]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
FIX: the usb_poll_validate_length() check should be inversed, thanks @marshmellow42
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" //test
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
44 SpinDelay(2500);
45
46 LFSetupFPGAForADC(sc.divisor, 1);
47
48 // And a little more time for the tag to fully power up
49 SpinDelay(2000);
50
51 // now modulate the reader field
52 while(*command != '\0' && *command != ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
54 LED_D_OFF();
55 SpinDelayUs(delay_off);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
57
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
59 LED_D_ON();
60 if(*(command++) == '0')
61 SpinDelayUs(period_0);
62 else
63 SpinDelayUs(period_1);
64 }
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
66 LED_D_OFF();
67 SpinDelayUs(delay_off);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
69
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
71
72 // now do the read
73 DoAcquisition_config(false);
74 }
75
76 /* blank r/w tag data stream
77 ...0000000000000000 01111111
78 1010101010101010101010101010101010101010101010101010101010101010
79 0011010010100001
80 01111111
81 101010101010101[0]000...
82
83 [5555fe852c5555555555555555fe0000]
84 */
85 void ReadTItag(void)
86 {
87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
91 #define FSAMPLE 2000000
92 #define FREQLO 123200
93 #define FREQHI 134200
94
95 signed char *dest = (signed char *)BigBuf_get_addr();
96 uint16_t n = BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
99
100 int i, cycles=0, samples=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
105
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
109
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
115
116 // get TI tag data into the buffer
117 AcquireTiType();
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
120
121 for (i=0; i<n-1; i++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest[i]<0) && (dest[i+1]>0) ) {
124 cycles++;
125 // after 16 cycles, measure the frequency
126 if (cycles>15) {
127 cycles=0;
128 samples=i-samples; // number of samples in these 16 cycles
129
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0 = (shift0>>1) | (shift1 << 31);
133 shift1 = (shift1>>1) | (shift2 << 31);
134 shift2 = (shift2>>1) | (shift3 << 31);
135 shift3 >>= 1;
136
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
140 // low frequency represents a 1
141 shift3 |= (1<<31);
142 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
143 // high frequency represents a 0
144 } else {
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3 = shift2 = shift1 = shift0 = 0;
148 }
149 samples = i;
150
151 // for each bit we receive, test if we've detected a valid tag
152
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
158 cycles = 0xF0B; //use this as a flag (ugly but whatever)
159 break;
160 }
161 }
162 }
163 }
164 }
165
166 // if flag is set we have a tag
167 if (cycles!=0xF0B) {
168 DbpString("Info: No valid tag detected.");
169 } else {
170 // put 64 bit data into shift1 and shift0
171 shift0 = (shift0>>24) | (shift1 << 8);
172 shift1 = (shift1>>24) | (shift2 << 8);
173
174 // align 16 bit crc into lower half of shift2
175 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
176
177 // if r/w tag, check ident match
178 if (shift3 & (1<<15) ) {
179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
181 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
182 DbpString("Error: Ident mismatch!");
183 } else {
184 DbpString("Info: TI tag ident is valid");
185 }
186 } else {
187 DbpString("Info: TI tag is readonly");
188 }
189
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
193 // calculate CRC
194 uint32_t crc=0;
195
196 crc = update_crc16(crc, (shift0)&0xff);
197 crc = update_crc16(crc, (shift0>>8)&0xff);
198 crc = update_crc16(crc, (shift0>>16)&0xff);
199 crc = update_crc16(crc, (shift0>>24)&0xff);
200 crc = update_crc16(crc, (shift1)&0xff);
201 crc = update_crc16(crc, (shift1>>8)&0xff);
202 crc = update_crc16(crc, (shift1>>16)&0xff);
203 crc = update_crc16(crc, (shift1>>24)&0xff);
204
205 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
206 if (crc != (shift2&0xffff)) {
207 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
208 } else {
209 DbpString("Info: CRC is good");
210 }
211 }
212 }
213
214 void WriteTIbyte(uint8_t b)
215 {
216 int i = 0;
217
218 // modulate 8 bits out to the antenna
219 for (i=0; i<8; i++)
220 {
221 if (b&(1<<i)) {
222 // stop modulating antenna
223 LOW(GPIO_SSC_DOUT);
224 SpinDelayUs(1000);
225 // modulate antenna
226 HIGH(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 } else {
229 // stop modulating antenna
230 LOW(GPIO_SSC_DOUT);
231 SpinDelayUs(300);
232 // modulate antenna
233 HIGH(GPIO_SSC_DOUT);
234 SpinDelayUs(1700);
235 }
236 }
237 }
238
239 void AcquireTiType(void)
240 {
241 int i, j, n;
242 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
243 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
244 #define TIBUFLEN 1250
245
246 // clear buffer
247 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
248
249 //clear buffer now so it does not interfere with timing later
250 BigBuf_Clear_ext(false);
251
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
254 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
255
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
258 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
259
260 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
262
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC->SSC_CMR = 12;
266
267 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
269 AT91C_BASE_SSC->SSC_TCMR = 0;
270 AT91C_BASE_SSC->SSC_TFMR = 0;
271
272 LED_D_ON();
273
274 // modulate antenna
275 HIGH(GPIO_SSC_DOUT);
276
277 // Charge TI tag for 50ms.
