1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuning(void)
185 uint8_t LF_Results
[256];
186 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
187 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
202 for (i
=255; i
>=19; i
--) {
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
206 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
207 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
208 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
210 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results
[i
] > peak
) {
213 peak
= LF_Results
[i
];
219 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
235 void MeasureAntennaTuningHf(void)
237 int vHf
= 0; // in mV
239 DbpString("Measuring HF antenna, press button to exit");
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
247 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 Dbprintf("%d mV",vHf
);
250 if (BUTTON_PRESS()) break;
252 DbpString("cancelled");
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void ReadMem(int addr
)
261 const uint8_t *data
= ((uint8_t *)addr
);
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
267 /* osimage version information is linked in */
268 extern struct version_information version_information
;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
271 void SendVersion(void)
273 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
274 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
280 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
298 uint32_t compressed_data_section_size
= common_area
.arg1
;
299 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
302 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
304 void printUSBSpeed(void)
306 Dbprintf("USB Speed:");
307 Dbprintf(" Sending USB packets to client...");
309 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
310 uint8_t *test_data
= BigBuf_get_addr();
313 uint32_t start_time
= end_time
= GetTickCount();
314 uint32_t bytes_transferred
= 0;
317 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
318 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
319 end_time
= GetTickCount();
320 bytes_transferred
+= USB_CMD_DATA_SIZE
;
324 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
325 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
326 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
327 1000 * bytes_transferred
/ (end_time
- start_time
));
332 * Prints runtime information about the PM3.
334 void SendStatus(void)
336 BigBuf_print_status();
338 printConfig(); //LF Sampling config
341 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
342 Dbprintf(" ToSendMax........%d",ToSendMax
);
343 Dbprintf(" ToSendBit........%d",ToSendBit
);
345 cmd_send(CMD_ACK
,1,0,0,0,0);
348 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
352 void StandAloneMode()
354 DbpString("Stand-alone mode! No PC necessary.");
355 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
372 #ifdef WITH_ISO14443a_StandAlone
373 void StandAloneMode14a()
376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
379 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
380 int cardRead
[OPTS
] = {0};
381 uint8_t readUID
[10] = {0};
382 uint32_t uid_1st
[OPTS
]={0};
383 uint32_t uid_2nd
[OPTS
]={0};
384 uint32_t uid_tmp1
= 0;
385 uint32_t uid_tmp2
= 0;
386 iso14a_card_select_t hi14a_card
[OPTS
];
388 LED(selected
+ 1, 0);
396 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
400 LED(selected
+ 1, 0);
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
405 /* need this delay to prevent catching some weird data */
407 /* Code for reading from 14a tag */
408 uint8_t uid
[10] ={0};
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
415 if (BUTTON_PRESS()) {
416 if (cardRead
[selected
]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
420 else if (cardRead
[(selected
+1)%OPTS
]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
422 selected
= (selected
+1)%OPTS
;
423 break; // playing = 1;
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
430 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
434 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
435 memcpy(readUID
,uid
,10*sizeof(uint8_t));
436 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
437 // Set UID byte order
438 for (int i
=0; i
<4; i
++)
440 dst
= (uint8_t *)&uid_tmp2
;
441 for (int i
=0; i
<4; i
++)
443 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
448 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
449 uid_1st
[selected
] = (uid_tmp1
)>>8;
450 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
453 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
454 uid_1st
[selected
] = uid_tmp1
;
455 uid_2nd
[selected
] = uid_tmp2
;
461 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
462 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
465 LED(LED_ORANGE
, 200);
467 LED(LED_ORANGE
, 200);
470 LED(selected
+ 1, 0);
472 // Next state is replay:
475 cardRead
[selected
] = 1;
477 /* MF Classic UID clone */
478 else if (iGotoClone
==1)
482 LED(selected
+ 1, 0);
483 LED(LED_ORANGE
, 250);
487 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
489 // wait for button to be released
490 while(BUTTON_PRESS())
492 // Delay cloning until card is in place
495 Dbprintf("Starting clone. [Bank: %u]", selected
);
496 // need this delay to prevent catching some weird data
498 // Begin clone function here:
499 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
500 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
501 memcpy(c.d.asBytes, data, 16);
