1 //----------------------------------------------------------------------------- 
   2 // Copyright (C) 2015, 2016 by piwi 
   4 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   5 // at your option, any later version. See the LICENSE.txt file for the text of 
   7 //----------------------------------------------------------------------------- 
   8 // Implements a card only attack based on crypto text (encrypted nonces 
   9 // received during a nested authentication) only. Unlike other card only 
  10 // attacks this doesn't rely on implementation errors but only on the 
  11 // inherent weaknesses of the crypto1 cypher. Described in 
  12 //   Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened 
  13 //   Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on  
  14 //   Computer and Communications Security, 2015 
  15 //----------------------------------------------------------------------------- 
  17 #include "cmdhfmfhard.h" 
  27 #include "proxmark3.h" 
  31 #include "util_posix.h" 
  32 #include "crapto1/crapto1.h" 
  34 #include "hardnested/hardnested_bruteforce.h" 
  35 #include "hardnested/hardnested_bf_core.h" 
  36 #include "hardnested/hardnested_bitarray_core.h" 
  39 #define NUM_CHECK_BITFLIPS_THREADS              (num_CPUs()) 
  40 #define NUM_REDUCTION_WORKING_THREADS   (num_CPUs()) 
  42 #define IGNORE_BITFLIP_THRESHOLD                0.99    // ignore bitflip arrays which have nearly only valid states 
  44 #define STATE_FILES_DIRECTORY                   "hardnested/tables/" 
  45 #define STATE_FILE_TEMPLATE                             "bitflip_%d_%03" PRIx16 "_states.bin.z" 
  47 #define DEBUG_KEY_ELIMINATION 
  48 // #define DEBUG_REDUCTION 
  50 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values 
  52 #define NUM_PART_SUMS                                   9               // number of possible partial sum property values 
  59 static uint32_t num_acquired_nonces 
= 0; 
  60 static uint64_t start_time 
= 0; 
  61 static uint16_t effective_bitflip
[2][0x400]; 
  62 static uint16_t num_effective_bitflips
[2] = {0, 0}; 
  63 static uint16_t all_effective_bitflip
[0x400]; 
  64 static uint16_t num_all_effective_bitflips 
= 0; 
  65 static uint16_t num_1st_byte_effective_bitflips 
= 0; 
  66 #define CHECK_1ST_BYTES                 0x01 
  67 #define CHECK_2ND_BYTES                 0x02 
  68 static uint8_t hardnested_stage 
= CHECK_1ST_BYTES
; 
  69 static uint64_t known_target_key
; 
  70 static uint32_t test_state
[2] = {0,0}; 
  71 static float brute_force_per_second
; 
  74 static void get_SIMD_instruction_set(char* instruction_set
) { 
  75         switch(GetSIMDInstrAuto()) { 
  77                         strcpy(instruction_set
, "AVX512F"); 
  80                         strcpy(instruction_set
, "AVX2"); 
  83                         strcpy(instruction_set
, "AVX"); 
  86                         strcpy(instruction_set
, "SSE2"); 
  89                         strcpy(instruction_set
, "MMX"); 
  92                         strcpy(instruction_set
, "no"); 
  98 static void print_progress_header(void) { 
  99         char progress_text
[80]; 
 100         char instr_set
[12] = {0}; 
 101         get_SIMD_instruction_set(instr_set
); 
 102         sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
); 
 104         PrintAndLog(" time    | #nonces | Activity                                                | expected to brute force"); 
 105         PrintAndLog("         |         |                                                         | #states         | time "); 
 106         PrintAndLog("------------------------------------------------------------------------------------------------------"); 
 107         PrintAndLog("       0 |       0 | %-55s |                 |", progress_text
); 
 111 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) { 
 112         static uint64_t last_print_time 
= 0; 
 113         if (msclock() - last_print_time 
> min_diff_print_time
) { 
 114                 last_print_time 
= msclock(); 
 115                 uint64_t total_time 
= msclock() - start_time
; 
 116                 float brute_force_time 
= brute_force 
/ brute_force_per_second
; 
 117                 char brute_force_time_string
[20]; 
 118                 if (brute_force_time 
< 90) { 
 119                         sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
); 
 120                 } else if (brute_force_time 
< 60 * 90) { 
 121                         sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60); 
 122                 } else if (brute_force_time 
< 60 * 60 * 36) { 
 123                         sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60)); 
 125                         sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24)); 
 127                 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
); 
 132 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 133 // bitarray functions 
 135 static inline void clear_bitarray24(uint32_t *bitarray
) 
 137         memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19)); 
 141 static inline void set_bitarray24(uint32_t *bitarray
) 
 143         memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19)); 
 147 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
) 
 149         bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f); 
 153 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
) 
 155         return  bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f)); 
 159 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
) 
 161         if (++state 
== 1<<24) return 1<<24; 
 162         uint32_t index 
= state 
>> 5; 
 163         uint_fast8_t bit 
= state 
& 0x1f; 
 164         uint32_t line 
= bitarray
[index
] << bit
; 
 165         while (bit 
<= 0x1f) { 
 166                 if (line 
& 0x80000000) return state
; 
 172         while (bitarray
[index
] == 0x00000000 && state 
< 1<<24) { 
 176         if (state 
>= 1<<24) return 1<<24; 
 178         return state 
+ __builtin_clz(bitarray
[index
]); 
 181         line 
= bitarray
[index
]; 
 182         while (bit 
<= 0x1f) { 
 183                 if (line 
& 0x80000000) return state
; 
 195 #define BITFLIP_2ND_BYTE                                0x0200 
 198 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 199 // bitflip property bitarrays 
 201 static uint32_t *bitflip_bitarrays
[2][0x400]; 
 202 static uint32_t count_bitflip_bitarrays
[2][0x400]; 
 204 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
) 
 206         uint64_t count1 
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
]; 
 207         uint64_t count2 
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
]; 
 208         return (count1 
> count2
) - (count2 
> count1
); 
 212 static voidpf 
inflate_malloc(voidpf opaque
, uInt items
, uInt size
) 
 214         return malloc(items
*size
); 
 218 static void inflate_free(voidpf opaque
, voidpf address
) 
 223 #define OUTPUT_BUFFER_LEN 80 
 224 #define INPUT_BUFFER_LEN 80 
 226 //---------------------------------------------------------------------------- 
 227 // Initialize decompression of the respective (HF or LF) FPGA stream  
 228 //---------------------------------------------------------------------------- 
 229 static void init_inflate(z_streamp compressed_stream
, uint8_t *input_buffer
, uint32_t insize
, uint8_t *output_buffer
, uint32_t outsize
) 
 232         // initialize z_stream structure for inflate: 
 233         compressed_stream
->next_in 
= input_buffer
; 
 234         compressed_stream
->avail_in 
= insize
; 
 235         compressed_stream
->next_out 
= output_buffer
; 
 236         compressed_stream
->avail_out 
= outsize
; 
 237         compressed_stream
->zalloc 
= &inflate_malloc
; 
 238         compressed_stream
->zfree 
= &inflate_free
; 
 240         inflateInit2(compressed_stream
, 0); 
 245 static void init_bitflip_bitarrays(void) 
 247 #if defined (DEBUG_REDUCTION) 
 252         z_stream compressed_stream
; 
 254         char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1]; 
 255         char state_file_name
[strlen(STATE_FILE_TEMPLATE
)+1]; 
 257         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 258                 num_effective_bitflips
[odd_even
] = 0; 
 259                 for (uint16_t bitflip 
= 0x001; bitflip 
< 0x400; bitflip
++) { 
 260                         bitflip_bitarrays
[odd_even
][bitflip
] = NULL
; 
 261                         count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24; 
 262                         sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
); 
 263                         strcpy(state_files_path
, get_my_executable_directory()); 
 264                         strcat(state_files_path
, STATE_FILES_DIRECTORY
); 
 265                         strcat(state_files_path
, state_file_name
); 
 266                         FILE *statesfile 
= fopen(state_files_path
, "rb"); 
 267                         if (statesfile 
== NULL
) { 
 270                                 fseek(statesfile
, 0, SEEK_END
); 
 271                                 uint32_t filesize 
= (uint32_t)ftell(statesfile
); 
 273                                 uint8_t input_buffer
[filesize
]; 
 274                                 size_t bytesread 
= fread(input_buffer
, 1, filesize
, statesfile
); 
 275                                 if (bytesread 
!= filesize
) { 
 276                                         printf("File read error with %s. Aborting...\n", state_file_name
); 
 278                                         inflateEnd(&compressed_stream
); 
 283                                 init_inflate(&compressed_stream
, input_buffer
, filesize
, (uint8_t *)&count
, sizeof(count
)); 
 284                                 inflate(&compressed_stream
, Z_SYNC_FLUSH
); 
 285                                 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) { 
 286                                         uint32_t *bitset 
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 287                                         if (bitset 
== NULL
) { 
 288                                                 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n"); 
 289                                                 inflateEnd(&compressed_stream
); 
 292                                         compressed_stream
.next_out 
= (uint8_t *)bitset
; 
 293                                         compressed_stream
.avail_out 
= sizeof(uint32_t) * (1<<19); 
 294                                         inflate(&compressed_stream
