1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
67 // Delays in SSP_CLK ticks.
68 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
69 #define DELAY_READER_TO_ARM 8
70 #define DELAY_ARM_TO_READER 0
71 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
72 #define DELAY_TAG_TO_ARM 32
73 #define DELAY_ARM_TO_TAG 16
78 // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
79 bool LogTrace_ISO15693(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
) {
80 uint32_t duration
= timestamp_end
- timestamp_start
;
82 timestamp_end
= timestamp_start
+ duration
;
83 return LogTrace(btBytes
, iLen
, timestamp_start
, timestamp_end
, parity
, readerToTag
);
87 ///////////////////////////////////////////////////////////////////////
88 // ISO 15693 Part 2 - Air Interface
89 // This section basically contains transmission and receiving of bits
90 ///////////////////////////////////////////////////////////////////////
93 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
94 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
95 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
97 // ---------------------------
99 // ---------------------------
101 // prepare data using "1 out of 4" code for later transmission
102 // resulting data rate is 26.48 kbit/s (fc/512)
104 // n ... length of data
105 void CodeIso15693AsReader(uint8_t *cmd
, int n
) {
110 ToSend
[++ToSendMax
] = 0x84; //10000100
113 for (int i
= 0; i
< n
; i
++) {
114 for (int j
= 0; j
< 8; j
+= 2) {
115 int these
= (cmd
[i
] >> j
) & 0x03;
118 ToSend
[++ToSendMax
] = 0x40; //01000000
121 ToSend
[++ToSendMax
] = 0x10; //00010000
124 ToSend
[++ToSendMax
] = 0x04; //00000100
127 ToSend
[++ToSendMax
] = 0x01; //00000001
134 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
139 // encode data using "1 out of 256" scheme
140 // data rate is 1,66 kbit/s (fc/8192)
141 // is designed for more robust communication over longer distances
142 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
147 ToSend
[++ToSendMax
] = 0x81; //10000001
150 for(int i
= 0; i
< n
; i
++) {
151 for (int j
= 0; j
<= 255; j
++) {
163 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
169 // static uint8_t encode4Bits(const uint8_t b) {
170 // uint8_t c = b & 0xF;
171 // // OTA, the least significant bits first
172 // // The columns are
173 // // 1 - Bit value to send
174 // // 2 - Reversed (big-endian)
175 // // 3 - Manchester Encoded
180 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
181 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
182 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
183 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
184 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
185 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
186 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
187 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
188 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
189 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
190 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
191 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
192 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
193 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
194 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
195 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
200 static const uint8_t encode_4bits
[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
202 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
204 * SOF comprises 3 parts;
205 * * An unmodulated time of 56.64 us
206 * * 24 pulses of 423.75 kHz (fc/32)
207 * * A logic 1, which starts with an unmodulated time of 18.88us
208 * followed by 8 pulses of 423.75kHz (fc/32)
210 * EOF comprises 3 parts:
211 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
213 * - 24 pulses of fc/32
214 * - An unmodulated time of 56.64 us
216 * A logic 0 starts with 8 pulses of fc/32
217 * followed by an unmodulated time of 256/fc (~18,88us).
219 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
220 * 8 pulses of fc/32 (also 18.88us)
222 * A bit here becomes 8 pulses of fc/32. Therefore:
223 * The SOF can be written as 00011101 = 0x1D
224 * The EOF can be written as 10111000 = 0xb8
233 ToSend
[++ToSendMax
] = 0x1D; // 00011101
236 for (int i
= 0; i
< len
; i
++) {
237 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] & 0xF];
238 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] >> 4];
242 ToSend
[++ToSendMax
] = 0xB8; // 10111000
248 // Transmit the command (to the tag) that was placed in cmd[].
249 void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t *start_time
) {
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
253 *start_time
= (*start_time
- DELAY_ARM_TO_TAG
) & 0xfffffff0;
255 while (GetCountSspClk() > *start_time
) { // we may miss the intended time
256 *start_time
+= 16; // next possible time
260 while (GetCountSspClk() < *start_time
)
264 for (int c
= 0; c
< len
; c
++) {
265 uint8_t data
= cmd
[c
];
266 for (int i
= 0; i
< 8; i
++) {
267 uint16_t send_word
= (data
& 0x80) ? 0xffff : 0x0000;
268 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
269 AT91C_BASE_SSC
->SSC_THR
= send_word
;
270 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
271 AT91C_BASE_SSC
->SSC_THR
= send_word
;
279 *start_time
= *start_time
+ DELAY_ARM_TO_TAG
;
284 //-----------------------------------------------------------------------------
285 // Transmit the tag response (to the reader) that was placed in cmd[].