504 Block read is similar:
505 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
506 We need to imitate that call with blockNo 0 to set a uid.
508 The get and set commands are handled in this file:
509 // Work with "magic Chinese" card
510 case CMD_MIFARE_CSETBLOCK:
511 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
513 case CMD_MIFARE_CGETBLOCK:
514 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
517 mfCSetUID provides example logic for UID set workflow:
518 -Read block0 from card in field with MifareCGetBlock()
519 -Configure new values without replacing reserved bytes
520 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
523 Bytes 5-7 are reserved SAK and ATQA for mifare classic
524 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
526 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
527 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
528 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
529 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
530 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
534 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
535 memcpy(newBlock0
,oldBlock0
,16);
536 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538 newBlock0
[0] = uid_1st
[selected
]>>24;
539 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
540 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
541 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
542 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
543 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
544 MifareCSetBlock(0, 0xFF,0, newBlock0
);
545 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
546 if (memcmp(testBlock0
,newBlock0
,16)==0)
548 DbpString("Cloned successfull!");
549 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
552 selected
= (selected
+1) % OPTS
;
555 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
560 LED(selected
+ 1, 0);
563 // Change where to record (or begin playing)
564 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
567 LED(selected
+ 1, 0);
569 // Begin transmitting
573 DbpString("Playing");
576 int button_action
= BUTTON_HELD(1000);
577 if (button_action
== 0) { // No button action, proceed with sim
578 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
579 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
580 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
581 DbpString("Mifare Classic");
582 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
584 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
585 DbpString("Mifare Ultralight");
586 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
588 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
589 DbpString("Mifare DESFire");
590 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
593 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
594 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
597 else if (button_action
== BUTTON_SINGLE_CLICK
) {
598 selected
= (selected
+ 1) % OPTS
;
599 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
603 else if (button_action
== BUTTON_HOLD
) {
604 Dbprintf("Playtime over. Begin cloning...");
611 /* We pressed a button so ignore it here with a delay */
614 LED(selected
+ 1, 0);
617 while(BUTTON_PRESS())
623 // samy's sniff and repeat routine
627 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
629 int high
[OPTS
], low
[OPTS
];
634 // Turn on selected LED
635 LED(selected
+ 1, 0);
642 // Was our button held down or pressed?
643 int button_pressed
= BUTTON_HELD(1000);
646 // Button was held for a second, begin recording
647 if (button_pressed
> 0 && cardRead
== 0)
650 LED(selected
+ 1, 0);
654 DbpString("Starting recording");
656 // wait for button to be released
657 while(BUTTON_PRESS())
660 /* need this delay to prevent catching some weird data */
663 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
664 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
667 LED(selected
+ 1, 0);
668 // Finished recording
670 // If we were previously playing, set playing off
671 // so next button push begins playing what we recorded
678 else if (button_pressed
> 0 && cardRead
== 1)
681 LED(selected
+ 1, 0);
685 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
687 // wait for button to be released
688 while(BUTTON_PRESS())
691 /* need this delay to prevent catching some weird data */
694 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
695 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
698 LED(selected
+ 1, 0);
699 // Finished recording
701 // If we were previously playing, set playing off
702 // so next button push begins playing what we recorded
709 // Change where to record (or begin playing)
710 else if (button_pressed
)
712 // Next option if we were previously playing
714 selected
= (selected
+ 1) % OPTS
;
718 LED(selected
+ 1, 0);
720 // Begin transmitting
724 DbpString("Playing");
725 // wait for button to be released
726 while(BUTTON_PRESS())
728 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
729 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
730 DbpString("Done playing");
731 if (BUTTON_HELD(1000) > 0)
733 DbpString("Exiting");
738 /* We pressed a button so ignore it here with a delay */
741 // when done, we're done playing, move to next option
742 selected
= (selected
+ 1) % OPTS
;
745 LED(selected
+ 1, 0);
748 while(BUTTON_PRESS())