, Z_SYNC_FLUSH
); 
 295                                         effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
; 
 296                                         bitflip_bitarrays
[odd_even
][bitflip
] = bitset
; 
 297                                         count_bitflip_bitarrays
[odd_even
][bitflip
] = count
; 
 298 #if defined (DEBUG_REDUCTION) 
 299                                         printf("(%03" PRIx16 
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0); 
 307                                 inflateEnd(&compressed_stream
); 
 310                 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400;  // EndOfList marker 
 315         num_all_effective_bitflips 
= 0; 
 316         num_1st_byte_effective_bitflips 
= 0; 
 317         while (i 
< num_effective_bitflips
[EVEN_STATE
] || j 
< num_effective_bitflips
[ODD_STATE
]) { 
 318                 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) { 
 319                         all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
]; 
 321                 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) { 
 322                         all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
]; 
 325                         all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
]; 
 328                 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) { 
 329                         num_1st_byte_effective_bitflips 
= num_all_effective_bitflips
; 
 332         qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
); 
 333 #if defined (DEBUG_REDUCTION) 
 334         printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
); 
 335         for(uint16_t i 
= 0; i 
< num_1st_byte_effective_bitflips
; i
++) { 
 336                 printf("%03x ",  all_effective_bitflip
[i
]); 
 339         qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips 
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
); 
 340 #if defined (DEBUG_REDUCTION) 
 341         printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips 
- num_1st_byte_effective_bitflips
); 
 342         for(uint16_t i 
= num_1st_byte_effective_bitflips
; i 
< num_all_effective_bitflips
; i
++) { 
 343                 printf("%03x ",  all_effective_bitflip
[i
]); 
 346         char progress_text
[80]; 
 347         sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
); 
 348         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
 352 static void     free_bitflip_bitarrays(void) 
 354         for (int16_t bitflip 
= 0x3ff; bitflip 
> 0x000; bitflip
--) { 
 355                 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]); 
 357         for (int16_t bitflip 
= 0x3ff; bitflip 
> 0x000; bitflip
--) { 
 358                 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]); 
 363 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 364 // sum property bitarrays 
 366 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
]; 
 367 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
]; 
 368 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];  
 370 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
) 
 373         for (uint16_t j 
= 0; j 
< 16; j
++) { 
 375                 uint16_t part_sum 
= 0; 
 376                 if (odd_even 
== ODD_STATE
) { 
 377                         for (uint16_t i 
= 0; i 
< 5; i
++) { 
 378                                 part_sum 
^= filter(st
); 
 379                                 st 
= (st 
<< 1) | ((j 
>> (3-i
)) & 0x01) ; 
 381                         part_sum 
^= 1;          // XOR 1 cancelled out for the other 8 bits 
 383                         for (uint16_t i 
= 0; i 
< 4; i
++) { 
 384                                 st 
= (st 
<< 1) | ((j 
>> (3-i
)) & 0x01) ; 
 385                                 part_sum 
^= filter(st
); 
 394 static void init_part_sum_bitarrays(void) 
 396         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 397                 for (uint16_t part_sum_a0 
= 0; part_sum_a0 
< NUM_PART_SUMS
; part_sum_a0
++) { 
 398                         part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 399                         if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) { 
 400                                 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n"); 
 403                         clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]); 
 406         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 407                 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);                         
 408                 for (uint32_t state 
= 0; state 
< (1<<20); state
++) { 
 409                         uint16_t part_sum_a0 
= PartialSumProperty(state
, odd_even
) / 2; 
 410                         for (uint16_t low_bits 
= 0; low_bits 
< 1<<4; low_bits
++) { 
 411                                 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
); 
 416         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 417                 for (uint16_t part_sum_a8 
= 0; part_sum_a8 
< NUM_PART_SUMS
; part_sum_a8
++) { 
 418                         part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 419                         if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) { 
 420                                 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n"); 
 423                         clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]); 
 426         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 427                 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);  
 428                 for (uint32_t state 
= 0; state 
< (1<<20); state
++) { 
 429                         uint16_t part_sum_a8 
= PartialSumProperty(state
, odd_even
) / 2; 
 430                         for (uint16_t high_bits 
= 0; high_bits 
< 1<<4; high_bits
++) { 
 431                                 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state 
| high_bits
<<20); 
 438 static void free_part_sum_bitarrays(void)  
 440         for (int16_t part_sum_a8 
= (NUM_PART_SUMS
-1); part_sum_a8 
>= 0; part_sum_a8
--) { 
 441                 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]); 
 443         for (int16_t part_sum_a8 
= (NUM_PART_SUMS
-1); part_sum_a8 
>= 0; part_sum_a8
--) { 
 444                 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]); 
 446         for (int16_t part_sum_a0 
= (NUM_PART_SUMS
-1); part_sum_a0 
>= 0; part_sum_a0
--) { 
 447                 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]); 
 449         for (int16_t part_sum_a0 
= (NUM_PART_SUMS
-1); part_sum_a0 
>= 0; part_sum_a0
--) { 
 450                 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]); 
 455 static void init_sum_bitarrays(void) 
 457         for (uint16_t sum_a0 
= 0; sum_a0 
< NUM_SUMS
; sum_a0
++) { 
 458                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 459                         sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 460                         if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) { 
 461                                 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n"); 
 464                         clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]); 
 467         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
 468                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
 469                         uint16_t sum_a0 
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
; 
 470                         uint16_t sum_a0_idx 
= 0; 
 471                         while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++; 
 472                         bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]); 
 473                         bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]); 
 476         // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { 
 477                 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { 
 478                         // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]); 
 479                         // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0); 
 485 static void free_sum_bitarrays(void) 
 487         for (int8_t sum_a0 
= NUM_SUMS
-1; sum_a0 
>= 0; sum_a0
--) { 
 488                 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]); 
 489                 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]); 
 494 #ifdef DEBUG_KEY_ELIMINATION 
 495 char failstr
[250] = ""; 
 498 static const float p_K0
[NUM_SUMS
] = {           // the probability that a random nonce has a Sum Property K  
 499         0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290  
 502 static float my_p_K
[NUM_SUMS
];  
 504 static const float *p_K
; 
 506 static uint32_t cuid
; 
 507 static noncelist_t nonces
[256]; 
 508 static uint8_t best_first_bytes
[256]; 
 509 static uint64_t maximum_states 
= 0; 
 510 static uint8_t best_first_byte_smallest_bitarray 
= 0; 
 511 static uint16_t first_byte_Sum 
= 0; 
 512 static uint16_t first_byte_num 
= 0; 
 513 static bool write_stats 
= false; 
 514 static FILE *fstats 
= NULL
; 
 515 static uint32_t *all_bitflips_bitarray
[2]; 
 516 static uint32_t num_all_bitflips_bitarray
[2]; 
 517 static bool all_bitflips_bitarray_dirty
[2]; 
 518 static uint64_t last_sample_clock 
= 0; 
 519 static uint64_t sample_period 
= 0; 
 520 static uint64_t num_keys_tested 
= 0; 
 521 static statelist_t 
*candidates 
= NULL
; 
 524 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)  
 526         uint8_t first_byte 
= nonce_enc 
>> 24; 
 527         noncelistentry_t 
*p1 
= nonces
[first_byte
].first
; 
 528         noncelistentry_t 
*p2 
= NULL
; 
 530         if (p1 
== NULL
) {                       // first nonce with this 1st byte 
 532                 first_byte_Sum 
+= evenparity32((nonce_enc 
& 0xff000000) | (par_enc 
& 0x08)); 
 535         while (p1 
!= NULL 
&& (p1
->nonce_enc 
& 0x00ff0000) < (nonce_enc 
& 0x00ff0000)) { 
 540         if (p1 
== NULL
) {                                                                                                                                       // need to add at the end of the list 
 541                 if (p2 
== NULL
) {                       // list is empty yet. Add first entry. 
 542                         p2 
= nonces
[first_byte
].first 
= malloc(sizeof(noncelistentry_t
)); 
 543                 } else {                                        // add new entry at end of existing list. 
