680 // write phase change
681 memset(dest
+(*n
), *curPhase
^1, halfWave
);
682 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
687 //write each normal clock wave for the clock duration
688 for (; i
< clk
; i
+=waveLen
){
689 memset(dest
+(*n
), *curPhase
, halfWave
);
690 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
695 // args clock, carrier, invert,
696 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
700 uint8_t clk
= arg1
>> 8;
701 uint8_t carrier
= arg1
& 0xFF;
702 uint8_t invert
= arg2
& 0xFF;
703 uint8_t curPhase
= 0;
704 for (i
=0; i
<size
; i
++){
705 if (BitStream
[i
] == curPhase
){
706 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
708 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
711 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
713 if (ledcontrol
) LED_A_ON();
714 SimulateTagLowFrequency(n
, 0, ledcontrol
);
715 if (ledcontrol
) LED_A_OFF();
718 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
719 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
721 uint8_t *dest
= BigBuf_get_addr();
723 uint32_t hi2
=0, hi
=0, lo
=0;
725 // Configure to go in 125Khz listen mode
726 LFSetupFPGAForADC(95, true);
728 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
731 if (ledcontrol
) LED_A_ON();
733 DoAcquisition_default(-1,true);
735 size
= 50*128*2; //big enough to catch 2 sequences of largest format
736 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
738 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
739 // go over previously decoded manchester data and decode into usable tag ID
740 if (hi2
!= 0){ //extra large HID tags 88/192 bits
741 Dbprintf("TAG ID: %x%08x%08x (%d)",
745 (unsigned int) (lo
>>1) & 0xFFFF
747 }else { //standard HID tags 44/96 bits
750 uint32_t cardnum
= 0;
752 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
754 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
756 while(lo2
> 1){ //find last bit set to 1 (format len bit)
764 cardnum
= (lo
>>1)&0xFFFF;
768 cardnum
= (lo
>>1)&0x7FFFF;
769 fc
= ((hi
&0xF)<<12)|(lo
>>20);
772 cardnum
= (lo
>>1)&0xFFFF;
773 fc
= ((hi
&1)<<15)|(lo
>>17);
776 cardnum
= (lo
>>1)&0xFFFFF;
777 fc
= ((hi
&1)<<11)|(lo
>>21);
780 else { //if bit 38 is not set then 37 bit format is used
785 cardnum
= (lo
>>1)&0x7FFFF;
786 fc
= ((hi
&0xF)<<12)|(lo
>>20);
789 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
792 (unsigned int) (lo
>>1) & 0xFFFF,
793 (unsigned int) bitlen
,
795 (unsigned int) cardnum
);
798 if (ledcontrol
) LED_A_OFF();
805 hi2
= hi
= lo
= idx
= 0;
808 DbpString("Stopped");
809 if (ledcontrol
) LED_A_OFF();
812 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
813 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
815 uint8_t *dest
= BigBuf_get_addr();
818 // Configure to go in 125Khz listen mode
819 LFSetupFPGAForADC(95, true);
821 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
824 if (ledcontrol
) LED_A_ON();
826 DoAcquisition_default(-1,true);
828 size
= 50*128*2; //big enough to catch 2 sequences of largest format
829 idx
= AWIDdemodFSK(dest
, &size
);
831 if (idx
<=0 || size
!=96) continue;
833 // 0 10 20 30 40 50 60
835 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
836 // -----------------------------------------------------------------------------
837 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
838 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
839 // |---26 bit---| |-----117----||-------------142-------------|
840 // b = format bit len, o = odd parity of last 3 bits
841 // f = facility code, c = card number
842 // w = wiegand parity
843 // (26 bit format shown)
845 //get raw ID before removing parities
846 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
847 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
848 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
850 size
= removeParity(dest
, idx
+8, 4, 1, 88);
851 if (size
!= 66) continue;
852 // ok valid card found!