286 //-----------------------------------------------------------------------------
287 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t *start_time
, uint32_t slot_time
, bool slow
) {
288 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
291 uint32_t modulation_start_time
= *start_time
- DELAY_ARM_TO_READER
+ 3 * 8; // no need to transfer the unmodulated start of SOF
293 while (GetCountSspClk() > (modulation_start_time
& 0xfffffff8) + 3) { // we will miss the intended time
295 modulation_start_time
+= slot_time
; // use next available slot
297 modulation_start_time
= (modulation_start_time
& 0xfffffff8) + 8; // next possible time
301 while (GetCountSspClk() < (modulation_start_time
& 0xfffffff8))
304 uint8_t shift_delay
= modulation_start_time
& 0x00000007;
306 *start_time
= modulation_start_time
+ DELAY_ARM_TO_READER
- 3 * 8;
309 uint8_t bits_to_shift
= 0x00;
310 uint8_t bits_to_send
= 0x00;
311 for (size_t c
= 0; c
< len
; c
++) {
312 for (int i
= (c
==0?4:7); i
>= 0; i
--) {
313 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
314 for (int j
= 0; j
< (slow
?4:1); ) {
315 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
316 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
317 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
318 bits_to_shift
= cmd_bits
;
325 // send the remaining bits, padded with 0:
326 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
328 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
329 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
337 //=============================================================================
338 // An ISO 15693 decoder for tag responses (one subcarrier only).
339 // Uses cross correlation to identify each bit and EOF.
340 // This function is called 8 times per bit (every 2 subcarrier cycles).
341 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
342 // i.e. function is called every 4,72us
344 // LED C -> ON once we have received the SOF and are expecting the rest.
345 // LED C -> OFF once we have received EOF or are unsynced
347 // Returns: true if we received a EOF
348 // false if we are still waiting for some more
349 //=============================================================================
351 #define NOISE_THRESHOLD 160 // don't try to correlate noise
352 #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
354 typedef struct DecodeTag
{
357 STATE_TAG_SOF_RISING_EDGE
,
359 STATE_TAG_SOF_HIGH_END
,
360 STATE_TAG_RECEIVING_DATA
,
379 uint16_t previous_amplitude
;
383 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
)
385 switch(DecodeTag
->state
) {
386 case STATE_TAG_SOF_LOW
:
387 // waiting for a rising edge
388 if (amplitude
> NOISE_THRESHOLD
+ DecodeTag
->previous_amplitude
) {
389 if (DecodeTag
->posCount
> 10) {
390 DecodeTag
->threshold_sof
= amplitude
- DecodeTag
->previous_amplitude
;
391 DecodeTag
->threshold_half
= 0;
392 DecodeTag
->state
= STATE_TAG_SOF_RISING_EDGE
;
394 DecodeTag
->posCount
= 0;
397 DecodeTag
->posCount
++;
398 DecodeTag
->previous_amplitude
= amplitude
;
402 case STATE_TAG_SOF_RISING_EDGE
:
403 if (amplitude
- DecodeTag
->previous_amplitude
> DecodeTag
->threshold_sof
) { // edge still rising
404 if (amplitude
- DecodeTag
->threshold_sof
> DecodeTag
->threshold_sof
) { // steeper edge, take this as time reference
405 DecodeTag
->posCount
= 1;
407 DecodeTag
->posCount
= 2;
409 DecodeTag
->threshold_sof
= (amplitude
- DecodeTag
->previous_amplitude
) / 2;
411 DecodeTag
->posCount
= 2;
412 DecodeTag
->threshold_sof
= DecodeTag
->threshold_sof
/2;
414 // DecodeTag->posCount = 2;
415 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
418 case STATE_TAG_SOF_HIGH
:
419 // waiting for 10 times high. Take average over the last 8
420 if (amplitude
> DecodeTag
->threshold_sof
) {
421 DecodeTag
->posCount
++;
422 if (DecodeTag
->posCount
> 2) {
423 DecodeTag
->threshold_half
+= amplitude
; // keep track of average high value
425 if (DecodeTag
->posCount
== 10) {
426 DecodeTag
->threshold_half
>>= 2; // (4 times 1/2 average)
427 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
429 } else { // high phase was too short
430 DecodeTag
->posCount
= 1;
431 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
432 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
436 case STATE_TAG_SOF_HIGH_END
:
437 // check for falling edge
438 if (DecodeTag
->posCount
== 13 && amplitude
< DecodeTag
->threshold_sof
) {
439 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
440 DecodeTag
->shiftReg
= 0;
441 DecodeTag
->bitCount
= 0;
443 DecodeTag
->sum1
= amplitude
;
445 DecodeTag
->posCount
= 2;
446 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
447 // FpgaDisableTracing(); // DEBUGGING