 544                         p2 
= p2
->next 
= malloc(sizeof(noncelistentry_t
)); 
 546         } else if ((p1
->nonce_enc 
& 0x00ff0000) != (nonce_enc 
& 0x00ff0000)) {                          // found distinct 2nd byte. Need to insert. 
 547                 if (p2 
== NULL
) {                       // need to insert at start of list 
 548                         p2 
= nonces
[first_byte
].first 
= malloc(sizeof(noncelistentry_t
)); 
 550                         p2 
= p2
->next 
= malloc(sizeof(noncelistentry_t
)); 
 552         } else {                                                                                                                                                        // we have seen this 2nd byte before. Nothing to add or insert.  
 556         // add or insert new data 
 558         p2
->nonce_enc 
= nonce_enc
; 
 559         p2
->par_enc 
= par_enc
; 
 561         nonces
[first_byte
].num
++; 
 562         nonces
[first_byte
].Sum 
+= evenparity32((nonce_enc 
& 0x00ff0000) | (par_enc 
& 0x04)); 
 563         nonces
[first_byte
].sum_a8_guess_dirty 
= true;   // indicates that we need to recalculate the Sum(a8) probability for this first byte 
 564         return (1);                             // new nonce added 
 568 static void init_nonce_memory(void) 
 570         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 573                 nonces
[i
].first 
= NULL
; 
 574                 for (uint16_t j 
= 0; j 
< NUM_SUMS
; j
++) { 
 575                         nonces
[i
].sum_a8_guess
[j
].sum_a8_idx 
= j
; 
 576                         nonces
[i
].sum_a8_guess
[j
].prob 
= 0.0; 
 578                 nonces
[i
].sum_a8_guess_dirty 
= false; 
 579                 for (uint16_t bitflip 
= 0x000; bitflip 
< 0x400; bitflip
++) { 
 580                         nonces
[i
].BitFlips
[bitflip
] = 0; 
 582                 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 583                 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) { 
 584                         printf("Out of memory error in init_nonce_memory(). Aborting...\n"); 
 587                 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]); 
 588                 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24; 
 589                 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 590                 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) { 
 591                         printf("Out of memory error in init_nonce_memory(). Aborting...\n"); 
 594                 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]); 
 595                 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24; 
 596                 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false; 
 597                 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false; 
 604 static void free_nonce_list(noncelistentry_t 
*p
) 
 609                 free_nonce_list(p
->next
); 
 615 static void free_nonces_memory(void) 
 617         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 618                 free_nonce_list(nonces
[i
].first
); 
 620         for (int i 
= 255; i 
>= 0; i
--) { 
 621                 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]); 
 622                 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]); 
 627 // static double p_hypergeometric_cache[257][NUM_SUMS][257]; 
 629 // #define CACHE_INVALID -1.0 
 630 // static void init_p_hypergeometric_cache(void) 
 632         // for (uint16_t n = 0; n <= 256; n++) { 
 633                 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) { 
 634                         // for (uint16_t k = 0; k <= 256; k++) { 
 635                                 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID; 
 642 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)  
 644         // for efficient computation we are using the recursive definition 
 646         // P(X=k) = P(X=k-1) * -------------------- 
 649         //           (N-K)*(N-K-1)*...*(N-K-n+1) 
 650         // P(X=0) = ----------------------------- 
 651         //               N*(N-1)*...*(N-n+1) 
 654         uint16_t const N 
= 256; 
 655         uint16_t K 
= sums
[i_K
]; 
 657         // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) { 
 658                 // return p_hypergeometric_cache[n][i_K][k]; 
 661         if (n
-k 
> N
-K 
|| k 
> K
) return 0.0;     // avoids log(x<=0) in calculation below 
 663                 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) 
 664                 double log_result 
= 0.0; 
 665                 for (int16_t i 
= N
-K
; i 
>= N
-K
-n
+1; i
--) { 
 666                         log_result 
+= log(i
); 
 668                 for (int16_t i 
= N
; i 
>= N
-n
+1; i
--) { 
 669                         log_result 
-= log(i
); 
 671                 // p_hypergeometric_cache[n][i_K][k] = exp(log_result); 
 672                 return exp(log_result
); 
 674                 if (n
-k 
== N
-K
) {       // special case. The published recursion below would fail with a divide by zero exception 
 675                         double log_result 
= 0.0; 
 676                         for (int16_t i 
= k
+1; i 
<= n
; i
++) { 
 677                                 log_result 
+= log(i
); 
 679                         for (int16_t i 
= K
+1; i 
<= N
; i
++) { 
 680                                 log_result 
-= log(i
); 
 682                         // p_hypergeometric_cache[n][i_K][k] = exp(log_result); 
 683                         return exp(log_result
); 
 684                 } else {                        // recursion 
 685                         return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k 
* (N
-K
-n
+k
))); 
 691 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
) 
 693         if (k 
> sums
[i_K
]) return 0.0; 
 695         double p_T_is_k_when_S_is_K 
= p_hypergeometric(i_K
, n
, k
); 
 696         double p_S_is_K 
= p_K
[i_K
]; 
 698         for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 699                 p_T_is_k 
+= p_K
[i
] * p_hypergeometric(i
, n
, k
); 
 701         return(p_T_is_k_when_S_is_K 
* p_S_is_K 
/ p_T_is_k
); 
 705 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
]; 
 707 static void init_allbitflips_array(void) 
 709         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 710                 uint32_t *bitset 
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 711                 if (bitset 
== NULL
) { 
 712                         printf("Out of memory in init_allbitflips_array(). Aborting..."); 
 715                 set_bitarray24(bitset
); 
 716                 all_bitflips_bitarray_dirty
[odd_even
] = false; 
 717                 num_all_bitflips_bitarray
[odd_even
] = 1<<24; 
 722 static void update_allbitflips_array(void) 
 724         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
 725                 for (uint16_t i 
= 0; i 
< 256; i
++) { 
 726                         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 727                                 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) { 
 728                                         uint32_t old_count 
= num_all_bitflips_bitarray
[odd_even
]; 
 729                                         num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]); 
 730                                         nonces
[i
].all_bitflips_dirty
[odd_even
] = false; 
 731                                         if (num_all_bitflips_bitarray
[odd_even
] != old_count
) { 
 732                                                 all_bitflips_bitarray_dirty
[odd_even
] = true; 
 741 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)  
 743         return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
]; 
 747 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)  
 749         if (odd_even 
== ODD_STATE
) { 
 750                 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],  
 751                                            part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],  
 752                                                nonces
[first_byte
].states_bitarray
[odd_even
]); 
 754                 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],  
 755                                            part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],  
 756                                                nonces
[first_byte
].states_bitarray
[odd_even
], 
 757                                            nonces
[first_byte
^0x80].states_bitarray
[odd_even
]); 
 760         // estimate reduction by all_bitflips_match() 
 762                 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE]; 
 763                 // return (float)count * p_bitflip;             //(p_bitflip - 0.25*p_bitflip*p_bitflip); 
 770 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
) 
 772         uint64_t num_states 
= 0; 
 773         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
 774                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
 775                         if (2*p
*(16-2*q
) + (16-2*p
)*2*q 
== sum_a0
) { 
 776                                 for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
 777                                         for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
 778                                                 if (2*r
*(16-2*s
) + (16-2*r
)*2*s 
== sum_a8
) { 
 779                                                         num_states 
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)  
 780                                                                                 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
); 
 791 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
) 
 793         uint64_t num_states 
= 0; 
 794         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
 795                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
 796                         if (2*p
*(16-2*q
) + (16-2*p
)*2*q 
== sum_a0
) { 
 797                                 for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
 798                                         for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
 799                                                 if (2*r
*(16-2*s
) + (16-2*r
)*2*s 
== sum_a8
) { 
 800                                                         num_states 
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)  
 801                                                                                 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
); 
 812 static void update_p_K(void) 
 814         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