757 Listen and detect an external reader. Determine the best location
761 Inside the ListenReaderField() function, there is two mode.
762 By default, when you call the function, you will enter mode 1.
763 If you press the PM3 button one time, you will enter mode 2.
764 If you press the PM3 button a second time, you will exit the function.
766 DESCRIPTION OF MODE 1:
767 This mode just listens for an external reader field and lights up green
768 for HF and/or red for LF. This is the original mode of the detectreader
771 DESCRIPTION OF MODE 2:
772 This mode will visually represent, using the LEDs, the actual strength of the
773 current compared to the maximum current detected. Basically, once you know
774 what kind of external reader is present, it will help you spot the best location to place
775 your antenna. You will probably not get some good results if there is a LF and a HF reader
776 at the same place! :-)
780 static const char LIGHT_SCHEME
[] = {
781 0x0, /* ---- | No field detected */
782 0x1, /* X--- | 14% of maximum current detected */
783 0x2, /* -X-- | 29% of maximum current detected */
784 0x4, /* --X- | 43% of maximum current detected */
785 0x8, /* ---X | 57% of maximum current detected */
786 0xC, /* --XX | 71% of maximum current detected */
787 0xE, /* -XXX | 86% of maximum current detected */
788 0xF, /* XXXX | 100% of maximum current detected */
790 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
792 void ListenReaderField(int limit
)
794 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
795 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
796 int mode
=1, display_val
, display_max
, i
;
800 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
803 // switch off FPGA - we don't want to measure our own signal
804 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
805 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
809 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
811 if(limit
!= HF_ONLY
) {
812 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
816 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
818 if (limit
!= LF_ONLY
) {
819 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
824 if (BUTTON_PRESS()) {
829 DbpString("Signal Strength Mode");
833 DbpString("Stopped");
841 if (limit
!= HF_ONLY
) {
843 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
849 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
850 // see if there's a significant change
851 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
852 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
859 if (limit
!= LF_ONLY
) {
861 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
867 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
868 // see if there's a significant change
869 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
870 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
878 if (limit
== LF_ONLY
) {
880 display_max
= lf_max
;
881 } else if (limit
== HF_ONLY
) {
883 display_max
= hf_max
;
884 } else { /* Pick one at random */
885 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
887 display_max
= hf_max
;
890 display_max
= lf_max
;
893 for (i
=0; i
<LIGHT_LEN
; i
++) {
894 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
895 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
896 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
897 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
898 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
906 void UsbPacketReceived(uint8_t *packet
, int len
)
908 UsbCommand
*c
= (UsbCommand
*)packet
;
910 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
914 case CMD_SET_LF_SAMPLING_CONFIG
:
915 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
917 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
918 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
920 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
921 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
923 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
924 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
926 case CMD_HID_DEMOD_FSK
:
927 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
929 case CMD_HID_SIM_TAG
:
930 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
932 case CMD_FSK_SIM_TAG
:
933 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
935 case CMD_ASK_SIM_TAG
:
936 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
938 case CMD_PSK_SIM_TAG
:
939 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
941 case CMD_HID_CLONE_TAG
:
942 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
944 case CMD_IO_DEMOD_FSK
:
945 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
947 case CMD_IO_CLONE_TAG
:
948 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
950 case CMD_EM410X_DEMOD
:
951 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