855 // 0 10 20 30 40 50 60
857 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
858 // -----------------------------------------------------------------------------
859 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
860 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
861 // |26 bit| |-117--| |-----142------|
862 // b = format bit len, o = odd parity of last 3 bits
863 // f = facility code, c = card number
864 // w = wiegand parity
865 // (26 bit format shown)
868 uint32_t cardnum
= 0;
871 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
873 fc
= bytebits_to_byte(dest
+9, 8);
874 cardnum
= bytebits_to_byte(dest
+17, 16);
875 code1
= bytebits_to_byte(dest
+8,fmtLen
);
876 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
878 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
880 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
881 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
882 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
884 code1
= bytebits_to_byte(dest
+8,fmtLen
);
885 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
889 if (ledcontrol
) LED_A_OFF();
896 DbpString("Stopped");
897 if (ledcontrol
) LED_A_OFF();
900 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
902 uint8_t *dest
= BigBuf_get_addr();
904 size_t size
=0, idx
=0;
905 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
908 // Configure to go in 125Khz listen mode
909 LFSetupFPGAForADC(95, true);
911 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
914 if (ledcontrol
) LED_A_ON();
916 DoAcquisition_default(-1,true);
917 size
= BigBuf_max_traceLen();
918 //askdemod and manchester decode
919 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
920 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
923 if (errCnt
<0) continue;
925 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
928 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
932 (uint32_t)(lo
&0xFFFF),
933 (uint32_t)((lo
>>16LL) & 0xFF),
934 (uint32_t)(lo
& 0xFFFFFF));
936 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
939 (uint32_t)(lo
&0xFFFF),
940 (uint32_t)((lo
>>16LL) & 0xFF),
941 (uint32_t)(lo
& 0xFFFFFF));
945 if (ledcontrol
) LED_A_OFF();
947 *low
=lo
& 0xFFFFFFFF;
952 hi
= lo
= size
= idx
= 0;
953 clk
= invert
= errCnt
= 0;
955 DbpString("Stopped");
956 if (ledcontrol
) LED_A_OFF();
959 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
961 uint8_t *dest
= BigBuf_get_addr();
963 uint32_t code
=0, code2
=0;
965 uint8_t facilitycode
=0;
968 uint16_t calccrc
= 0;
969 // Configure to go in 125Khz listen mode
970 LFSetupFPGAForADC(95, true);
972 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
974 if (ledcontrol
) LED_A_ON();
975 DoAcquisition_default(-1,true);
976 //fskdemod and get start index
978 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
983 //0 10 20 30 40 50 60
985 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
986 //-----------------------------------------------------------------------------
987 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
990 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
991 //preamble F0 E0 01 03 B6 75
992 // How to calc checksum,
993 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
994 // F0 + E0 + 01 + 03 + B6 = 28A
998 //XSF(version)facility:codeone+codetwo
1000 if(findone
){ //only print binary if we are doing one
1001 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1002 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1003 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1004 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1005 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1006 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1007 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1009 code
= bytebits_to_byte(dest
+idx
,32);
1010 code2
= bytebits_to_byte(dest
+idx
+32,32);
1011 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1012 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1013 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1015 crc
= bytebits_to_byte(dest
+idx
+54,8);
1016 for (uint8_t i
=1; i
<6; ++i
)
1017 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1019 calccrc
= 0xff - calccrc
;
1021 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1023 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1024 // if we're only looking for one tag
1026 if (ledcontrol
) LED_A_OFF();
1032 version
=facilitycode
=0;
1038 DbpString("Stopped");
1039 if (ledcontrol
) LED_A_OFF();
1042 /*------------------------------
1043 * T5555/T5557/T5567/T5577 routines
1044 *------------------------------
1045 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1047 * Relevant communication times in microsecond
1048 * To compensate antenna falling times shorten the write times
1049 * and enlarge the gap ones.
1050 * Q5 tags seems to have issues when these values changes.
1053 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1054 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1055 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1056 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1057 #define READ_GAP 15*8
1059 // VALUES TAKEN FROM EM4x function: SendForward
1060 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1061 // WRITE_GAP = 128; (16*8)
1062 // WRITE_1 = 256 32*8; (32*8)
1064 // These timings work for 4469/4269/4305 (with the 55*8 above)
1065 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1067 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1068 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1069 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1070 // T0 = TIMER_CLOCK1 / 125000 = 192
1071 // 1 Cycle = 8 microseconds(us) == 1 field clock
1073 void TurnReadLFOn(int delay
) {
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1075 // Give it a bit of time for the resonant antenna to settle.
1077 // measure antenna strength.