 815                 uint64_t total_count 
= 0; 
 816                 uint16_t sum_a0 
= sums
[first_byte_Sum
]; 
 817                 for (uint8_t sum_a8_idx 
= 0; sum_a8_idx 
< NUM_SUMS
; sum_a8_idx
++) { 
 818                         uint16_t sum_a8 
= sums
[sum_a8_idx
]; 
 819                         total_count 
+= estimated_num_states_coarse(sum_a0
, sum_a8
); 
 821                 for (uint8_t sum_a8_idx 
= 0; sum_a8_idx 
< NUM_SUMS
; sum_a8_idx
++) { 
 822                         uint16_t sum_a8 
= sums
[sum_a8_idx
]; 
 823                         my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
; 
 825                 // printf("my_p_K = ["); 
 826                 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { 
 827                         // printf("%7.4f ", my_p_K[sum_a8_idx]); 
 834 static void update_sum_bitarrays(odd_even_t odd_even
) 
 836         if (all_bitflips_bitarray_dirty
[odd_even
]) { 
 837                 for (uint8_t part_sum 
= 0; part_sum 
< NUM_PART_SUMS
; part_sum
++) { 
 838                         bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]); 
 839                         bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]); 
 841                 for (uint16_t i 
= 0; i 
< 256; i
++) { 
 842                         nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]); 
 844                 for (uint8_t part_sum_a0 
= 0; part_sum_a0 
< NUM_PART_SUMS
; part_sum_a0
++) { 
 845                         for (uint8_t part_sum_a8 
= 0; part_sum_a8 
< NUM_PART_SUMS
; part_sum_a8
++) { 
 846                                 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]  
 847                                     += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]); 
 850                 all_bitflips_bitarray_dirty
[odd_even
] = false; 
 855 static int compare_expected_num_brute_force(const void *b1
, const void *b2
) 
 857         uint8_t index1 
= *(uint8_t *)b1
; 
 858         uint8_t index2 
= *(uint8_t *)b2
; 
 859         float score1 
= nonces
[index1
].expected_num_brute_force
; 
 860         float score2 
= nonces
[index2
].expected_num_brute_force
; 
 861         return (score1 
> score2
) - (score1 
< score2
); 
 865 static int compare_sum_a8_guess(const void *b1
, const void *b2
) 
 867         float prob1 
= ((guess_sum_a8_t 
*)b1
)->prob
; 
 868         float prob2 
= ((guess_sum_a8_t 
*)b2
)->prob
; 
 869         return (prob1 
< prob2
) - (prob1 
> prob2
); 
 874 static float check_smallest_bitflip_bitarrays(void)  
 876         uint32_t num_odd
, num_even
; 
 877         uint64_t smallest 
= 1LL << 48; 
 878         // initialize best_first_bytes, do a rough estimation on remaining states 
 879         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 880                 num_odd 
= nonces
[i
].num_states_bitarray
[ODD_STATE
]; 
 881                 num_even 
= nonces
[i
].num_states_bitarray
[EVEN_STATE
];   // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; 
 882                 if ((uint64_t)num_odd 
* num_even 
< smallest
) { 
 883                         smallest 
= (uint64_t)num_odd 
* num_even
; 
 884                         best_first_byte_smallest_bitarray 
= i
; 
 888 #if defined (DEBUG_REDUCTION) 
 889         num_odd 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
]; 
 890         num_even 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];   // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; 
 891         printf("0x%02x: %8d * %8d = %12" PRIu64 
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd 
* num_even
, log((uint64_t)num_odd 
* num_even
)/log(2.0)); 
 893         return (float)smallest
/2.0; 
 897 static void update_expected_brute_force(uint8_t best_byte
) { 
 899         float total_prob 
= 0.0; 
 900         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 901                 total_prob 
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
; 
 903         // linear adjust probabilities to result in total_prob = 1.0; 
 904         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 905                 nonces
[best_byte
].sum_a8_guess
[i
].prob 
/= total_prob
; 
 907         float prob_all_failed 
= 1.0; 
 908         nonces
[best_byte
].expected_num_brute_force 
= 0.0; 
 909         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 910                 nonces
[best_byte
].expected_num_brute_force 
+= nonces
[best_byte
].sum_a8_guess
[i
].prob 
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states 
/ 2.0; 
 911                 prob_all_failed 
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
; 
 912                 nonces
[best_byte
].expected_num_brute_force 
+= prob_all_failed 
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states 
/ 2.0; 
 918 static float sort_best_first_bytes(void) 
 921         // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property 
 922         // and the expected number of states to brute force 
 923         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 924                 best_first_bytes
[i
] = i
; 
 925                 float prob_all_failed 
= 1.0; 
 926                 nonces
[i
].expected_num_brute_force 
= 0.0; 
 927                 for (uint8_t j 
= 0; j 
< NUM_SUMS
; j
++) { 
 928                         nonces
[i
].sum_a8_guess
[j
].num_states 
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]); 
 929                         nonces
[i
].expected_num_brute_force 
+= nonces
[i
].sum_a8_guess
[j
].prob 
* (float)nonces
[i
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 930                         prob_all_failed 
-= nonces
[i
].sum_a8_guess
[j
].prob
; 
 931                         nonces
[i
].expected_num_brute_force 
+= prob_all_failed 
* (float)nonces
[i
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 935         // sort based on expected number of states to brute force 
 936         qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
); 
 938         // printf("refine estimations: "); 
 939         #define NUM_REFINES     1 
 940         // refine scores for the best: 
 941         for (uint16_t i 
= 0; i 
< NUM_REFINES
; i
++) { 
 942                 // printf("%d...", i); 
 943                 uint16_t first_byte 
= best_first_bytes
[i
]; 
 944                 for (uint8_t j 
= 0; j 
< NUM_SUMS 
&& nonces
[first_byte
].sum_a8_guess
[j
].prob 
> 0.05; j
++) { 
 945                         nonces
[first_byte
].sum_a8_guess
[j
].num_states 
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]); 
 947                 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0 
 948                                 // || nonces[first_byte].sum_a8_guess[1].num_states == 0 
 949                                 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) { 
 950                         // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { 
 951                                 // nonces[first_byte].sum_a8_guess[0].prob = 0.0; 
 952                                 // printf("(0x%02x,%d)", first_byte, 0); 
 954                         // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { 
 955                                 // nonces[first_byte].sum_a8_guess[1].prob = 0.0; 
 956                                 // printf("(0x%02x,%d)", first_byte, 1); 
 958                         // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { 
 959                                 // nonces[first_byte].sum_a8_guess[2].prob = 0.0; 
 960                                 // printf("(0x%02x,%d)", first_byte, 2); 
 963                         // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); 
 964                         // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { 
 965                                 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); 
 968                 // float fix_probs = 0.0; 
 969                 // for (uint8_t j = 0; j < NUM_SUMS; j++) { 
 970                         // fix_probs += nonces[first_byte].sum_a8_guess[j].prob; 
 972                 // for (uint8_t j = 0; j < NUM_SUMS; j++) { 
 973                         // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs; 
 975                 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { 
 976                         // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); 
 978                 float prob_all_failed 
= 1.0; 
 979                 nonces
[first_byte
].expected_num_brute_force 
= 0.0; 
 980                 for (uint8_t j 
= 0; j 
< NUM_SUMS
; j
++) { 
 981                         nonces
[first_byte
].expected_num_brute_force 
+= nonces
[first_byte
].sum_a8_guess
[j
].prob 
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 982                         prob_all_failed 
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
; 
 983                         nonces
[first_byte
].expected_num_brute_force 
+= prob_all_failed 
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 987         // copy best byte to front: 
 988         float least_expected_brute_force 
= (1LL << 48); 
 989         uint8_t best_byte 
= 0; 
 990         for (uint16_t i 
= 0; i 
< 10; i
++) { 
 991                 uint16_t first_byte 
= best_first_bytes
[i
]; 
 992                 if (nonces
[first_byte
].expected_num_brute_force 
< least_expected_brute_force
) { 
 993                         least_expected_brute_force 
= nonces
[first_byte
].expected_num_brute_force
; 
 997         if (best_byte 
!= 0) { 
 998                 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); 
 999                 uint8_t tmp 
= best_first_bytes
[0]; 
1000                 best_first_bytes
[0] = best_first_bytes
[best_byte
]; 
1001                 best_first_bytes
[best_byte
] = tmp
; 
1004         return nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
1008 static float update_reduction_rate(float last
, bool init
)  
1011         static float queue
[QUEUE_LEN
]; 
1013         for (uint16_t i 
= 0; i 
< QUEUE_LEN
-1; i
++) { 
1015                         queue
[i
] = (float)(1LL << 48); 
1017                         queue
[i
] = queue
[i
+1]; 
1021                 queue
[QUEUE_LEN
-1] = (float)(1LL << 48); 
1023                 queue
[QUEUE_LEN
-1] = last
; 
1026         // linear regression 
1029         for (uint16_t i 
= 0; i 
< QUEUE_LEN
; i
++) { 
1038         for (uint16_t i 
= 0; i 
< QUEUE_LEN
; i
++) { 
1039                 dev_xy 
+= (i 
- avg_x
)*(queue
[i
] - avg_y
); 
1040                 dev_x2 
+= (i 
- avg_x
)*(i 
- avg_x
); 
1043         float reduction_rate 
= -1.0 * dev_xy 
/ dev_x2
;  // the negative slope of the linear regression 
1045 #if defined (DEBUG_REDUCTION)    