448 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
450 // DecodeTag->threshold_sof,
451 // DecodeTag->threshold_half/4,
452 // DecodeTag->previous_amplitude); // DEBUGGING
455 DecodeTag
->posCount
++;
456 if (DecodeTag
->posCount
> 13) { // high phase too long
457 DecodeTag
->posCount
= 0;
458 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
459 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
465 case STATE_TAG_RECEIVING_DATA
:
466 if (DecodeTag
->posCount
== 1) {
470 if (DecodeTag
->posCount
<= 4) {
471 DecodeTag
->sum1
+= amplitude
;
473 DecodeTag
->sum2
+= amplitude
;
475 if (DecodeTag
->posCount
== 8) {
476 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in both halves
477 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
478 DecodeTag
->state
= STATE_TAG_EOF
;
480 DecodeTag
->posCount
= 0;
481 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
482 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
485 } else if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in second half
487 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
488 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
490 DecodeTag
->lastBit
= LOGIC1
;
491 DecodeTag
->shiftReg
>>= 1;
492 DecodeTag
->shiftReg
|= 0x80;
493 DecodeTag
->bitCount
++;
494 if (DecodeTag
->bitCount
== 8) {
495 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
497 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
498 if (DecodeTag
->len
> DecodeTag
->max_len
) {
499 // buffer overflow, give up
503 DecodeTag
->bitCount
= 0;
504 DecodeTag
->shiftReg
= 0;
507 } else if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
509 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
510 DecodeTag
->posCount
= 0;
511 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
512 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
515 DecodeTag
->lastBit
= LOGIC0
;
516 DecodeTag
->shiftReg
>>= 1;
517 DecodeTag
->bitCount
++;
518 if (DecodeTag
->bitCount
== 8) {
519 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
521 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
522 if (DecodeTag
->len
> DecodeTag
->max_len
) {
523 // buffer overflow, give up
524 DecodeTag
->posCount
= 0;
525 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
526 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
529 DecodeTag
->bitCount
= 0;
530 DecodeTag
->shiftReg
= 0;
533 } else { // no modulation
534 if (DecodeTag
->lastBit
== SOF_PART2
) { // only SOF (this is OK for iClass)
538 DecodeTag
->posCount
= 0;
539 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
543 DecodeTag
->posCount
= 0;
545 DecodeTag
->posCount
++;
549 if (DecodeTag
->posCount
== 1) {
553 if (DecodeTag
->posCount
<= 4) {
554 DecodeTag
->sum1
+= amplitude
;
556 DecodeTag
->sum2
+= amplitude
;
558 if (DecodeTag
->posCount
== 8) {
559 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
560 DecodeTag
->posCount
= 0;
561 DecodeTag
->state
= STATE_TAG_EOF_TAIL
;
563 DecodeTag
->posCount
= 0;
564 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
565 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
569 DecodeTag
->posCount
++;
572 case STATE_TAG_EOF_TAIL
:
573 if (DecodeTag
->posCount
== 1) {
577 if (DecodeTag
->posCount
<= 4) {
578 DecodeTag
->sum1
+= amplitude
;
580 DecodeTag
->sum2
+= amplitude
;
582 if (DecodeTag
->posCount
== 8) {
583 if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // no modulation in both halves
587 DecodeTag
->posCount
= 0;
588 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
589 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
593 DecodeTag
->posCount
++;
601 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
)
603 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
604 DecodeTag
->posCount
= 0;
605 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
606 DecodeTag
->output
= data
;
607 DecodeTag
->max_len
= max_len
;
611 static void DecodeTagReset(DecodeTag_t
*DecodeTag
)
613 DecodeTag
->posCount
= 0;
614 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
615 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
620 * Receive and decode the tag response, also log to tracebuffer
622 int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, uint16_t timeout
, uint32_t *eof_time
) {
627 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
629 // the Decoder data structure
630 DecodeTag_t DecodeTag
= { 0 };
631 DecodeTagInit(&DecodeTag
, response
, max_len
);
633 // wait for last transfer to complete
634 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
636 // And put the FPGA in the appropriate mode
637 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
639 // Setup and start DMA.