1078 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1084 // Write one bit to card
1085 void T55xxWriteBit(int bit
) {
1087 TurnReadLFOn(WRITE_0
);
1089 TurnReadLFOn(WRITE_1
);
1090 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1091 SpinDelayUs(WRITE_GAP
);
1094 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1095 void T55xxResetRead(void) {
1097 //clear buffer now so it does not interfere with timing later
1098 BigBuf_Clear_ext(false);
1100 // Set up FPGA, 125kHz
1101 LFSetupFPGAForADC(95, true);
1103 // Trigger T55x7 in mode.
1104 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1105 SpinDelayUs(START_GAP
);
1107 // reset tag - op code 00
1111 // Turn field on to read the response
1112 TurnReadLFOn(READ_GAP
);
1115 doT55x7Acquisition(BigBuf_max_traceLen());
1117 // Turn the field off
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1119 cmd_send(CMD_ACK
,0,0,0,0,0);
1123 // Write one card block in page 0, no lock
1124 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1126 bool PwdMode
= arg
& 0x1;
1127 uint8_t Page
= (arg
& 0x2)>>1;
1130 // Set up FPGA, 125kHz
1131 LFSetupFPGAForADC(95, true);
1133 // Trigger T55x7 in mode.
1134 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1135 SpinDelayUs(START_GAP
);
1139 T55xxWriteBit(Page
); //Page 0
1142 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1143 T55xxWriteBit(Pwd
& i
);
1149 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1150 T55xxWriteBit(Data
& i
);
1152 // Send Block number
1153 for (i
= 0x04; i
!= 0; i
>>= 1)
1154 T55xxWriteBit(Block
& i
);
1156 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1157 // so wait a little more)
1158 TurnReadLFOn(20 * 1000);
1159 //could attempt to do a read to confirm write took
1160 // as the tag should repeat back the new block
1161 // until it is reset, but to confirm it we would
1162 // need to know the current block 0 config mode
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1169 // Write one card block in page 0, no lock
1170 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1171 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1172 cmd_send(CMD_ACK
,0,0,0,0,0);
1175 // Read one card block in page [page]
1176 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1178 bool PwdMode
= arg0
& 0x1;
1179 uint8_t Page
= (arg0
& 0x2) >> 1;
1181 bool RegReadMode
= (Block
== 0xFF);
1183 //clear buffer now so it does not interfere with timing later
1184 BigBuf_Clear_ext(false);
1186 //make sure block is at max 7
1189 // Set up FPGA, 125kHz to power up the tag
1190 LFSetupFPGAForADC(95, true);
1192 // Trigger T55x7 Direct Access Mode with start gap
1193 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1194 SpinDelayUs(START_GAP
);
1198 T55xxWriteBit(Page
); //Page 0
1202 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1203 T55xxWriteBit(Pwd
& i
);
1205 // Send a zero bit separation
1208 // Send Block number (if direct access mode)
1210 for (i
= 0x04; i
!= 0; i
>>= 1)
1211 T55xxWriteBit(Block
& i
);
1213 // Turn field on to read the response
1214 TurnReadLFOn(READ_GAP
);
1217 doT55x7Acquisition(12000);
1219 // Turn the field off
1220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1221 cmd_send(CMD_ACK
,0,0,0,0,0);
1225 void T55xxWakeUp(uint32_t Pwd
){
1229 // Set up FPGA, 125kHz
1230 LFSetupFPGAForADC(95, true);
1232 // Trigger T55x7 Direct Access Mode
1233 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1234 SpinDelayUs(START_GAP
);
1238 T55xxWriteBit(0); //Page 0
1241 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1242 T55xxWriteBit(Pwd
& i
);
1244 // Turn and leave field on to let the begin repeating transmission
1245 TurnReadLFOn(20*1000);
1248 /*-------------- Cloning routines -----------*/
1250 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1251 // write last block first and config block last (if included)
1252 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1253 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1256 // Copy HID id to card and setup block 0 config
1257 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1258 uint32_t data
[] = {0,0,0,0,0,0,0};
1259 uint8_t last_block
= 0;
1262 // Ensure no more than 84 bits supplied
1264 DbpString("Tags can only have 84 bits.");
1267 // Build the 6 data blocks for supplied 84bit ID
1269 // load preamble (1D) & long format identifier (9E manchester encoded)
1270 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1271 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1272 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1273 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1274 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1275 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1276 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1278 // Ensure no more than 44 bits supplied
1280 DbpString("Tags can only have 44 bits.");
1283 // Build the 3 data blocks for supplied 44bit ID