1046         printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second 
* (float)sample_period 
/ 1000.0); 
1048         return reduction_rate
; 
1052 static bool shrink_key_space(float *brute_forces
) 
1054 #if defined(DEBUG_REDUCTION) 
1055         printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
); 
1057         float brute_forces1 
= check_smallest_bitflip_bitarrays(); 
1058         float brute_forces2 
= (float)(1LL << 47); 
1059         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
1060                 brute_forces2 
= sort_best_first_bytes(); 
1062         *brute_forces 
= MIN(brute_forces1
, brute_forces2
); 
1063         float reduction_rate 
= update_reduction_rate(*brute_forces
, false); 
1064         return ((hardnested_stage 
& CHECK_2ND_BYTES
)  
1065                 && reduction_rate 
>= 0.0 && reduction_rate 
< brute_force_per_second 
* sample_period 
/ 1000.0); 
1069 static void estimate_sum_a8(void)  
1071         if (first_byte_num 
== 256) { 
1072                 for (uint16_t i 
= 0; i 
< 256; i
++) { 
1073                         if (nonces
[i
].sum_a8_guess_dirty
) { 
1074                                 for (uint16_t j 
= 0; j 
< NUM_SUMS
; j
++ ) { 
1075                                         uint16_t sum_a8_idx 
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
; 
1076                                         nonces
[i
].sum_a8_guess
[j
].prob 
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
); 
1078                                 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
); 
1079                                 nonces
[i
].sum_a8_guess_dirty 
= false; 
1086 static int read_nonce_file(void) 
1088         FILE *fnonces 
= NULL
; 
1092         uint8_t read_buf
[9]; 
1093         uint32_t nt_enc1
, nt_enc2
; 
1096         num_acquired_nonces 
= 0; 
1097         if ((fnonces 
= fopen("nonces.bin","rb")) == NULL
) {  
1098                 PrintAndLog("Could not open file nonces.bin"); 
1102         hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0); 
1103         bytes_read 
= fread(read_buf
, 1, 6, fnonces
); 
1104         if (bytes_read 
!= 6) { 
1105                 PrintAndLog("File reading error."); 
1109         cuid 
= bytes_to_num(read_buf
, 4); 
1110         trgBlockNo 
= bytes_to_num(read_buf
+4, 1); 
1111         trgKeyType 
= bytes_to_num(read_buf
+5, 1); 
1113         bytes_read 
= fread(read_buf
, 1, 9, fnonces
); 
1114         while (bytes_read 
== 9) { 
1115                 nt_enc1 
= bytes_to_num(read_buf
, 4); 
1116                 nt_enc2 
= bytes_to_num(read_buf
+4, 4); 
1117                 par_enc 
= bytes_to_num(read_buf
+8, 1); 
1118                 add_nonce(nt_enc1
, par_enc 
>> 4); 
1119                 add_nonce(nt_enc2
, par_enc 
& 0x0f); 
1120                 num_acquired_nonces 
+= 2; 
1121                 bytes_read 
= fread(read_buf
, 1, 9, fnonces
); 
1125         char progress_string
[80]; 
1126         sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);  
1127         hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0); 
1128         sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B'); 
1129         hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0); 
1131         for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
1132                 if (first_byte_Sum 
== sums
[i
]) { 
1142 noncelistentry_t 
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
) 
1144         noncelistentry_t 
*p 
= nonces
[b1
].first
; 
1146                 if ((p
->nonce_enc 
>> 16 & 0xff) == b2
) { 
1155 static bool timeout(void) 
1157         return (msclock() > last_sample_clock 
+ sample_period
); 
1162 #ifdef __has_attribute 
1163 #if __has_attribute(force_align_arg_pointer) 
1164 __attribute__((force_align_arg_pointer
))  
1167 *check_for_BitFlipProperties_thread(void *args
) 
1169         uint8_t first_byte 
= ((uint8_t *)args
)[0]; 
1170         uint8_t last_byte 
= ((uint8_t *)args
)[1]; 
1171         uint8_t time_budget 
= ((uint8_t *)args
)[2]; 
1173         if (hardnested_stage 
& CHECK_1ST_BYTES
) { 
1174                 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) { 
1175                 for (uint16_t bitflip_idx 
= 0; bitflip_idx 
< num_1st_byte_effective_bitflips
; bitflip_idx
++) { 
1176                         uint16_t bitflip 
= all_effective_bitflip
[bitflip_idx
]; 
1177                         if (time_budget 
& timeout()) { 
1178 #if defined (DEBUG_REDUCTION)                            
1179                                 printf("break at bitflip_idx %d...", bitflip_idx
); 
1183                         for (uint16_t i 
= first_byte
; i 
<= last_byte
; i
++) { 
1184                                 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip 
^ 0x100] == 0 
1185                                         && nonces
[i
].first 
!= NULL 
&& nonces
[i
^(bitflip
&0xff)].first 
!= NULL
) { 
1186                                         uint8_t parity1 
= (nonces
[i
].first
->par_enc
) >> 3;                                      // parity of first byte 
1187                                         uint8_t parity2 
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3;       // parity of nonce with bits flipped 
1188                                         if ((parity1 
== parity2 
&& !(bitflip 
& 0x100))                  // bitflip 
1189                                                 || (parity1 
!= parity2 
&& (bitflip 
& 0x100))) {         // not bitflip 
1190                                                 nonces
[i
].BitFlips
[bitflip
] = 1; 
1191                                                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
1192                                                         if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) { 
1193                                                                 uint32_t old_count 
= nonces
[i
].num_states_bitarray
[odd_even
]; 
1194                                                                 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]); 
1195                                                                 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) { 
1196                                                                         nonces
[i
].all_bitflips_dirty
[odd_even
] = true; 
1198                                                                 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); 
1204                         ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips 
- bitflip_idx 
- 1;  // bitflips still to go in stage 1 
1208         ((uint8_t *)args
)[1] = 0;  // stage 1 definitely completed 
1210         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
1211                 for (uint16_t bitflip_idx 
= num_1st_byte_effective_bitflips
; bitflip_idx 
< num_all_effective_bitflips
; bitflip_idx
++) { 
1212                         uint16_t bitflip 
= all_effective_bitflip
[bitflip_idx
]; 
1213                         if (time_budget 
& timeout()) { 
1214 #if defined (DEBUG_REDUCTION) 
1215                                 printf("break at bitflip_idx %d...", bitflip_idx
); 
1219                         for (uint16_t i 
= first_byte
; i 
<= last_byte
; i
++) { 
1220                                 // Check for Bit Flip Property of 2nd bytes 
1221                                 if (nonces
[i
].BitFlips
[bitflip
] == 0) { 
1222                                         for (uint16_t j 
= 0; j 
< 256; j
++) {    // for each 2nd Byte 
1223                                                 noncelistentry_t 
*byte1 
= SearchFor2ndByte(i
, j
); 
1224                                                 noncelistentry_t 
*byte2 
= SearchFor2ndByte(i
, j
^(bitflip
&0xff)); 
1225                                                 if (byte1 
!= NULL 
&& byte2 
!= NULL
) { 
1226                                                         uint8_t parity1 
= byte1
->par_enc 
>> 2 & 0x01;   // parity of 2nd byte 
1227                                                         uint8_t parity2 
= byte2
->par_enc 
>> 2 & 0x01;   // parity of 2nd byte with bits flipped 
1228                                                         if ((parity1 
== parity2 
&& !(bitflip
&0x100))            // bitflip 
1229                                                                 || (parity1 
!= parity2 
&& (bitflip
&0x100))) { // not bitflip 
1230                                                                 nonces
[i
].BitFlips
[bitflip
] = 1; 
1231                                                                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
1232                                                                         if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) { 
1233                                                                                 uint32_t old_count 
= nonces
[i
].num_states_bitarray
[odd_even
]; 
1234                                                                                 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]); 
1235                                                                                 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) { 
1236                                                                                         nonces
[i
].all_bitflips_dirty
[odd_even
] = true; 
1245                                 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); 
1246                                 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); 
1255 static void check_for_BitFlipProperties(bool time_budget
) 
1257         // create and run worker threads 
1258         pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
]; 
1260         uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3]; 
1261         uint16_t bytes_per_thread 
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;  
1262         for (uint8_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1263                 args
[i
][0] = i 
* bytes_per_thread
; 
1264                 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255); 
1265                 args
[i
][2] = time_budget
; 
1267         args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255); 
1270         for (uint8_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1271                 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]); 
1274         // wait for threads to terminate: 
1275         for (uint8_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1276                 pthread_join(thread_id
[i
], NULL
); 
1279         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
1280                 hardnested_stage 
&= ~CHECK_1ST_BYTES
;   // we are done with 1st stage, except... 