640 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
641 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
642 uint32_t dma_start_time
= 0;
643 uint16_t *upTo
= dmaBuf
;
646 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
648 if (behindBy
== 0) continue;
652 // DMA has transferred the very first data
653 dma_start_time
= GetCountSspClk() & 0xfffffff0;
656 uint16_t tagdata
= *upTo
++;
658 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
659 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
660 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
661 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
666 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
667 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
668 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
671 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
672 *eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM
; // end of EOF
673 if (DecodeTag
.lastBit
== SOF_PART2
) {
674 *eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
676 if (DecodeTag
.len
> DecodeTag
.max_len
) {
677 ret
= -2; // buffer overflow
682 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
691 if (DEBUG
) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
692 samples
, ret
, DecodeTag
.state
, DecodeTag
.lastBit
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
698 uint32_t sof_time
= *eof_time
699 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
700 - 32 * 16 // time for SOF transfer
701 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
703 if (DEBUG
) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time
, *eof_time
);
705 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, *eof_time
*4, NULL
, false);
707 return DecodeTag
.len
;
711 //=============================================================================
712 // An ISO15693 decoder for reader commands.
714 // This function is called 4 times per bit (every 2 subcarrier cycles).
715 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
717 // LED B -> ON once we have received the SOF and are expecting the rest.
718 // LED B -> OFF once we have received EOF or are in error state or unsynced
720 // Returns: true if we received a EOF
721 // false if we are still waiting for some more
722 //=============================================================================
724 typedef struct DecodeReader
{
726 STATE_READER_UNSYNCD
,
727 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
,
728 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
729 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
730 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
731 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
732 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
733 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
749 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
)
751 DecodeReader
->output
= data
;
752 DecodeReader
->byteCountMax
= max_len
;
753 DecodeReader
->state
= STATE_READER_UNSYNCD
;
754 DecodeReader
->byteCount
= 0;
755 DecodeReader
->bitCount
= 0;
756 DecodeReader
->posCount
= 1;
757 DecodeReader
->shiftReg
= 0;
761 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
)
763 DecodeReader
->state
= STATE_READER_UNSYNCD
;
767 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(uint8_t bit
, DecodeReader_t
*restrict DecodeReader
)
769 switch (DecodeReader
->state
) {
770 case STATE_READER_UNSYNCD
:
771 // wait for unmodulated carrier
773 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
777 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
:
779 // we went low, so this could be the beginning of a SOF
780 DecodeReader
->posCount
= 1;
781 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
785 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
786 DecodeReader
->posCount
++;
787 if (bit
) { // detected rising edge
788 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
789 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
791 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
794 if (DecodeReader
->posCount
> 5) { // stayed low for too long
795 DecodeReaderReset(DecodeReader
);
797 // do nothing, keep waiting
802 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
803 DecodeReader
->posCount
++;
804 if (!bit
) { // detected a falling edge
805 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
806 DecodeReaderReset(DecodeReader
);
807 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
808 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
809 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
810 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
811 DecodeReaderReset(DecodeReader
);
812 } else { // SOF for 1 out of 256 coding
813 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
814 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
817 if (DecodeReader
->posCount
> 29) { // stayed high for too long
818 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
820 // do nothing, keep waiting
825 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
826 DecodeReader
->posCount
++;
827 if (bit
) { // detected rising edge
828 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
829 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
830 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
832 DecodeReader
->posCount
= 1;
833 DecodeReader
->bitCount
= 0;
834 DecodeReader
->byteCount
= 0;
835 DecodeReader
->sum1
= 1;
836 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
839 } else { // CODING_1_OUT_OF_4
840 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
841 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
843 DecodeReader
->posCount
= 1;
844 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
848 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
849 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
850 DecodeReaderReset(DecodeReader
);
852 // do nothing, keep waiting
854 } else { // CODING_1_OUT_OF_4
855 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
856 DecodeReaderReset(DecodeReader
);
858 // do nothing, keep waiting
864 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
865 DecodeReader
->posCount
++;
867 if (DecodeReader
->posCount
== 9) {
868 DecodeReader
->posCount
= 1;
869 DecodeReader
->bitCount
= 0;
870 DecodeReader
->byteCount
= 0;
871 DecodeReader
->sum1
= 1;
872 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
875 // do nothing, keep waiting
877 } else { // unexpected falling edge
878 DecodeReaderReset(DecodeReader
);
882 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
884 DecodeReader
->posCount
++;
885 if (DecodeReader
->posCount
== 1) {