953 case CMD_EM410X_WRITE_TAG
:
954 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
956 case CMD_READ_TI_TYPE
:
959 case CMD_WRITE_TI_TYPE
:
960 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
962 case CMD_SIMULATE_TAG_125K
:
964 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
967 case CMD_LF_SIMULATE_BIDIR
:
968 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
970 case CMD_INDALA_CLONE_TAG
:
971 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
973 case CMD_INDALA_CLONE_TAG_L
:
974 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
976 case CMD_T55XX_READ_BLOCK
:
977 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
979 case CMD_T55XX_WRITE_BLOCK
:
980 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
981 cmd_send(CMD_ACK
,0,0,0,0,0);
983 case CMD_T55XX_READ_TRACE
:
986 case CMD_PCF7931_READ
:
988 cmd_send(CMD_ACK
,0,0,0,0,0);
990 case CMD_PCF7931_WRITE
:
991 WritePCF7931(c
->d
.asDwords
[0],c
->d
.asDwords
[1],c
->d
.asDwords
[2],c
->d
.asDwords
[3],c
->d
.asDwords
[4],c
->d
.asDwords
[5],c
->d
.asDwords
[6], c
->d
.asDwords
[9], c
->d
.asDwords
[7]-128,c
->d
.asDwords
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
993 case CMD_EM4X_READ_WORD
:
994 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
996 case CMD_EM4X_WRITE_WORD
:
997 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
999 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1000 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1005 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1006 SnoopHitag(c
->arg
[0]);
1008 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1009 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1011 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1012 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1016 #ifdef WITH_ISO15693
1017 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1018 AcquireRawAdcSamplesIso15693();
1020 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1021 RecordRawAdcSamplesIso15693();
1024 case CMD_ISO_15693_COMMAND
:
1025 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1028 case CMD_ISO_15693_FIND_AFI
:
1029 BruteforceIso15693Afi(c
->arg
[0]);
1032 case CMD_ISO_15693_DEBUG
:
1033 SetDebugIso15693(c
->arg
[0]);
1036 case CMD_READER_ISO_15693
:
1037 ReaderIso15693(c
->arg
[0]);
1039 case CMD_SIMTAG_ISO_15693
:
1040 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1045 case CMD_SIMULATE_TAG_LEGIC_RF
:
1046 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1049 case CMD_WRITER_LEGIC_RF
:
1050 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1053 case CMD_READER_LEGIC_RF
:
1054 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1058 #ifdef WITH_ISO14443b
1059 case CMD_READ_SRI512_TAG
:
1060 ReadSTMemoryIso14443b(0x0F);
1062 case CMD_READ_SRIX4K_TAG
:
1063 ReadSTMemoryIso14443b(0x7F);
1065 case CMD_SNOOP_ISO_14443B
:
1068 case CMD_SIMULATE_TAG_ISO_14443B
:
1069 SimulateIso14443bTag();
1071 case CMD_ISO_14443B_COMMAND
:
1072 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1076 #ifdef WITH_ISO14443a
1077 case CMD_SNOOP_ISO_14443a
:
1078 SnoopIso14443a(c
->arg
[0]);
1080 case CMD_READER_ISO_14443a
:
1083 case CMD_SIMULATE_TAG_ISO_14443a
:
1084 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1087 case CMD_EPA_PACE_COLLECT_NONCE
:
1088 EPA_PACE_Collect_Nonce(c
);
1090 case CMD_EPA_PACE_REPLAY
:
1094 case CMD_READER_MIFARE
:
1095 ReaderMifare(c
->arg
[0]);
1097 case CMD_MIFARE_READBL
:
1098 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1100 case CMD_MIFAREU_READBL
:
1101 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1103 case CMD_MIFAREUC_AUTH
:
1104 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1106 case CMD_MIFAREU_READCARD
:
1107 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1109 case CMD_MIFAREUC_SETPWD
:
1110 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1112 case CMD_MIFARE_READSC
:
1113 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1115 case CMD_MIFARE_WRITEBL
:
1116 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1118 //case CMD_MIFAREU_WRITEBL_COMPAT:
1119 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1121 case CMD_MIFAREU_WRITEBL
:
1122 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1124 case CMD_MIFARE_NESTED
:
1125 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1127 case CMD_MIFARE_CHKKEYS
:
1128 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1130 case CMD_SIMULATE_MIFARE_CARD
:
1131 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1135 case CMD_MIFARE_SET_DBGMODE
:
1136 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1138 case CMD_MIFARE_EML_MEMCLR
:
1139 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_MIFARE_EML_MEMSET
:
1142 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1144 case CMD_MIFARE_EML_MEMGET
:
1145 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 case CMD_MIFARE_EML_CARDLOAD
:
1148 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 // Work with "magic Chinese" card
1152 case CMD_MIFARE_CSETBLOCK
:
1153 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1155 case CMD_MIFARE_CGETBLOCK
:
1156 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1158 case CMD_MIFARE_CIDENT
:
1163 case CMD_MIFARE_SNIFFER
:
1164 SniffMifare(c
->arg
[0]);
1170 // Makes use of ISO14443a FPGA Firmware
1171 case CMD_SNOOP_ICLASS
:
1174 case CMD_SIMULATE_TAG_ICLASS
:
1175 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1177 case CMD_READER_ICLASS
:
1178 ReaderIClass(c
->arg
[0]);
1180 case CMD_READER_ICLASS_REPLAY
:
1181 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1183 case CMD_ICLASS_EML_MEMSET
:
1184 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1186 case CMD_ICLASS_WRITEBLOCK
:
1187 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1189 case CMD_ICLASS_READCHECK
: // auth step 1
1190 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1192 case CMD_ICLASS_READBLOCK
:
1193 iClass_ReadBlk(c
->arg
[0]);
1195 case CMD_ICLASS_AUTHENTICATION
: //check
1196 iClass_Authentication(c
->d
.asBytes
);
1198 case CMD_ICLASS_DUMP
:
1199 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1201 case CMD_ICLASS_CLONE
:
1202 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1206 case CMD_BUFF_CLEAR
:
1210 case CMD_MEASURE_ANTENNA_TUNING
:
1211 MeasureAntennaTuning();
1214 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1215 MeasureAntennaTuningHf();
1218 case CMD_LISTEN_READER_FIELD
:
1219 ListenReaderField(c
->arg
[0]);
1222 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1225 LED_D_OFF(); // LED D indicates field ON or OFF
1228 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1231 uint8_t *BigBuf
= BigBuf_get_addr();
1232 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1233 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1234 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1236 // Trigger a finish downloading signal with an ACK frame
1237 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1241 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1242 uint8_t *b
= BigBuf_get_addr();
1243 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1244 cmd_send(CMD_ACK
,0,0,0,0,0);
1251 case CMD_SET_LF_DIVISOR
:
1252 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1253 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1256 case CMD_SET_ADC_MUX
:
1258 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1259 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1260 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1261 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1272 cmd_send(CMD_ACK
,0,0,0,0,0);
1282 case CMD_SETUP_WRITE
:
1283 case CMD_FINISH_WRITE
:
1284 case CMD_HARDWARE_RESET
:
1288 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1290 // We're going to reset, and the bootrom will take control.
1294 case CMD_START_FLASH
:
1295 if(common_area
.flags
.bootrom_present
) {
1296 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1299 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1303 case CMD_DEVICE_INFO
: {
1304 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1305 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1306 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1310 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1315 void __attribute__((noreturn
)) AppMain(void)
1319 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1320 /* Initialize common area */
1321 memset(&common_area
, 0, sizeof(common_area
));
1322 common_area
.magic
= COMMON_AREA_MAGIC
;
1323 common_area
.version
= 1;
1325 common_area
.flags
.osimage_present
= 1;
1335 // The FPGA gets its clock from us from PCK0 output, so set that up.
1336 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1337 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1338 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1339 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1340 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1341 AT91C_PMC_PRES_CLK_4
;
1342 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1345 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1347 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1349 // Load the FPGA image, which we have stored in our flash.
1350 // (the HF version by default)
1351 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1359 byte_t rx
[sizeof(UsbCommand
)];
1364 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1366 UsbPacketReceived(rx
,rx_len
);
1372 #ifndef WITH_ISO14443a_StandAlone
1373 if (BUTTON_HELD(1000) > 0)
1377 #ifdef WITH_ISO14443a
1378 #ifdef WITH_ISO14443a_StandAlone
1379 if (BUTTON_HELD(1000) > 0)
1380 StandAloneMode14a();