1281                 for (uint16_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1282                         if (args
[i
][1] != 0) { 
1283                                 hardnested_stage 
|= CHECK_1ST_BYTES
;  // ... when any of the threads didn't complete in time 
1288 #if defined (DEBUG_REDUCTION)    
1289         if (hardnested_stage 
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n"); 
1294 static void update_nonce_data(bool time_budget
) 
1296         check_for_BitFlipProperties(time_budget
); 
1297         update_allbitflips_array(); 
1298         update_sum_bitarrays(EVEN_STATE
); 
1299         update_sum_bitarrays(ODD_STATE
); 
1305 static void apply_sum_a0(void) 
1307         uint32_t old_count 
= num_all_bitflips_bitarray
[EVEN_STATE
]; 
1308         num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]); 
1309         if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) { 
1310                 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true; 
1312         old_count 
= num_all_bitflips_bitarray
[ODD_STATE
]; 
1313         num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]); 
1314         if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) { 
1315                 all_bitflips_bitarray_dirty
[ODD_STATE
] = true; 
1320 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
) 
1322         struct Crypto1State sim_cs 
= {0, 0}; 
1324         // init cryptostate with key: 
1325         for(int8_t i 
= 47; i 
> 0; i 
-= 2) { 
1326                 sim_cs
.odd  
= sim_cs
.odd  
<< 1 | BIT(test_key
, (i 
- 1) ^ 7); 
1327                 sim_cs
.even 
= sim_cs
.even 
<< 1 | BIT(test_key
, i 
^ 7); 
1331         uint32_t nt 
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); 
1332         for (int8_t byte_pos 
= 3; byte_pos 
>= 0; byte_pos
--) { 
1333                 uint8_t nt_byte_dec 
= (nt 
>> (8*byte_pos
)) & 0xff; 
1334                 uint8_t nt_byte_enc 
= crypto1_byte(&sim_cs
, nt_byte_dec 
^ (test_cuid 
>> (8*byte_pos
)), false) ^ nt_byte_dec
;    // encode the nonce byte 
1335                 *nt_enc 
= (*nt_enc 
<< 8) | nt_byte_enc
;          
1336                 uint8_t ks_par 
= filter(sim_cs
.odd
);                                                                                    // the keystream bit to encode/decode the parity bit 
1337                 uint8_t nt_byte_par_enc 
= ks_par 
^ oddparity8(nt_byte_dec
);                                             // determine the nt byte's parity and encode it 
1338                 *par_enc 
= (*par_enc 
<< 1) | nt_byte_par_enc
; 
1344 static void simulate_acquire_nonces() 
1346         time_t time1 
= time(NULL
); 
1347         last_sample_clock 
= 0; 
1348         sample_period 
= 1000;           // for simulation 
1349         hardnested_stage 
= CHECK_1ST_BYTES
; 
1350         bool acquisition_completed 
= false; 
1351         uint32_t total_num_nonces 
= 0; 
1353         bool reported_suma8 
= false; 
1355         cuid 
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); 
1356         if (known_target_key 
== -1) { 
1357                 known_target_key 
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); 
1360         char progress_text
[80]; 
1361         sprintf(progress_text
, "Simulating key %012" PRIx64 
", cuid %08" PRIx32 
" ...", known_target_key
, cuid
); 
1362         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
1363         fprintf(fstats
, "%012" PRIx64 
";%" PRIx32 
";", known_target_key
, cuid
); 
1365         num_acquired_nonces 
= 0; 
1368                 uint32_t nt_enc 
= 0; 
1369                 uint8_t par_enc 
= 0; 
1371                 for (uint16_t i 
= 0; i 
< 113; i
++) { 
1372                         simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
); 
1373                         num_acquired_nonces 
+= add_nonce(nt_enc
, par_enc
); 
1377                 last_sample_clock 
= msclock(); 
1379                 if (first_byte_num 
== 256 ) { 
1380                         if (hardnested_stage 
== CHECK_1ST_BYTES
) { 
1381                                 for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
1382                                         if (first_byte_Sum 
== sums
[i
]) { 
1387                                 hardnested_stage 
|= CHECK_2ND_BYTES
; 
1390                         update_nonce_data(true); 
1391                         acquisition_completed 
= shrink_key_space(&brute_force
); 
1392                         if (!reported_suma8
) { 
1393                                 char progress_string
[80]; 
1394                                 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]); 
1395                                 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0); 
1396                                 reported_suma8 
= true; 
1398                                 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1401                         update_nonce_data(true); 
1402                         acquisition_completed 
= shrink_key_space(&brute_force
); 
1403                         hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1405         } while (!acquisition_completed
); 
1407         time_t end_time 
= time(NULL
); 
1408         // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",  
1409                 // num_acquired_nonces,  
1410                 // difftime(end_time, time1),  
1411                 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY 
1414         fprintf(fstats
, "%" PRId32 
";%" PRId32 
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
)); 
1419 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
) 
1421         last_sample_clock 
= msclock(); 
1422         sample_period 
= 2000;   // initial rough estimate. Will be refined. 
1423         bool initialize 
= true; 
1424         bool field_off 
= false; 
1425         hardnested_stage 
= CHECK_1ST_BYTES
; 
1426         bool acquisition_completed 
= false; 
1428         uint8_t write_buf
[9]; 
1429         uint32_t total_num_nonces 
= 0; 
1431         bool reported_suma8 
= false; 
1432         FILE *fnonces 
= NULL
; 
1435         num_acquired_nonces 
= 0; 
1437         clearCommandBuffer(); 
1441                 flags 
|= initialize 
? 0x0001 : 0; 
1442                 flags 
|= slow 
? 0x0002 : 0; 
1443                 flags 
|= field_off 
? 0x0004 : 0; 
1444                 UsbCommand c 
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo 
+ keyType 
* 0x100, trgBlockNo 
+ trgKeyType 
* 0x100, flags
}}; 
1445                 memcpy(c
.d
.asBytes
, key
, 6); 
1449                 if (field_off
) break; 
1452                         if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1; 
1454                         if (resp
.arg
[0]) return resp
.arg
[0];  // error during nested_hard 
1457                         // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);  
1458                         if (nonce_file_write 
&& fnonces 
== NULL
) { 
1459                                 if ((fnonces 
= fopen("nonces.bin","wb")) == NULL
) {  
1460                                         PrintAndLog("Could not create file nonces.bin"); 
1463                                 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0); 
1464                                 num_to_bytes(cuid
, 4, write_buf
); 
1465                                 fwrite(write_buf
, 1, 4, fnonces
); 
1466                                 fwrite(&trgBlockNo
, 1, 1, fnonces
); 
1467                                 fwrite(&trgKeyType
, 1, 1, fnonces
); 
1472                         uint32_t nt_enc1
, nt_enc2
; 
1474                         uint16_t num_sampled_nonces 
= resp
.arg
[2]; 
1475                         uint8_t *bufp 
= resp
.d
.asBytes
; 
1476                         for (uint16_t i 
= 0; i 
< num_sampled_nonces
; i
+=2) { 
1477                                 nt_enc1 
= bytes_to_num(bufp
, 4); 
1478                                 nt_enc2 
= bytes_to_num(bufp
+4, 4); 
1479                                 par_enc 
= bytes_to_num(bufp
+8, 1); 
1481                                 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); 
1482                                 num_acquired_nonces 
+= add_nonce(nt_enc1
, par_enc 
>> 4); 
1483                                 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); 
1484                                 num_acquired_nonces 
+= add_nonce(nt_enc2
, par_enc 
& 0x0f); 
1486                                 if (nonce_file_write
) { 
1487                                         fwrite(bufp
, 1, 9, fnonces
); 
1491                         total_num_nonces 
+= num_sampled_nonces
; 
1493                         if (first_byte_num 
== 256 ) { 
1494                                 if (hardnested_stage 
== CHECK_1ST_BYTES
) { 
1495                                         for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
1496                                                 if (first_byte_Sum 
== sums
[i
]) { 
1501                                         hardnested_stage 
|= CHECK_2ND_BYTES
; 
1504                                 update_nonce_data(true); 
1505                                 acquisition_completed 
= shrink_key_space(&brute_force
); 
1506                                 if (!reported_suma8
) { 
1507                                         char progress_string
[80]; 
1508                                         sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]); 
1509                                         hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0); 
1510                                         reported_suma8 
= true; 
1512                                         hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1515                                 update_nonce_data(true); 
1516                                 acquisition_completed 
= shrink_key_space(&brute_force
); 
1517                                 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1521                 if (acquisition_completed
) { 
1522                         field_off 
= true;       // switch off field with next SendCommand and then finish 
1526                         if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) { 
1527                                 if (nonce_file_write
) { 
1533                                 if (nonce_file_write
) { 
1536                                 return resp
.arg
[0];  // error during nested_hard 
1542                 if (msclock() - last_sample_clock 
< sample_period
) { 
1543                         sample_period 
= msclock() - last_sample_clock
; 
1545                 last_sample_clock 
= msclock(); 
1547         } while (!acquisition_completed 
|| field_off
); 
1549         if (nonce_file_write
) { 
1553         // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",  
1554                 // total_num_nonces,  
1555                 // time(NULL)-time1,  
1556                 // (float)total_num_nonces*60.0/(time(NULL)-time1)); 
1562 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
) 
1564         uint_fast8_t j_1_bit_mask 
= 0x01 << (bit
-1); 
1565         uint_fast8_t bit_diff 
= byte_diff 
& j_1_bit_mask
;                                                                               // difference of (j-1)th bit 
1566         uint_fast8_t filter_diff 
= filter(state1 
>> (4-state_bit
)) ^ filter(state2 
>> (4-state_bit
));   // difference in filter function 
1567         uint_fast8_t mask_y12_y13 
= 0xc0 >> state_bit
; 
1568         uint_fast8_t state_bits_diff 
= (state1 
^ state2
) & mask_y12_y13
;                                                // difference in state bits 12 and 13 
1569         uint_fast8_t all_diff 
= evenparity8(bit_diff 
^ state_bits_diff 
^ filter_diff
);                  // use parity function to XOR all bits 
1574 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
) 
1576         uint_fast8_t j_bit_mask 
= 0x01 << bit
; 