886 DecodeReader
->sum1
= bit
;
887 } else if (DecodeReader
->posCount
<= 4) {
888 DecodeReader
->sum1
+= bit
;
889 } else if (DecodeReader
->posCount
== 5) {
890 DecodeReader
->sum2
= bit
;
892 DecodeReader
->sum2
+= bit
;
894 if (DecodeReader
->posCount
== 8) {
895 DecodeReader
->posCount
= 0;
896 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
897 LED_B_OFF(); // Finished receiving
898 DecodeReaderReset(DecodeReader
);
899 if (DecodeReader
->byteCount
!= 0) {
903 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected a 2bit position
904 DecodeReader
->shiftReg
>>= 2;
905 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
907 if (DecodeReader
->bitCount
== 15) { // we have a full byte
908 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
909 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
910 // buffer overflow, give up
912 DecodeReaderReset(DecodeReader
);
914 DecodeReader
->bitCount
= 0;
915 DecodeReader
->shiftReg
= 0;
917 DecodeReader
->bitCount
++;
922 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
924 DecodeReader
->posCount
++;
925 if (DecodeReader
->posCount
== 1) {
926 DecodeReader
->sum1
= bit
;
927 } else if (DecodeReader
->posCount
<= 4) {
928 DecodeReader
->sum1
+= bit
;
929 } else if (DecodeReader
->posCount
== 5) {
930 DecodeReader
->sum2
= bit
;
932 DecodeReader
->sum2
+= bit
;
934 if (DecodeReader
->posCount
== 8) {
935 DecodeReader
->posCount
= 0;
936 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
937 LED_B_OFF(); // Finished receiving
938 DecodeReaderReset(DecodeReader
);
939 if (DecodeReader
->byteCount
!= 0) {
943 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected the bit position
944 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
946 if (DecodeReader
->bitCount
== 255) { // we have a full byte
947 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
948 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
949 // buffer overflow, give up
951 DecodeReaderReset(DecodeReader
);
954 DecodeReader
->bitCount
++;
960 DecodeReaderReset(DecodeReader
);
968 //-----------------------------------------------------------------------------
969 // Receive a command (from the reader to us, where we are the simulated tag),
970 // and store it in the given buffer, up to the given maximum length. Keeps
971 // spinning, waiting for a well-framed command, until either we get one
972 // (returns len) or someone presses the pushbutton on the board (returns -1).
974 // Assume that we're called with the SSC (to the FPGA) and ADC path set
976 //-----------------------------------------------------------------------------
978 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
980 bool gotFrame
= false;
983 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
985 // the decoder data structure
986 DecodeReader_t DecodeReader
= {0};
987 DecodeReaderInit(&DecodeReader
, received
, max_len
);
989 // wait for last transfer to complete
990 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
993 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
995 // clear receive register and wait for next transfer
996 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
998 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
1000 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
1002 // Setup and start DMA.
1003 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1004 uint8_t *upTo
= dmaBuf
;
1007 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1009 if (behindBy
== 0) continue;
1012 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1013 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1014 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1015 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1019 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1020 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1021 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1024 for (int i
= 7; i
>= 0; i
--) {
1025 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
1026 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM
; // end of EOF
1037 if (BUTTON_PRESS()) {
1038 DecodeReader
.byteCount
= -1;
1045 FpgaDisableSscDma();
1047 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1048 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
1050 if (DecodeReader
.byteCount
> 0) {
1051 uint32_t sof_time
= *eof_time
1052 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
1053 - 32 // time for SOF transfer
1054 - 16; // time for EOF transfer
1055 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*32, *eof_time
*32, NULL
, true);
1058 return DecodeReader
.byteCount
;
1062 // Encode (into the ToSend buffers) an identify request, which is the first
1063 // thing that you must send to a tag to get a response.
1064 static void BuildIdentifyRequest(void)
1069 // one sub-carrier, inventory, 1 slot, fast rate
1070 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1071 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1072 // inventory command code
1077 crc
= Iso15693Crc(cmd
, 3);
1078 cmd
[3] = crc
& 0xff;
1081 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1085 //-----------------------------------------------------------------------------
1086 // Start to read an ISO 15693 tag. We send an identify request, then wait
1087 // for the response. The response is not demodulated, just left in the buffer
1088 // so that it can be downloaded to a PC and processed there.
1089 //-----------------------------------------------------------------------------
1090 void AcquireRawAdcSamplesIso15693(void)
1095 uint8_t *dest
= BigBuf_get_addr();
1097 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1098 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1099 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1100 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1102 BuildIdentifyRequest();
1104 // Give the tags time to energize
1108 // Now send the command
1109 uint32_t start_time
= 0;
1110 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1112 // wait for last transfer to complete
1113 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1115 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1117 for(int c
= 0; c
< 4000; ) {
1118 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1119 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1129 void SnoopIso15693(void)
1132 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1138 // The DMA buffer, used to stream samples from the FPGA
1139 uint16_t* dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
1142 // Count of samples received so far, so that we can include timing
1143 // information in the trace buffer.