278 SpinDelay(50);
279
280 // stop modulating antenna and listen
281 LOW(GPIO_SSC_DOUT);
282
283 LED_D_OFF();
284
285 i = 0;
286 for(;;) {
287 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
288 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
289 i++; if(i >= TIBUFLEN) break;
290 }
291 WDT_HIT();
292 }
293
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
296 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
297
298 char *dest = (char *)BigBuf_get_addr();
299 n = TIBUFLEN * 32;
300
301 // unpack buffer
302 for (i = TIBUFLEN-1; i >= 0; i--) {
303 for (j = 0; j < 32; j++) {
304 if(buf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311 }
312
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317 {
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
330
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
338 LED_A_ON();
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb first
352 // finish with 15ms programming time
353
354 // modulate antenna
355 HIGH(GPIO_SSC_DOUT);
356 SpinDelay(50); // charge time
357
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo )&0xff );
361 WriteTIbyte( (idlo>>8 )&0xff );
362 WriteTIbyte( (idlo>>16)&0xff );
363 WriteTIbyte( (idlo>>24)&0xff );
364 WriteTIbyte( (idhi )&0xff );
365 WriteTIbyte( (idhi>>8 )&0xff );
366 WriteTIbyte( (idhi>>16)&0xff );
367 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc )&0xff ); // crc lo
369 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
372 HIGH(GPIO_SSC_DOUT);
373 SpinDelay(50); // programming time
374
375 LED_A_OFF();
376
377 // get TI tag data into the buffer
378 AcquireTiType();
379
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
381 DbpString("Now use 'lf ti read' to check");
382 }
383
384 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
385 {
386 int i;
387 uint8_t *tab = BigBuf_get_addr();
388
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
391
392 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
393 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
394 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
395
396 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
397 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
398
399 i = 0;
400 for(;;) {
401 //wait until SSC_CLK goes HIGH
402 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
403 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
404 DbpString("Stopped");
405 return;
406 }
407 WDT_HIT();
408 }
409 if (ledcontrol) LED_D_ON();
410
411 if(tab[i])
412 OPEN_COIL();
413 else
414 SHORT_COIL();
415
416 if (ledcontrol) LED_D_OFF();
417
418 //wait until SSC_CLK goes LOW
419 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
420 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
421 DbpString("Stopped");
422 return;
423 }
424 WDT_HIT();
425 }
426
427 i++;
428 if(i == period) {
429
430 i = 0;
431 if (gap) {
432 SHORT_COIL();
433 SpinDelayUs(gap);
434 }
435 }
436 }
437 }
438
439 #define DEBUG_FRAME_CONTENTS 1
440 void SimulateTagLowFrequencyBidir(int divisor, int t0)
441 {
442 }
443
444 // compose fc/8 fc/10 waveform (FSK2)
445 static void fc(int c, int *n)
446 {
447 uint8_t *dest = BigBuf_get_addr();
448 int idx;
449
450 // for when we want an fc8 pattern every 4 logical bits
451 if(c==0) {
452 dest[((*n)++)]=1;
453 dest[((*n)++)]=1;
454 dest[((*n)++)]=1;
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=0;
457 dest[((*n)++)]=0;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 }
461
462 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
463 if(c==8) {
464 for (idx=0; idx<6; idx++) {
465 dest[((*n)++)]=1;
466 dest[((*n)++)]=1;
467 dest[((*n)++)]=1;
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=0;
470 dest[((*n)++)]=0;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 }
474 }
475
476 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
477 if(c==10) {
478 for (idx=0; idx<5; idx++) {
479 dest[((*n)++)]=1;
480 dest[((*n)++)]=1;
481 dest[((*n)++)]=1;
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=0;
485 dest[((*n)++)]=0;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 }
490 }
491 }
492 // compose fc/X fc/Y waveform (FSKx)
493 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
494 {
495 uint8_t *dest = BigBuf_get_addr();
496 uint8_t halfFC = fc/2;
497 uint8_t wavesPerClock = clock/fc;
498 uint8_t mod = clock % fc; //modifier
499 uint8_t modAdj = fc/mod; //how often to apply modifier
500 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
501 // loop through clock - step field clock
502 for (uint8_t idx=0; idx < wavesPerClock; idx++){
503 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
504 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
505 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
506 *n += fc;
507 }
508 if (mod>0) (*modCnt)++;
509 if ((mod>0) && modAdjOk){ //fsk2
510 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
511 memset(dest+(*n), 0, fc-halfFC);
512 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
513 *n += fc;
514 }
515 }
516 if (mod>0 && !modAdjOk){ //fsk1
517 memset(dest+(*n), 0, mod-(mod/2));
518 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
519 *n += mod;
520 }
521 }
522
523 // prepare a waveform pattern in the buffer based on the ID given then
524 // simulate a HID tag until the button is pressed
525 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
526 {
527 int n=0, i=0;
528 /*
529 HID tag bitstream format
530 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
531 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
532 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
533 A fc8 is inserted before every 4 bits
534 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
535 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
536 */
537
538 if (hi>0xFFF) {