1286 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1287 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1288 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1290 // load chip config block
1291 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1293 //TODO add selection of chip for Q5 or T55x7
1294 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1297 // Program the data blocks for supplied ID
1298 // and the block 0 for HID format
1299 WriteT55xx(data
, 0, last_block
+1);
1306 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1307 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1308 //TODO add selection of chip for Q5 or T55x7
1309 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1312 // Program the data blocks for supplied ID
1313 // and the block 0 config
1314 WriteT55xx(data
, 0, 3);
1321 // Clone Indala 64-bit tag by UID to T55x7
1322 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1323 //Program the 2 data blocks for supplied 64bit UID
1324 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1325 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1326 //TODO add selection of chip for Q5 or T55x7
1327 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1329 WriteT55xx(data
, 0, 3);
1330 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1331 // T5567WriteBlock(0x603E1042,0);
1334 // Clone Indala 224-bit tag by UID to T55x7
1335 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1336 //Program the 7 data blocks for supplied 224bit UID
1337 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1338 // and the block 0 for Indala224 format
1339 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1340 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1341 //TODO add selection of chip for Q5 or T55x7
1342 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1343 WriteT55xx(data
, 0, 8);
1344 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1345 // T5567WriteBlock(0x603E10E2,0);
1348 // clone viking tag to T55xx
1349 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1350 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1351 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1352 // Program the data blocks for supplied ID and the block 0 config
1353 WriteT55xx(data
, 0, 3);
1355 cmd_send(CMD_ACK
,0,0,0,0,0);
1358 // Define 9bit header for EM410x tags
1359 #define EM410X_HEADER 0x1FF
1360 #define EM410X_ID_LENGTH 40
1362 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1364 uint64_t id
= EM410X_HEADER
;
1365 uint64_t rev_id
= 0; // reversed ID
1366 int c_parity
[4]; // column parity
1367 int r_parity
= 0; // row parity
1370 // Reverse ID bits given as parameter (for simpler operations)
1371 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1373 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1376 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1381 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1382 id_bit
= rev_id
& 1;
1385 // Don't write row parity bit at start of parsing
1387 id
= (id
<< 1) | r_parity
;
1388 // Start counting parity for new row
1395 // First elements in column?
1397 // Fill out first elements
1398 c_parity
[i
] = id_bit
;
1400 // Count column parity
1401 c_parity
[i
% 4] ^= id_bit
;
1404 id
= (id
<< 1) | id_bit
;
1408 // Insert parity bit of last row
1409 id
= (id
<< 1) | r_parity
;
1411 // Fill out column parity at the end of tag
1412 for (i
= 0; i
< 4; ++i
)
1413 id
= (id
<< 1) | c_parity
[i
];
1418 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1422 uint32_t data
[] = {0, (uint32_t)(id
>>32), id
& 0xFFFFFFFF};
1424 clock
= (card
& 0xFF00) >> 8;
1425 clock
= (clock
== 0) ? 64 : clock
;
1426 Dbprintf("Clock rate: %d", clock
);
1427 if (card
& 0xFF) { //t55x7
1428 clock
= GetT55xxClockBit(clock
);
1430 Dbprintf("Invalid clock rate: %d", clock
);
1433 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1434 } else { //t5555 (Q5)
1435 clock
= (clock
-2)>>1; //n = (RF-2)/2
1436 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1439 WriteT55xx(data
, 0, 3);
1442 Dbprintf("Tag %s written with 0x%08x%08x\n",
1443 card
? "T55x7":"T5555",
1444 (uint32_t)(id
>> 32),
1448 //-----------------------------------
1449 // EM4469 / EM4305 routines
1450 //-----------------------------------
1451 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1452 #define FWD_CMD_WRITE 0xA
1453 #define FWD_CMD_READ 0x9
1454 #define FWD_CMD_DISABLE 0x5
1456 uint8_t forwardLink_data
[64]; //array of forwarded bits
1457 uint8_t * forward_ptr
; //ptr for forward message preparation
1458 uint8_t fwd_bit_sz
; //forwardlink bit counter
1459 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1461 //====================================================================
1462 // prepares command bits
1464 //====================================================================
1465 //--------------------------------------------------------------------