1577         uint_fast8_t bit_diff 
= byte_diff 
& j_bit_mask
;                                                                                 // difference of jth bit 
1578         uint_fast8_t mask_y13_y16 
= 0x48 >> state_bit
; 
1579         uint_fast8_t state_bits_diff 
= (state1 
^ state2
) & mask_y13_y16
;                                                // difference in state bits 13 and 16 
1580         uint_fast8_t all_diff 
= evenparity8(bit_diff 
^ state_bits_diff
);                                                // use parity function to XOR all bits 
1585 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
) 
1589                 switch (num_common_bits
) { 
1590                         case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true; 
1591                         case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false; 
1592                         case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true; 
1593                         case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false; 
1594                         case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true; 
1595                         case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false; 
1596                         case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true; 
1597                         case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false; 
1601                 switch (num_common_bits
) {       
1602                         case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false; 
1603                         case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true; 
1604                         case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false; 
1605                         case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true; 
1606                         case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false; 
1607                         case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true; 
1608                         case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false; 
1612         return true;                                    // valid state 
1616 static pthread_mutex_t statelist_cache_mutex
; 
1617 static pthread_mutex_t book_of_work_mutex
; 
1626 static struct sl_cache_entry 
{ 
1629         work_status_t cache_status
; 
1630         } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2]; 
1633 static void init_statelist_cache(void) 
1635         pthread_mutex_lock(&statelist_cache_mutex
); 
1636         for (uint16_t i 
= 0; i 
< NUM_PART_SUMS
; i
++) { 
1637                 for (uint16_t j 
= 0; j 
< NUM_PART_SUMS
; j
++) { 
1638                         for (uint16_t k 
= 0; k 
< 2; k
++) { 
1639                                 sl_cache
[i
][j
][k
].sl 
= NULL
; 
1640                                 sl_cache
[i
][j
][k
].len 
= 0; 
1641                                 sl_cache
[i
][j
][k
].cache_status 
= TO_BE_DONE
; 
1645         pthread_mutex_unlock(&statelist_cache_mutex
); 
1649 static void free_statelist_cache(void) 
1651         pthread_mutex_lock(&statelist_cache_mutex
); 
1652         for (uint16_t i 
= 0; i 
< NUM_PART_SUMS
; i
++) { 
1653                 for (uint16_t j 
= 0; j 
< NUM_PART_SUMS
; j
++) { 
1654                         for (uint16_t k 
= 0; k 
< 2; k
++) { 
1655                                 free(sl_cache
[i
][j
][k
].sl
); 
1659         pthread_mutex_unlock(&statelist_cache_mutex
); 
1663 #ifdef DEBUG_KEY_ELIMINATION 
1664 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
) 
1666 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
) 
1669         uint32_t *bitset 
= nonces
[byte
].states_bitarray
[odd_even
]; 
1670         bool possible 
= test_bit24(bitset
, state
); 
1672 #ifdef DEBUG_KEY_ELIMINATION 
1673                 if (!quiet 
&& known_target_key 
!= -1 && state 
== test_state
[odd_even
]) { 
1674                         printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd"); 
1675                         sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd"); 
1685 static uint_fast8_t reverse(uint_fast8_t byte
) 
1687         uint_fast8_t rev_byte 
= 0; 
1689         for (uint8_t i 
= 0; i 
< 8; i
++) { 
1691                 rev_byte 
|= (byte 
>> i
) & 0x01; 
1698 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)  
1700         uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff}, 
1701                                                         {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} }; 
1703         for (uint16_t i 
= 1; i 
< 256; i
++) { 
1704                 uint_fast8_t bytes_diff 
= reverse(i
);   // start with most common bits 
1705                 uint_fast8_t byte2 
= byte 
^ bytes_diff
; 
1706                 uint_fast8_t num_common 
= trailing_zeros(bytes_diff
); 
1707                 uint32_t mask 
= masks
[odd_even
][num_common
]; 
1708                 bool found_match 
= false; 
1709                 for (uint8_t remaining_bits 
= 0; remaining_bits 
<= (~mask 
& 0xff); remaining_bits
++) { 
1710                         if (remaining_bits_match(num_common
, bytes_diff
, state
, (state 
& mask
) | remaining_bits
, odd_even
)) { 
1711 #ifdef DEBUG_KEY_ELIMINATION 
1712                                 if (bitflips_match(byte2
, (state 
& mask
) | remaining_bits
, odd_even
, true)) { 
1714                                 if (bitflips_match(byte2
, (state 
& mask
) | remaining_bits
, odd_even
)) { 
1722 #ifdef DEBUG_KEY_ELIMINATION                             
1723                         if (known_target_key 
!= -1 && state 
== test_state
[odd_even
]) { 
1724                                 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",  
1725                                         odd_even
==ODD_STATE
?"odd":"even", 
1726                                         test_state
[odd_even
], 
1727                                         byte
, byte2
, num_common
); 
1728                                 if (failstr
[0] == '\0') { 
1729                                         sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even"); 
1741 static void     bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
) 
1743         uint32_t *p 
= state_list
; 
1744         for (uint32_t state 
= next_state(bitarray
, -1L); state 
< (1<<24); state 
= next_state(bitarray
, state
)) { 
1745                 if (all_bitflips_match(byte
, state
, odd_even
)) { 
1749         // add End Of List marker 
1751         *len 
= p 
- state_list
; 
1755 static void add_cached_states(statelist_t 
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
) 
1757         candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
; 
1758         candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
; 
1763 static void add_matching_states(statelist_t 
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
) 
1765         uint32_t worstcase_size 
= 1<<20; 
1766         candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
); 
1767         if (candidates
->states
[odd_even
] == NULL
) { 
1768                 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n"); 
1771         uint32_t *candidates_bitarray 
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
1772         if (candidates_bitarray 
== NULL
) { 
1773                 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n"); 
1774                 free(candidates
->states
[odd_even
]); 
1778         uint32_t *bitarray_a0 
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2]; 
1779         uint32_t *bitarray_a8 
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2]; 
1780         uint32_t *bitarray_bitflips 
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
]; 
1782         // for (uint32_t i = 0; i < (1<<19); i++) { 
1783                 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i]; 
1785         bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
); 
1787         bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
); 
1788         if (candidates
->len
[odd_even
] == 0) { 
1789                 free(candidates
->states
[odd_even
]); 
1790                 candidates
->states
[odd_even
] = NULL
; 
1791         } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) { 
1792                 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1)); 
1794         free_bitarray(candidates_bitarray
); 
1797         pthread_mutex_lock(&statelist_cache_mutex
); 
1798         sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl 
= candidates
->states
[odd_even
]; 
1799         sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len 
= candidates
->len
[odd_even
]; 
1800         sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status 
= COMPLETED
; 
1801         pthread_mutex_unlock(&statelist_cache_mutex
); 
1807 static statelist_t 
*add_more_candidates(void) 
1809         statelist_t 
*new_candidates 
= candidates
; 
1810         if (candidates 
== NULL
) { 
1811                 candidates 
= (statelist_t 
*)malloc(sizeof(statelist_t
)); 
1812                 new_candidates 
= candidates
; 
1814                 new_candidates 
= candidates
; 
1815                 while (new_candidates
->next 
!= NULL
) { 
1816                         new_candidates 
= new_candidates
->next
; 
1818                 new_candidates 
= new_candidates
->next 
= (statelist_t 
*)malloc(sizeof(statelist_t
)); 
1820         new_candidates
->next 
= NULL
; 
1821         new_candidates
->len
[ODD_STATE
] = 0; 
1822         new_candidates
->len
[EVEN_STATE
] = 0; 
1823         new_candidates
->states
[ODD_STATE
] = NULL
; 
1824         new_candidates
->states
[EVEN_STATE
] = NULL
; 
1825         return new_candidates
; 
1829 static void add_bitflip_candidates(uint8_t byte
) 
1831         statelist_t 
*candidates 
= add_more_candidates(); 
1833         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
1834                 uint32_t worstcase_size 
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1; 
1835                 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
); 
1836                 if (candidates
->states
[odd_even
] == NULL
) { 
1837                         PrintAndLog("Out of memory error in add_bitflip_candidates().\n"); 
1841                 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
); 
1843                 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) { 
1844                         candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1)); 
1851 static bool TestIfKeyExists(uint64_t key
) 
1853         struct Crypto1State 
*pcs
; 
1854         pcs 
= crypto1_create(key
); 
1855         crypto1_byte(pcs
, (cuid 
>> 24) ^ best_first_bytes
[0], true); 
1857         uint32_t state_odd 
= pcs
->odd 
& 0x00ffffff; 
1858         uint32_t state_even 
= pcs
->even 
& 0x00ffffff; 
1861         for (statelist_t 
*p 
= candidates
; p 
!= NULL
; p 
= p
->next
) { 
1862                 bool found_odd 
= false; 
1863                 bool found_even 
= false; 
1864                 uint32_t *p_odd 
= p
->states
[ODD_STATE
]; 
1865                 uint32_t *p_even 
= p
->states
[EVEN_STATE
]; 
1866                 if (p_odd 
!= NULL 
&& p_even 
!= NULL
) { 
1867                         while (*p_odd 
!= 0xffffffff) { 
1868                                 if ((*p_odd 
& 0x00ffffff) == state_odd
) { 
1874                         while (*p_even 
!= 0xffffffff) { 
1875                                 if ((*p_even 
& 0x00ffffff) == state_even
) { 
1880                         count 
+= (uint64_t)(p_odd 
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even 
- p
->states
[EVEN_STATE
]); 
1882                 if (found_odd 
&& found_even
) { 
1883                         num_keys_tested 
+= count
; 
1884                         hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0); 
1885                         crypto1_destroy(pcs
); 
1890         num_keys_tested 