539 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
540 return;
541 }
542 fc(0,&n);
543 // special start of frame marker containing invalid bit sequences
544 fc(8, &n); fc(8, &n); // invalid
545 fc(8, &n); fc(10, &n); // logical 0
546 fc(10, &n); fc(10, &n); // invalid
547 fc(8, &n); fc(10, &n); // logical 0
548
549 WDT_HIT();
550 // manchester encode bits 43 to 32
551 for (i=11; i>=0; i--) {
552 if ((i%4)==3) fc(0,&n);
553 if ((hi>>i)&1) {
554 fc(10, &n); fc(8, &n); // low-high transition
555 } else {
556 fc(8, &n); fc(10, &n); // high-low transition
557 }
558 }
559
560 WDT_HIT();
561 // manchester encode bits 31 to 0
562 for (i=31; i>=0; i--) {
563 if ((i%4)==3) fc(0,&n);
564 if ((lo>>i)&1) {
565 fc(10, &n); fc(8, &n); // low-high transition
566 } else {
567 fc(8, &n); fc(10, &n); // high-low transition
568 }
569 }
570
571 if (ledcontrol) LED_A_ON();
572 SimulateTagLowFrequency(n, 0, ledcontrol);
573 if (ledcontrol) LED_A_OFF();
574 }
575
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a FSK tag until the button is pressed
578 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
579 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
580 {
581 int ledcontrol=1;
582 int n=0, i=0;
583 uint8_t fcHigh = arg1 >> 8;
584 uint8_t fcLow = arg1 & 0xFF;
585 uint16_t modCnt = 0;
586 uint8_t clk = arg2 & 0xFF;
587 uint8_t invert = (arg2 >> 8) & 1;
588
589 for (i=0; i<size; i++){
590 if (BitStream[i] == invert){
591 fcAll(fcLow, &n, clk, &modCnt);
592 } else {
593 fcAll(fcHigh, &n, clk, &modCnt);
594 }
595 }
596 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
597
598 if (ledcontrol) LED_A_ON();
599 SimulateTagLowFrequency(n, 0, ledcontrol);
600 if (ledcontrol) LED_A_OFF();
601 }
602
603 // compose ask waveform for one bit(ASK)
604 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
605 {
606 uint8_t *dest = BigBuf_get_addr();
607 uint8_t halfClk = clock/2;
608 // c = current bit 1 or 0
609 if (manchester==1){
610 memset(dest+(*n), c, halfClk);
611 memset(dest+(*n) + halfClk, c^1, halfClk);
612 } else {
613 memset(dest+(*n), c, clock);
614 }
615 *n += clock;
616 }
617
618 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
619 {
620 uint8_t *dest = BigBuf_get_addr();
621 uint8_t halfClk = clock/2;
622 if (c){
623 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
624 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
625 } else {
626 memset(dest+(*n), c ^ *phase, clock);
627 *phase ^= 1;
628 }
629
630 }
631
632 // args clock, ask/man or askraw, invert, transmission separator
633 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
634 {
635 int ledcontrol = 1;
636 int n=0, i=0;
637 uint8_t clk = (arg1 >> 8) & 0xFF;
638 uint8_t encoding = arg1 & 0xFF;
639 uint8_t separator = arg2 & 1;
640 uint8_t invert = (arg2 >> 8) & 1;
641
642 if (encoding==2){ //biphase
643 uint8_t phase=0;
644 for (i=0; i<size; i++){
645 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
646 }
647 if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
648 for (i=0; i<size; i++){
649 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
650 }
651 }
652 } else { // ask/manchester || ask/raw
653 for (i=0; i<size; i++){
654 askSimBit(BitStream[i]^invert, &n, clk, encoding);
655 }
656 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
657 for (i=0; i<size; i++){
658 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
659 }
660 }
661 }
662
663 if (separator==1) Dbprintf("sorry but separator option not yet available");
664
665 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
666
667 if (ledcontrol) LED_A_ON();
668 SimulateTagLowFrequency(n, 0, ledcontrol);
669 if (ledcontrol) LED_A_OFF();
670 }
671
672 //carrier can be 2,4 or 8
673 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
674 {
675 uint8_t *dest = BigBuf_get_addr();
676 uint8_t halfWave = waveLen/2;
677 //uint8_t idx;
678 int i = 0;
679 if (phaseChg){
680 // write phase change
681 memset(dest+(*n), *curPhase^1, halfWave);
682 memset(dest+(*n) + halfWave, *curPhase, halfWave);
683 *n += waveLen;
684 *curPhase ^= 1;
685 i += waveLen;
686 }
687 //write each normal clock wave for the clock duration
688 for (; i < clk; i+=waveLen){
689 memset(dest+(*n), *curPhase, halfWave);
690 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
691 *n += waveLen;
692 }
693 }
694
695 // args clock, carrier, invert,
696 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
697 {
698 int ledcontrol = 1;
699 int n=0, i=0;
700 uint8_t clk = arg1 >> 8;
701 uint8_t carrier = arg1 & 0xFF;
702 uint8_t invert = arg2 & 0xFF;
703 uint8_t curPhase = 0;
704 for (i=0; i<size; i++){
705 if (BitStream[i] == curPhase){
706 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
707 } else {
708 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
709 }
710 }
711 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
712
713 if (ledcontrol) LED_A_ON();
714 SimulateTagLowFrequency(n, 0, ledcontrol);
715 if (ledcontrol) LED_A_OFF();
716 }
717
718 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
719 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
720 {
721 uint8_t *dest = BigBuf_get_addr();
722 size_t size = 0;
723 uint32_t hi2=0, hi=0, lo=0;
724 int idx=0;
725 // Configure to go in 125Khz listen mode
726 LFSetupFPGAForADC(95, true);
727
728 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
729
730 WDT_HIT();
731 if (ledcontrol) LED_A_ON();
732
733 DoAcquisition_default(-1,true);
734 // FSK demodulator
735 size = 50*128*2; //big enough to catch 2 sequences of largest format
736 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
737
738 if (idx>0 && lo>0 && (size==96 || size==192)){
739 // go over previously decoded manchester data and decode into usable tag ID
740 if (hi2 != 0){ //extra large HID tags 88/192 bits