1146 DecodeTag_t DecodeTag
= {0};
1147 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1148 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1150 DecodeReader_t DecodeReader
= {0};;
1151 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1152 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
));
1154 // Print some debug information about the buffer sizes
1156 Dbprintf("Snooping buffers initialized:");
1157 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1158 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1159 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1160 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1162 Dbprintf("Snoop started. Press PM3 Button to stop.");
1164 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1165 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1167 // Setup for the DMA.
1168 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1170 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1172 bool TagIsActive
= false;
1173 bool ReaderIsActive
= false;
1174 bool ExpectTagAnswer
= false;
1176 // And now we loop, receiving samples.
1178 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1180 if (behindBy
== 0) continue;
1182 uint16_t snoopdata
= *upTo
++;
1184 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1185 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1186 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1187 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1190 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1191 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1192 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1194 if(BUTTON_PRESS()) {
1195 DbpString("Snoop stopped.");
1202 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1203 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1204 FpgaDisableSscDma();
1205 ExpectTagAnswer
= true;
1206 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, samples
*64, samples
*64, NULL
, true);
1207 /* And ready to receive another command. */
1208 DecodeReaderReset(&DecodeReader
);
1209 /* And also reset the demod code, which might have been */
1210 /* false-triggered by the commands from the reader. */
1211 DecodeTagReset(&DecodeTag
);
1213 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1215 if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1216 FpgaDisableSscDma();
1217 ExpectTagAnswer
= true;
1218 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, samples
*64, samples
*64, NULL
, true);
1219 /* And ready to receive another command. */
1220 DecodeReaderReset(&DecodeReader
);
1221 /* And also reset the demod code, which might have been */
1222 /* false-triggered by the commands from the reader. */
1223 DecodeTagReset(&DecodeTag
);
1225 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1227 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
);
1230 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1231 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1232 FpgaDisableSscDma();
1233 //Use samples as a time measurement
1234 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, samples
*64, samples
*64, NULL
, false);
1235 // And ready to receive another response.
1236 DecodeTagReset(&DecodeTag
);
1237 DecodeReaderReset(&DecodeReader
);
1238 ExpectTagAnswer
= false;
1240 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1242 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1247 FpgaDisableSscDma();
1252 DbpString("Snoop statistics:");
1253 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer
);
1254 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1255 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1256 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1257 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1258 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1262 // Initialize the proxmark as iso15k reader
1263 void Iso15693InitReader() {
1264 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1266 // Start from off (no field generated)
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1271 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1272 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1274 // Give the tags time to energize
1276 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1280 ///////////////////////////////////////////////////////////////////////
1281 // ISO 15693 Part 3 - Air Interface
1282 // This section basically contains transmission and receiving of bits
1283 ///////////////////////////////////////////////////////////////////////
1286 // uid is in transmission order (which is reverse of display order)
1287 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1292 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1293 // followed by the block data
1294 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1295 // READ BLOCK command code
1296 cmd
[1] = ISO15693_READBLOCK
;
1297 // UID may be optionally specified here
1306 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1307 // Block number to read
1308 cmd
[10] = blockNumber
;
1310 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1311 cmd
[11] = crc
& 0xff;
1314 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1318 // Now the VICC>VCD responses when we are simulating a tag
1319 static void BuildInventoryResponse(uint8_t *uid
)
1325 cmd
[0] = 0; // No error, no protocol format extension
1326 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1328 cmd
[2] = uid
[7]; //0x32;
1329 cmd
[3] = uid
[6]; //0x4b;
1330 cmd
[4] = uid
[5]; //0x03;
1331 cmd
[5] = uid
[4]; //0x01;
1332 cmd
[6] = uid
[3]; //0x00;
1333 cmd
[7] = uid
[2]; //0x10;
1334 cmd
[8] = uid
[1]; //0x05;
1335 cmd
[9] = uid
[0]; //0xe0;
1337 crc
= Iso15693Crc(cmd
, 10);
1338 cmd
[10] = crc
& 0xff;
1341 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1344 // Universal Method for sending to and recv bytes from a tag
1345 // init ... should we initialize the reader?