1466 // VALUES TAKEN FROM EM4x function: SendForward
1467 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1468 // WRITE_GAP = 128; (16*8)
1469 // WRITE_1 = 256 32*8; (32*8)
1471 // These timings work for 4469/4269/4305 (with the 55*8 above)
1472 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1474 uint8_t Prepare_Cmd( uint8_t cmd
) {
1476 *forward_ptr
++ = 0; //start bit
1477 *forward_ptr
++ = 0; //second pause for 4050 code
1479 *forward_ptr
++ = cmd
;
1481 *forward_ptr
++ = cmd
;
1483 *forward_ptr
++ = cmd
;
1485 *forward_ptr
++ = cmd
;
1487 return 6; //return number of emited bits
1490 //====================================================================
1491 // prepares address bits
1493 //====================================================================
1494 uint8_t Prepare_Addr( uint8_t addr
) {
1496 register uint8_t line_parity
;
1501 *forward_ptr
++ = addr
;
1502 line_parity
^= addr
;
1506 *forward_ptr
++ = (line_parity
& 1);
1508 return 7; //return number of emited bits
1511 //====================================================================
1512 // prepares data bits intreleaved with parity bits
1514 //====================================================================
1515 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1517 register uint8_t line_parity
;
1518 register uint8_t column_parity
;
1519 register uint8_t i
, j
;
1520 register uint16_t data
;
1525 for(i
=0; i
<4; i
++) {
1527 for(j
=0; j
<8; j
++) {
1528 line_parity
^= data
;
1529 column_parity
^= (data
& 1) << j
;
1530 *forward_ptr
++ = data
;
1533 *forward_ptr
++ = line_parity
;
1538 for(j
=0; j
<8; j
++) {
1539 *forward_ptr
++ = column_parity
;
1540 column_parity
>>= 1;
1544 return 45; //return number of emited bits
1547 //====================================================================
1548 // Forward Link send function
1549 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1550 // fwd_bit_count set with number of bits to be sent
1551 //====================================================================
1552 void SendForward(uint8_t fwd_bit_count
) {
1554 fwd_write_ptr
= forwardLink_data
;
1555 fwd_bit_sz
= fwd_bit_count
;
1559 // Set up FPGA, 125kHz
1560 LFSetupFPGAForADC(95, true);
1562 // force 1st mod pulse (start gap must be longer for 4305)
1563 fwd_bit_sz
--; //prepare next bit modulation
1565 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1566 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1567 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1568 SpinDelayUs(16*8); //16 cycles on (8us each)
1570 // now start writting
1571 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1572 if(((*fwd_write_ptr
++) & 1) == 1)
1573 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1575 //These timings work for 4469/4269/4305 (with the 55*8 above)
1576 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1577 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1578 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1579 SpinDelayUs(9*8); //16 cycles on (8us each)
1584 void EM4xLogin(uint32_t Password
) {
1586 uint8_t fwd_bit_count
;
1588 forward_ptr
= forwardLink_data
;
1589 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1590 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1592 SendForward(fwd_bit_count
);
1594 //Wait for command to complete
1598 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1600 uint8_t fwd_bit_count
;
1601 uint8_t *dest
= BigBuf_get_addr();
1602 uint16_t bufsize
= BigBuf_max_traceLen();
1605 //clear buffer now so it does not interfere with timing later
1606 BigBuf_Clear_ext(false);
1608 //If password mode do login
1609 if (PwdMode
== 1) EM4xLogin(Pwd
);
1611 forward_ptr
= forwardLink_data
;
1612 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1613 fwd_bit_count
+= Prepare_Addr( Address
);
1615 // Connect the A/D to the peak-detected low-frequency path.
1616 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1617 // Now set up the SSC to get the ADC samples that are now streaming at us.
1620 SendForward(fwd_bit_count
);
1622 // Now do the acquisition
1625 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1626 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1628 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1629 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1631 if (i
>= bufsize
) break;
1635 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1636 cmd_send(CMD_ACK
,0,0,0,0,0);
1640 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1642 uint8_t fwd_bit_count
;
1644 //If password mode do login
1645 if (PwdMode
== 1) EM4xLogin(Pwd
);
1647 forward_ptr
= forwardLink_data
;
1648 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1649 fwd_bit_count
+= Prepare_Addr( Address
);
1650 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1652 SendForward(fwd_bit_count
);
1654 //Wait for write to complete
1656 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off