741 Dbprintf("TAG ID: %x%08x%08x (%d)",
742 (unsigned int) hi2,
743 (unsigned int) hi,
744 (unsigned int) lo,
745 (unsigned int) (lo>>1) & 0xFFFF
746 );
747 }else { //standard HID tags 44/96 bits
748 uint8_t bitlen = 0;
749 uint32_t fc = 0;
750 uint32_t cardnum = 0;
751
752 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
753 uint32_t lo2=0;
754 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
755 uint8_t idx3 = 1;
756 while(lo2 > 1){ //find last bit set to 1 (format len bit)
757 lo2=lo2 >> 1;
758 idx3++;
759 }
760 bitlen = idx3+19;
761 fc =0;
762 cardnum=0;
763 if(bitlen == 26){
764 cardnum = (lo>>1)&0xFFFF;
765 fc = (lo>>17)&0xFF;
766 }
767 if(bitlen == 37){
768 cardnum = (lo>>1)&0x7FFFF;
769 fc = ((hi&0xF)<<12)|(lo>>20);
770 }
771 if(bitlen == 34){
772 cardnum = (lo>>1)&0xFFFF;
773 fc= ((hi&1)<<15)|(lo>>17);
774 }
775 if(bitlen == 35){
776 cardnum = (lo>>1)&0xFFFFF;
777 fc = ((hi&1)<<11)|(lo>>21);
778 }
779 }
780 else { //if bit 38 is not set then 37 bit format is used
781 bitlen= 37;
782 fc =0;
783 cardnum=0;
784 if(bitlen==37){
785 cardnum = (lo>>1)&0x7FFFF;
786 fc = ((hi&0xF)<<12)|(lo>>20);
787 }
788 }
789 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
790 (unsigned int) hi,
791 (unsigned int) lo,
792 (unsigned int) (lo>>1) & 0xFFFF,
793 (unsigned int) bitlen,
794 (unsigned int) fc,
795 (unsigned int) cardnum);
796 }
797 if (findone){
798 if (ledcontrol) LED_A_OFF();
799 *high = hi;
800 *low = lo;
801 return;
802 }
803 // reset
804 }
805 hi2 = hi = lo = idx = 0;
806 WDT_HIT();
807 }
808 DbpString("Stopped");
809 if (ledcontrol) LED_A_OFF();
810 }
811
812 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
813 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
814 {
815 uint8_t *dest = BigBuf_get_addr();
816 size_t size;
817 int idx=0;
818 // Configure to go in 125Khz listen mode
819 LFSetupFPGAForADC(95, true);
820
821 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
822
823 WDT_HIT();
824 if (ledcontrol) LED_A_ON();
825
826 DoAcquisition_default(-1,true);
827 // FSK demodulator
828 size = 50*128*2; //big enough to catch 2 sequences of largest format
829 idx = AWIDdemodFSK(dest, &size);
830
831 if (idx<=0 || size!=96) continue;
832 // Index map
833 // 0 10 20 30 40 50 60
834 // | | | | | | |
835 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
836 // -----------------------------------------------------------------------------
837 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
838 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
839 // |---26 bit---| |-----117----||-------------142-------------|
840 // b = format bit len, o = odd parity of last 3 bits
841 // f = facility code, c = card number
842 // w = wiegand parity
843 // (26 bit format shown)
844
845 //get raw ID before removing parities
846 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
847 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
848 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
849
850 size = removeParity(dest, idx+8, 4, 1, 88);
851 if (size != 66) continue;
852 // ok valid card found!
853
854 // Index map
855 // 0 10 20 30 40 50 60
856 // | | | | | | |
857 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
858 // -----------------------------------------------------------------------------
859 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
860 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
861 // |26 bit| |-117--| |-----142------|
862 // b = format bit len, o = odd parity of last 3 bits
863 // f = facility code, c = card number
864 // w = wiegand parity
865 // (26 bit format shown)
866
867 uint32_t fc = 0;
868 uint32_t cardnum = 0;
869 uint32_t code1 = 0;
870 uint32_t code2 = 0;
871 uint8_t fmtLen = bytebits_to_byte(dest,8);
872 if (fmtLen==26){
873 fc = bytebits_to_byte(dest+9, 8);
874 cardnum = bytebits_to_byte(dest+17, 16);
875 code1 = bytebits_to_byte(dest+8,fmtLen);
876 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
877 } else {
878 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
879 if (fmtLen>32){
880 code1 = bytebits_to_byte(dest+8,fmtLen-32);
881 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
882 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
883 } else{
884 code1 = bytebits_to_byte(dest+8,fmtLen);
885 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
886 }
887 }
888 if (findone){
889 if (ledcontrol) LED_A_OFF();
890 return;
891 }
892 // reset
893 idx = 0;
894 WDT_HIT();
895 }
896 DbpString("Stopped");
897 if (ledcontrol) LED_A_OFF();
898 }
899
900 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
901 {
902 uint8_t *dest = BigBuf_get_addr();
903
904 size_t size=0, idx=0;
905 int clk=0, invert=0, errCnt=0, maxErr=20;
906 uint32_t hi=0;
907 uint64_t lo=0;
908 // Configure to go in 125Khz listen mode
909 LFSetupFPGAForADC(95, true);
910
911 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
912
913 WDT_HIT();
914 if (ledcontrol) LED_A_ON();
915
916 DoAcquisition_default(-1,true);
917 size = BigBuf_max_traceLen();
918 //askdemod and manchester decode
919 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
920 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
921 WDT_HIT();
922
923 if (errCnt<0) continue;
924
925 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
926 if (errCnt){
927 if (size>64){
928 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
929 hi,
930 (uint32_t)(lo>>32),
931 (uint32_t)lo,
932 (uint32_t)(lo&0xFFFF),
933 (uint32_t)((lo>>16LL) & 0xFF),
934 (uint32_t)(lo & 0xFFFFFF));
935 } else {
936 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
937 (uint32_t)(lo>>32),
938 (uint32_t)lo,
939 (uint32_t)(lo&0xFFFF),
940 (uint32_t)((lo>>16LL) & 0xFF),
941 (uint32_t)(lo & 0xFFFFFF));
942 }
943
944 if (findone){
945 if (ledcontrol) LED_A_OFF();
946 *high=lo>>32;