1346 // speed ... 0 low speed, 1 hi speed
1347 // *recv will contain the tag's answer
1348 // return: length of received data, or -1 for timeout
1349 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
, uint32_t *eof_time
) {
1356 Iso15693InitReader();
1363 // low speed (1 out of 256)
1364 CodeIso15693AsReader256(send
, sendlen
);
1366 // high speed (1 out of 4)
1367 CodeIso15693AsReader(send
, sendlen
);
1370 if (start_time
== 0) {
1371 start_time
= GetCountSspClk();
1373 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1375 // Now wait for a response
1377 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, DELAY_ISO15693_VCD_TO_VICC_READER
* 2, eof_time
);
1386 // --------------------------------------------------------------------
1388 // --------------------------------------------------------------------
1390 // Decodes a message from a tag and displays its metadata and content
1391 #define DBD15STATLEN 48
1392 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1393 char status
[DBD15STATLEN
+1]={0};
1397 if (d
[0] & ISO15693_RES_EXT
)
1398 strncat(status
,"ProtExt ", DBD15STATLEN
);
1399 if (d
[0] & ISO15693_RES_ERROR
) {
1401 strncat(status
,"Error ", DBD15STATLEN
);
1404 strncat(status
,"01:notSupp", DBD15STATLEN
);
1407 strncat(status
,"02:notRecog", DBD15STATLEN
);
1410 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1413 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1416 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1419 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1422 strncat(status
,"12:locked", DBD15STATLEN
);
1425 strncat(status
,"13:progErr", DBD15STATLEN
);
1428 strncat(status
,"14:lockErr", DBD15STATLEN
);
1431 strncat(status
,"unknownErr", DBD15STATLEN
);
1433 strncat(status
," ", DBD15STATLEN
);
1435 strncat(status
,"NoErr ", DBD15STATLEN
);
1438 crc
=Iso15693Crc(d
,len
-2);
1439 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1440 strncat(status
,"CrcOK",DBD15STATLEN
);
1442 strncat(status
,"CrcFail!",DBD15STATLEN
);
1444 Dbprintf("%s",status
);
1450 ///////////////////////////////////////////////////////////////////////
1451 // Functions called via USB/Client
1452 ///////////////////////////////////////////////////////////////////////
1454 void SetDebugIso15693(uint32_t debug
) {
1456 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1461 //---------------------------------------------------------------------------------------
1462 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1463 // all demodulation performed in arm rather than host. - greg
1464 //---------------------------------------------------------------------------------------
1465 void ReaderIso15693(uint32_t parameter
)
1473 uint8_t TagUID
[8] = {0x00};
1475 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1477 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1479 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1481 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1483 // Start from off (no field generated)
1484 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1487 // Give the tags time to energize
1489 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1494 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1495 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1497 // Now send the IDENTIFY command
1498 BuildIdentifyRequest();
1499 uint32_t start_time
= 0;
1500 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1502 // Now wait for a response
1504 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
) ;
1505 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1507 if (answerLen
>=12) // we should do a better check than this
1509 TagUID
[0] = answer
[2];
1510 TagUID
[1] = answer
[3];
1511 TagUID
[2] = answer
[4];
1512 TagUID
[3] = answer
[5];
1513 TagUID
[4] = answer
[6];
1514 TagUID
[5] = answer
[7];
1515 TagUID
[6] = answer
[8]; // IC Manufacturer code
1516 TagUID
[7] = answer
[9]; // always E0
1520 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1521 DbdecodeIso15693Answer(answerLen
, answer
);
1522 Dbhexdump(answerLen
, answer
, false);
1525 if (answerLen
>= 12)
1526 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1527 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1528 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1531 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1532 // DbdecodeIso15693Answer(answerLen2,answer2);
1533 // Dbhexdump(answerLen2,answer2,true);
1535 // Dbprintf("%d octets read from XXX request:", answerLen3);
1536 // DbdecodeIso15693Answer(answerLen3,answer3);
1537 // Dbhexdump(answerLen3,answer3,true);
1540 if (answerLen
>= 12 && DEBUG
) {
1541 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1542 BuildReadBlockRequest(TagUID
, i
);
1543 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1544 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
);
1545 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1546 if (answerLen
> 0) {
1547 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1548 DbdecodeIso15693Answer(answerLen
, answer
);
1549 Dbhexdump(answerLen
, answer
, false);
1550 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1555 // for the time being, switch field off to protect rdv4.0
1556 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1557 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1564 // Simulate an ISO15693 TAG.