947 *low=lo & 0xFFFFFFFF;
948 return;
949 }
950 }
951 WDT_HIT();
952 hi = lo = size = idx = 0;
953 clk = invert = errCnt = 0;
954 }
955 DbpString("Stopped");
956 if (ledcontrol) LED_A_OFF();
957 }
958
959 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
960 {
961 uint8_t *dest = BigBuf_get_addr();
962 int idx=0;
963 uint32_t code=0, code2=0;
964 uint8_t version=0;
965 uint8_t facilitycode=0;
966 uint16_t number=0;
967 uint8_t crc = 0;
968 uint16_t calccrc = 0;
969 // Configure to go in 125Khz listen mode
970 LFSetupFPGAForADC(95, true);
971
972 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
973 WDT_HIT();
974 if (ledcontrol) LED_A_ON();
975 DoAcquisition_default(-1,true);
976 //fskdemod and get start index
977 WDT_HIT();
978 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
979 if (idx<0) continue;
980 //valid tag found
981
982 //Index map
983 //0 10 20 30 40 50 60
984 //| | | | | | |
985 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
986 //-----------------------------------------------------------------------------
987 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
988 //
989 //Checksum:
990 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
991 //preamble F0 E0 01 03 B6 75
992 // How to calc checksum,
993 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
994 // F0 + E0 + 01 + 03 + B6 = 28A
995 // 28A & FF = 8A
996 // FF - 8A = 75
997 // Checksum: 0x75
998 //XSF(version)facility:codeone+codetwo
999 //Handle the data
1000 if(findone){ //only print binary if we are doing one
1001 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1002 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1003 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1004 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1005 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1006 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1007 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1008 }
1009 code = bytebits_to_byte(dest+idx,32);
1010 code2 = bytebits_to_byte(dest+idx+32,32);
1011 version = bytebits_to_byte(dest+idx+27,8); //14,4
1012 facilitycode = bytebits_to_byte(dest+idx+18,8);
1013 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1014
1015 crc = bytebits_to_byte(dest+idx+54,8);
1016 for (uint8_t i=1; i<6; ++i)
1017 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1018 calccrc &= 0xff;
1019 calccrc = 0xff - calccrc;
1020
1021 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1022
1023 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1024 // if we're only looking for one tag
1025 if (findone){
1026 if (ledcontrol) LED_A_OFF();
1027 *high=code;
1028 *low=code2;
1029 return;
1030 }
1031 code=code2=0;
1032 version=facilitycode=0;
1033 number=0;
1034 idx=0;
1035
1036 WDT_HIT();
1037 }
1038 DbpString("Stopped");
1039 if (ledcontrol) LED_A_OFF();
1040 }
1041
1042 /*------------------------------
1043 * T5555/T5557/T5567/T5577 routines
1044 *------------------------------
1045 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1046 *
1047 * Relevant communication times in microsecond
1048 * To compensate antenna falling times shorten the write times
1049 * and enlarge the gap ones.
1050 * Q5 tags seems to have issues when these values changes.
1051 */
1052
1053 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1054 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1055 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1056 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1057 #define READ_GAP 15*8
1058
1059 // VALUES TAKEN FROM EM4x function: SendForward
1060 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1061 // WRITE_GAP = 128; (16*8)
1062 // WRITE_1 = 256 32*8; (32*8)
1063
1064 // These timings work for 4469/4269/4305 (with the 55*8 above)
1065 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1066
1067 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1068 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1069 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1070 // T0 = TIMER_CLOCK1 / 125000 = 192
1071 // 1 Cycle = 8 microseconds(us) == 1 field clock
1072
1073 void TurnReadLFOn(int delay) {
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1075 // Give it a bit of time for the resonant antenna to settle.
1076
1077 // measure antenna strength.
1078 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1079 // where to save it
1080
1081 SpinDelayUs(delay);
1082 }
1083
1084 // Write one bit to card
1085 void T55xxWriteBit(int bit) {
1086 if (!bit)
1087 TurnReadLFOn(WRITE_0);
1088 else
1089 TurnReadLFOn(WRITE_1);
1090 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1091 SpinDelayUs(WRITE_GAP);
1092 }
1093
1094 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1095 void T55xxResetRead(void) {
1096 LED_A_ON();
1097 //clear buffer now so it does not interfere with timing later
1098 BigBuf_Clear_ext(false);
1099
1100 // Set up FPGA, 125kHz
1101 LFSetupFPGAForADC(95, true);
1102
1103 // Trigger T55x7 in mode.
1104 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1105 SpinDelayUs(START_GAP);
1106
1107 // reset tag - op code 00
1108 T55xxWriteBit(0);
1109 T55xxWriteBit(0);
1110
1111 // Turn field on to read the response
1112 TurnReadLFOn(READ_GAP);
1113
1114 // Acquisition
1115 doT55x7Acquisition(BigBuf_max_traceLen());
1116
1117 // Turn the field off
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1119 cmd_send(CMD_ACK,0,0,0,0,0);
1120 LED_A_OFF();
1121 }
1122
1123 // Write one card block in page 0, no lock
1124 void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1125 LED_A_ON();
1126 bool PwdMode = arg & 0x1;
1127 uint8_t Page = (arg & 0x2)>>1;
1128 uint32_t i = 0;
1129
1130 // Set up FPGA, 125kHz
1131 LFSetupFPGAForADC(95, true);
1132
1133 // Trigger T55x7 in mode.
1134 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1135 SpinDelayUs(START_GAP);
1136
1137 // Opcode 10
1138 T55xxWriteBit(1);
1139 T55xxWriteBit(Page); //Page 0
1140 if (PwdMode){
1141 // Send Pwd
1142 for (i = 0x80000000; i != 0; i >>= 1)
1143 T55xxWriteBit(Pwd & i);
1144 }
1145 // Send Lock bit
1146 T55xxWriteBit(0);
1147
1148 // Send Data
1149 for (i = 0x80000000; i != 0; i >>= 1)
1150 T55xxWriteBit(Data & i);
1151
1152 // Send Block number
1153 for (i = 0x04; i != 0; i >>= 1)
1154 T55xxWriteBit(Block & i);
1155
1156 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1157 // so wait a little more)
1158 TurnReadLFOn(20 * 1000);
1159 //could attempt to do a read to confirm write took
1160 // as the tag should repeat back the new block
1161 // until it is reset, but to confirm it we would
1162 // need to know the current block 0 config mode
1163
1164 // turn field off
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1166 LED_A_OFF();
1167 }
1168
1169 // Write one card block in page 0, no lock
1170 void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1171 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1172 cmd_send(CMD_ACK,0,0,0,0,0);
1173 }
1174
1175 // Read one card block in page [page]
1176 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1177 LED_A_ON();
1178 bool PwdMode = arg0 & 0x1;
1179 uint8_t Page = (arg0 & 0x2) >> 1;
1180 uint32_t i = 0;
1181 bool RegReadMode = (Block == 0xFF);
1182
1183 //clear buffer now so it does not interfere with timing later
1184 BigBuf_Clear_ext(false);
1185
1186 //make sure block is at max 7
1187 Block &= 0x7;
1188
1189 // Set up FPGA, 125kHz to power up the tag
1190 LFSetupFPGAForADC(95, true);
1191
1192 // Trigger T55x7 Direct Access Mode with start gap
1193 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1194 SpinDelayUs(START_GAP);
1195
1196 // Opcode 1[page]
1197 T55xxWriteBit(1);
1198 T55xxWriteBit(Page); //Page 0
1199
1200 if (PwdMode){
1201 // Send Pwd
1202 for (i = 0x80000000; i != 0; i >>= 1)
1203 T55xxWriteBit(Pwd & i);
1204 }
1205 // Send a zero bit separation
1206 T55xxWriteBit(0);
1207
1208 // Send Block number (if direct access mode)
1209 if (!RegReadMode)
1210 for (i = 0x04; i != 0; i >>= 1)
1211 T55xxWriteBit(Block & i);
1212
1213 // Turn field on to read the response
1214 TurnReadLFOn(READ_GAP);
1215
1216 // Acquisition
1217 doT55x7Acquisition(12000);
1218
1219 // Turn the field off
1220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1221 cmd_send(CMD_ACK,0,0,0,0,0);
1222 LED_A_OFF();
1223 }
1224
1225 void T55xxWakeUp(uint32_t Pwd){
1226 LED_B_ON();
1227 uint32_t i = 0;
1228
1229 // Set up FPGA, 125kHz
1230 LFSetupFPGAForADC(95, true);
1231
1232 // Trigger T55x7 Direct Access Mode
1233 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1234 SpinDelayUs(START_GAP);
1235
1236 // Opcode 10
1237 T55xxWriteBit(1);
1238 T55xxWriteBit(0); //Page 0
1239
1240 // Send Pwd
1241 for (i = 0x80000000; i != 0; i >>= 1)
1242 T55xxWriteBit(Pwd & i);
1243
1244 // Turn and leave field on to let the begin repeating transmission
1245 TurnReadLFOn(20*1000);
1246 }
1247
1248 /*-------------- Cloning routines -----------*/
1249
1250 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1251 // write last block first and config block last (if included)
1252 for (uint8_t i = numblocks+startblock; i > startblock; i--)
1253 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1254 }
1255
1256 // Copy HID id to card and setup block 0 config
1257 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1258 uint32_t data[] = {0,0,0,0,0,0,0};
1259 uint8_t last_block = 0;
1260
1261 if (longFMT){
1262 // Ensure no more than 84 bits supplied
1263 if (hi2>0xFFFFF) {
1264 DbpString("Tags can only have 84 bits.");
1265 return;
1266 }
1267 // Build the 6 data blocks for supplied 84bit ID
1268 last_block = 6;
1269 // load preamble (1D) & long format identifier (9E manchester encoded)
1270 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1271 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1272 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1273 data[3] = manchesterEncode2Bytes(hi >> 16);
1274 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1275 data[5] = manchesterEncode2Bytes(lo >> 16);
1276 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1277 } else {
1278 // Ensure no more than 44 bits supplied
1279 if (hi>0xFFF) {
1280 DbpString("Tags can only have 44 bits.");
1281 return;
1282 }
1283 // Build the 3 data blocks for supplied 44bit ID
1284 last_block = 3;
1285 // load preamble
1286 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1287 data[2] = manchesterEncode2Bytes(lo >> 16);
1288 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1289 }
1290 // load chip config block
1291 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1292
1293 //TODO add selection of chip for Q5 or T55x7
1294 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1295
1296 LED_D_ON();
1297 // Program the data blocks for supplied ID
1298 // and the block 0 for HID format
1299 WriteT55xx(data, 0, last_block+1);
1300
1301 LED_D_OFF();
1302
1303 DbpString("DONE!");
1304 }
1305
1306 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1307 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1308 //TODO add selection of chip for Q5 or T55x7
1309 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1310