1565 // For Inventory command: print command and send Inventory Response with given UID
1566 // TODO: interpret other reader commands and send appropriate response
1567 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
)
1572 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1573 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1574 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1575 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1579 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1581 // Build a suitable response to the reader INVENTORY command
1582 BuildInventoryResponse(uid
);
1585 while (!BUTTON_PRESS()) {
1586 uint32_t eof_time
= 0, start_time
= 0;
1587 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1589 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1590 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1591 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
;
1592 TransmitTo15693Reader(ToSend
, ToSendMax
, &start_time
, 0, slow
);
1595 Dbprintf("%d bytes read from reader:", cmd_len
);
1596 Dbhexdump(cmd_len
, cmd
, false);
1599 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1604 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1605 // (some manufactures offer a way to read the AFI, though)
1606 void BruteforceIso15693Afi(uint32_t speed
)
1612 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1613 int datalen
= 0, recvlen
= 0;
1616 // first without AFI
1617 // Tags should respond without AFI and with AFI=0 even when AFI is active
1619 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1620 data
[1] = ISO15693_INVENTORY
;
1621 data
[2] = 0; // mask length
1622 datalen
= Iso15693AddCrc(data
,3);
1623 uint32_t start_time
= GetCountSspClk();
1624 recvlen
= SendDataTag(data
, datalen
, true, speed
, recv
, sizeof(recv
), 0, &eof_time
);
1625 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1628 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1633 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1634 data
[1] = ISO15693_INVENTORY
;
1636 data
[3] = 0; // mask length
1638 for (int i
= 0; i
< 256; i
++) {
1640 datalen
= Iso15693AddCrc(data
,4);
1641 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
, &eof_time
);
1642 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1644 if (recvlen
>= 12) {
1645 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1648 Dbprintf("AFI Bruteforcing done.");
1650 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1654 // Allows to directly send commands to the tag via the client
1655 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1658 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1665 Dbhexdump(datalen
, data
, false);
1668 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0, &eof_time
);
1670 // for the time being, switch field off to protect rdv4.0
1671 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1672 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1679 Dbhexdump(recvlen
, recvbuf
, false);
1680 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1683 if (recvlen
> ISO15693_MAX_RESPONSE_LENGTH
) {
1684 recvlen
= ISO15693_MAX_RESPONSE_LENGTH
;
1686 cmd_send(CMD_ACK
, recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1692 //-----------------------------------------------------------------------------
1693 // Work with "magic Chinese" card.
1695 //-----------------------------------------------------------------------------
1697 // Set the UID to the tag (based on Iceman work).
1698 void SetTag15693Uid(uint8_t *uid
)
1700 uint8_t cmd
[4][9] = {0x00};
1705 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1710 // Command 1 : 02213E00000000
1719 // Command 2 : 02213F69960000
1728 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1737 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1746 for (int i
= 0; i
< 4; i
++) {
1748 crc
= Iso15693Crc(cmd
[i
], 7);
1749 cmd
[i
][7] = crc
& 0xff;
1750 cmd
[i
][8] = crc
>> 8;
1754 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1757 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0, &eof_time
);
1762 Dbhexdump(recvlen
, recvbuf
, false);
1763 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1767 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1777 // --------------------------------------------------------------------
1778 // -- Misc & deprecated functions
1779 // --------------------------------------------------------------------
1783 // do not use; has a fix UID
1784 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1789 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1790 // followed by the block data
1791 // one sub-carrier, inventory, 1 slot, fast rate
1792 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1793 // System Information command code
1795 // UID may be optionally specified here
1804 cmd[9]= 0xe0; // always e0 (not exactly unique)
1806 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1807 cmd[10] = crc & 0xff;
1810 CodeIso15693AsReader(cmd, sizeof(cmd));
1814 // do not use; has a fix UID
1815 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1820 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1821 // followed by the block data
1822 // one sub-carrier, inventory, 1 slot, fast rate
1823 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1824 // READ Multi BLOCK command code
1826 // UID may be optionally specified here
1835 cmd[9]= 0xe0; // always e0 (not exactly unique)
1836 // First Block number to read
1838 // Number of Blocks to read
1839 cmd[11] = 0x2f; // read quite a few
1841 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1842 cmd[12] = crc & 0xff;
1845 CodeIso15693AsReader(cmd, sizeof(cmd));
1848 // do not use; has a fix UID
1849 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1854 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1855 // followed by the block data
1856 // one sub-carrier, inventory, 1 slot, fast rate
1857 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1858 // READ BLOCK command code
1860 // UID may be optionally specified here
1869 cmd[9]= 0xe0; // always e0 (not exactly unique)
1875 // cmd[13] = 0x00; //Now the CRC
1876 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1877 cmd[12] = crc & 0xff;
1880 CodeIso15693AsReader(cmd, sizeof(cmd));
1883 // do not use; has a fix UID
1884 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1889 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1890 // followed by the block data
1891 // one sub-carrier, inventory, 1 slot, fast rate
1892 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1893 // READ BLOCK command code
1895 // UID may be optionally specified here
1904 cmd[9]= 0xe0; // always e0 (not exactly unique)
1906 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1910 // cmd[13] = 0x00; //Now the CRC
1911 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1912 cmd[12] = crc & 0xff;
1915 CodeIso15693AsReader(cmd, sizeof(cmd));