1311 LED_D_ON();
1312 // Program the data blocks for supplied ID
1313 // and the block 0 config
1314 WriteT55xx(data, 0, 3);
1315
1316 LED_D_OFF();
1317
1318 DbpString("DONE!");
1319 }
1320
1321 // Clone Indala 64-bit tag by UID to T55x7
1322 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1323 //Program the 2 data blocks for supplied 64bit UID
1324 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1325 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1326 //TODO add selection of chip for Q5 or T55x7
1327 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1328
1329 WriteT55xx(data, 0, 3);
1330 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1331 // T5567WriteBlock(0x603E1042,0);
1332 DbpString("DONE!");
1333 }
1334 // Clone Indala 224-bit tag by UID to T55x7
1335 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1336 //Program the 7 data blocks for supplied 224bit UID
1337 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1338 // and the block 0 for Indala224 format
1339 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1340 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1341 //TODO add selection of chip for Q5 or T55x7
1342 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1343 WriteT55xx(data, 0, 8);
1344 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1345 // T5567WriteBlock(0x603E10E2,0);
1346 DbpString("DONE!");
1347 }
1348 // clone viking tag to T55xx
1349 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1350 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1351 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1352 // Program the data blocks for supplied ID and the block 0 config
1353 WriteT55xx(data, 0, 3);
1354 LED_D_OFF();
1355 cmd_send(CMD_ACK,0,0,0,0,0);
1356 }
1357
1358 // Define 9bit header for EM410x tags
1359 #define EM410X_HEADER 0x1FF
1360 #define EM410X_ID_LENGTH 40
1361
1362 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1363 int i, id_bit;
1364 uint64_t id = EM410X_HEADER;
1365 uint64_t rev_id = 0; // reversed ID
1366 int c_parity[4]; // column parity
1367 int r_parity = 0; // row parity
1368 uint32_t clock = 0;
1369
1370 // Reverse ID bits given as parameter (for simpler operations)
1371 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1372 if (i < 32) {
1373 rev_id = (rev_id << 1) | (id_lo & 1);
1374 id_lo >>= 1;
1375 } else {
1376 rev_id = (rev_id << 1) | (id_hi & 1);
1377 id_hi >>= 1;
1378 }
1379 }
1380
1381 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1382 id_bit = rev_id & 1;
1383
1384 if (i % 4 == 0) {
1385 // Don't write row parity bit at start of parsing
1386 if (i)
1387 id = (id << 1) | r_parity;
1388 // Start counting parity for new row
1389 r_parity = id_bit;
1390 } else {
1391 // Count row parity
1392 r_parity ^= id_bit;
1393 }
1394
1395 // First elements in column?
1396 if (i < 4)
1397 // Fill out first elements
1398 c_parity[i] = id_bit;
1399 else
1400 // Count column parity
1401 c_parity[i % 4] ^= id_bit;
1402
1403 // Insert ID bit
1404 id = (id << 1) | id_bit;
1405 rev_id >>= 1;
1406 }
1407
1408 // Insert parity bit of last row
1409 id = (id << 1) | r_parity;
1410
1411 // Fill out column parity at the end of tag
1412 for (i = 0; i < 4; ++i)
1413 id = (id << 1) | c_parity[i];
1414
1415 // Add stop bit
1416 id <<= 1;
1417
1418 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1419 LED_D_ON();
1420
1421 // Write EM410x ID
1422 uint32_t data[] = {0, (uint32_t)(id>>32), id & 0xFFFFFFFF};
1423
1424 clock = (card & 0xFF00) >> 8;
1425 clock = (clock == 0) ? 64 : clock;
1426 Dbprintf("Clock rate: %d", clock);
1427 if (card & 0xFF) { //t55x7
1428 clock = GetT55xxClockBit(clock);
1429 if (clock == 0) {
1430 Dbprintf("Invalid clock rate: %d", clock);
1431 return;
1432 }
1433 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1434 } else { //t5555 (Q5)
1435 clock = (clock-2)>>1; //n = (RF-2)/2
1436 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1437 }
1438
1439 WriteT55xx(data, 0, 3);
1440
1441 LED_D_OFF();
1442 Dbprintf("Tag %s written with 0x%08x%08x\n",
1443 card ? "T55x7":"T5555",
1444 (uint32_t)(id >> 32),
1445 (uint32_t)id);
1446 }
1447
1448 //-----------------------------------
1449 // EM4469 / EM4305 routines
1450 //-----------------------------------
1451 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1452 #define FWD_CMD_WRITE 0xA
1453 #define FWD_CMD_READ 0x9
1454 #define FWD_CMD_DISABLE 0x5
1455
1456 uint8_t forwardLink_data[64]; //array of forwarded bits
1457 uint8_t * forward_ptr; //ptr for forward message preparation
1458 uint8_t fwd_bit_sz; //forwardlink bit counter
1459 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1460
1461 //====================================================================
1462 // prepares command bits
1463 // see EM4469 spec
1464 //====================================================================
1465 //--------------------------------------------------------------------
1466 // VALUES TAKEN FROM EM4x function: SendForward
1467 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1468 // WRITE_GAP = 128; (16*8)
1469 // WRITE_1 = 256 32*8; (32*8)
1470
1471 // These timings work for 4469/4269/4305 (with the 55*8 above)
1472 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1473
1474 uint8_t Prepare_Cmd( uint8_t cmd ) {
1475
1476 *forward_ptr++ = 0; //start bit
1477 *forward_ptr++ = 0; //second pause for 4050 code
1478
1479 *forward_ptr++ = cmd;
1480 cmd >>= 1;
1481 *forward_ptr++ = cmd;
1482 cmd >>= 1;
1483 *forward_ptr++ = cmd;
1484 cmd >>= 1;
1485 *forward_ptr++ = cmd;
1486
1487 return 6; //return number of emited bits
1488 }
1489
1490 //====================================================================
1491 // prepares address bits
1492 // see EM4469 spec
1493 //====================================================================
1494 uint8_t Prepare_Addr( uint8_t addr ) {
1495
1496 register uint8_t line_parity;
1497
1498 uint8_t i;
1499 line_parity = 0;
1500 for(i=0;i<6;i++) {
1501 *forward_ptr++ = addr;
1502 line_parity ^= addr;
1503 addr >>= 1;
1504 }
1505
1506 *forward_ptr++ = (line_parity & 1);
1507
1508 return 7; //return number of emited bits
1509 }
1510
1511 //====================================================================
1512 // prepares data bits intreleaved with parity bits
1513 // see EM4469 spec
1514 //====================================================================
1515 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1516
1517 register uint8_t line_parity;
1518 register uint8_t column_parity;
1519 register uint8_t i, j;
1520 register uint16_t data;
1521
1522 data = data_low;
1523 column_parity = 0;
1524
1525 for(i=0; i<4; i++) {
1526 line_parity = 0;
1527 for(j=0; j<8; j++) {
1528 line_parity ^= data;
1529 column_parity ^= (data & 1) << j;
1530 *forward_ptr++ = data;
1531 data >>= 1;
1532 }
1533 *forward_ptr++ = line_parity;
1534 if(i == 1)
1535 data = data_hi;
1536 }
1537
1538 for(j=0; j<8; j++) {
1539 *forward_ptr++ = column_parity;
1540 column_parity >>= 1;
1541 }
1542 *forward_ptr = 0;
1543
1544 return 45; //return number of emited bits
1545 }
1546
1547 //====================================================================
1548 // Forward Link send function
1549 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1550 // fwd_bit_count set with number of bits to be sent
1551 //====================================================================
1552 void SendForward(uint8_t fwd_bit_count) {
1553
1554 fwd_write_ptr = forwardLink_data;
1555 fwd_bit_sz = fwd_bit_count;
1556
1557 LED_D_ON();
1558
1559 // Set up FPGA, 125kHz
1560 LFSetupFPGAForADC(95, true);
1561
1562 // force 1st mod pulse (start gap must be longer for 4305)
1563 fwd_bit_sz--; //prepare next bit modulation
1564 fwd_write_ptr++;
1565 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1566 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1567 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1568 SpinDelayUs(16*8); //16 cycles on (8us each)
1569
1570 // now start writting
1571 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1572 if(((*fwd_write_ptr++) & 1) == 1)
1573 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1574 else {
1575 //These timings work for 4469/4269/4305 (with the 55*8 above)
1576 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1577 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1578 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1579 SpinDelayUs(9*8); //16 cycles on (8us each)
1580 }
1581 }
1582 }
1583
1584 void EM4xLogin(uint32_t Password) {
1585
1586 uint8_t fwd_bit_count;
1587
1588 forward_ptr = forwardLink_data;
1589 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1590 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1591
1592 SendForward(fwd_bit_count);
1593
1594 //Wait for command to complete
1595 SpinDelay(20);
1596 }
1597
1598 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1599
1600 uint8_t fwd_bit_count;
1601 uint8_t *dest = BigBuf_get_addr();
1602 uint16_t bufsize = BigBuf_max_traceLen();
1603 uint32_t i = 0;
1604
1605 //clear buffer now so it does not interfere with timing later
1606 BigBuf_Clear_ext(false);
1607
1608 //If password mode do login
1609 if (PwdMode == 1) EM4xLogin(Pwd);
1610
1611 forward_ptr = forwardLink_data;
1612 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1613 fwd_bit_count += Prepare_Addr( Address );
1614
1615 // Connect the A/D to the peak-detected low-frequency path.
1616 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1617 // Now set up the SSC to get the ADC samples that are now streaming at us.
1618 FpgaSetupSsc();
1619
1620 SendForward(fwd_bit_count);
1621
1622 // Now do the acquisition
1623 i = 0;
1624 for(;;) {
1625 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1626 AT91C_BASE_SSC->SSC_THR = 0x43;
1627 }
1628 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1629 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1630 ++i;
1631 if (i >= bufsize) break;
1632 }
1633 }
1634
1635 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1636 cmd_send(CMD_ACK,0,0,0,0,0);
1637 LED_D_OFF();
1638 }
1639
1640 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1641
1642 uint8_t fwd_bit_count;
1643
1644 //If password mode do login
1645 if (PwdMode == 1) EM4xLogin(Pwd);
1646
1647 forward_ptr = forwardLink_data;
1648 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1649 fwd_bit_count += Prepare_Addr( Address );
1650 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1651
1652 SendForward(fwd_bit_count);
1653
1654 //Wait for write to complete
1655 SpinDelay(20);
1656 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1657 LED_D_OFF();
1658 }
Impressum, Datenschutz