+= count
; 
1891         hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0); 
1893         crypto1_destroy(pcs
); 
1898 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
]; 
1901 static void init_book_of_work(void) 
1903         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
1904                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
1905                         for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
1906                                 for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
1907                                         book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
; 
1916 #ifdef __has_attribute 
1917 #if __has_attribute(force_align_arg_pointer) 
1918 __attribute__((force_align_arg_pointer
))  
1921 *generate_candidates_worker_thread(void *args
) 
1923         uint16_t *sum_args 
= (uint16_t *)args
; 
1924         uint16_t sum_a0 
= sums
[sum_args
[0]]; 
1925         uint16_t sum_a8 
= sums
[sum_args
[1]]; 
1926         // uint16_t my_thread_number = sums[2]; 
1928         bool there_might_be_more_work 
= true; 
1930                 there_might_be_more_work 
= false; 
1931                 for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
1932                         for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
1933                                 if (2*p
*(16-2*q
) + (16-2*p
)*2*q 
== sum_a0
) { 
1934                                         // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",  
1935                                                         // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); 
1936                                         for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
1937                                                 for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
1938                                                         if (2*r
*(16-2*s
) + (16-2*r
)*2*s 
== sum_a8
) { 
1939                                                                 pthread_mutex_lock(&book_of_work_mutex
); 
1940                                                                 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) {  // this has been done or is currently been done by another thread. Look for some other work. 
1941                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1945                                                                 pthread_mutex_lock(&statelist_cache_mutex
); 
1946                                                                 if (sl_cache
[p
][r
][ODD_STATE
].cache_status 
== WORK_IN_PROGRESS
 
1947                                                                         || sl_cache
[q
][s
][EVEN_STATE
].cache_status 
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread. 
1948                                                                         pthread_mutex_unlock(&statelist_cache_mutex
); 
1949                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1950                                                                         there_might_be_more_work 
= true; 
1954                                                                 // we finally can do some work. 
1955                                                                 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
; 
1956                                                                 statelist_t 
*current_candidates 
= add_more_candidates(); 
1958                                                                 // Check for cached results and add them first 
1959                                                                 bool odd_completed 
= false; 
1960                                                                 if (sl_cache
[p
][r
][ODD_STATE
].cache_status 
== COMPLETED
) { 
1961                                                                         add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
); 
1962                                                                         odd_completed 
= true; 
1964                                                                 bool even_completed 
= false; 
1965                                                                 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status 
== COMPLETED
) { 
1966                                                                         add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
); 
1967                                                                         even_completed 
= true; 
1970                                                                 bool work_required 
= true; 
1972                                                                 // if there had been two cached results, there is no more work to do 
1973                                                                 if (even_completed 
&& odd_completed
) { 
1974                                                                         work_required 
= false; 
1977                                                                 // if there had been one cached empty result, there is no need to calculate the other part: 
1978                                                                 if (work_required
) { 
1979                                                                         if (even_completed 
&& !current_candidates
->len
[EVEN_STATE
]) { 
1980                                                                                 current_candidates
->len
[ODD_STATE
] = 0; 
1981                                                                                 current_candidates
->states
[ODD_STATE
] = NULL
; 
1982                                                                                 work_required 
= false; 
1984                                                                         if (odd_completed 
&& !current_candidates
->len
[ODD_STATE
]) { 
1985                                                                                 current_candidates
->len
[EVEN_STATE
] = 0; 
1986                                                                                 current_candidates
->states
[EVEN_STATE
] = NULL
; 
1987                                                                                 work_required 
= false; 
1991                                                                 if (!work_required
) { 
1992                                                                         pthread_mutex_unlock(&statelist_cache_mutex
); 
1993                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1995                                                                         // we really need to calculate something 
1996                                                                         if (even_completed
) { // we had one cache hit with non-zero even states 
1997                                                                                 // printf("Thread #%u: start working on  odd states p=%2d, r=%2d...\n", my_thread_number, p, r); 
1998                                                                                 sl_cache
[p
][r
][ODD_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
1999                                                                                 pthread_mutex_unlock(&statelist_cache_mutex
); 
2000                                                                                 pthread_mutex_unlock(&book_of_work_mutex
); 
2001                                                                                 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
); 
2002                                                                                 work_required 
= false; 
2003                                                                         } else if (odd_completed
) { // we had one cache hit with non-zero odd_states 
2004                                                                                 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); 
2005                                                                                 sl_cache
[q
][s
][EVEN_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
2006                                                                                 pthread_mutex_unlock(&statelist_cache_mutex
); 
2007                                                                                 pthread_mutex_unlock(&book_of_work_mutex
); 
2008                                                                                 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
); 
2009                                                                                 work_required 
= false; 
2013                                                                 if (work_required
) { // we had no cached result. Need to calculate both odd and even 
2014                                                                         sl_cache
[p
][r
][ODD_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
2015                                                                         sl_cache
[q
][s
][EVEN_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
2016                                                                         pthread_mutex_unlock(&statelist_cache_mutex
); 
2017                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
2019                                                                         add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
); 
2020                                                                         if(current_candidates
->len
[ODD_STATE
]) { 
2021                                                                                 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); 
2022                                                                                 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
); 
2023                                                                         } else { // no need to calculate even states yet 
2024                                                                                 pthread_mutex_lock(&statelist_cache_mutex
); 
2025                                                                                 sl_cache
[q
][s
][EVEN_STATE
].cache_status 
= TO_BE_DONE
; 
2026                                                                                 pthread_mutex_unlock(&statelist_cache_mutex
); 
2027                                                                                 current_candidates
->len
[EVEN_STATE
] = 0; 
2028                                                                                 current_candidates
->states
[EVEN_STATE
] = NULL
; 
2032                                                                 // update book of work 
2033                                                                 pthread_mutex_lock(&book_of_work_mutex
); 
2034                                                                 book_of_work
[p
][q
][r
][s
] = COMPLETED
; 
2035                                                                 pthread_mutex_unlock(&book_of_work_mutex
); 
2037                                                                 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { 
2038                                                                         // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", 
2039                                                                                 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], 
2040                                                                                 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], 
2041                                                                                 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); 
2042                                                                         // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); 
2043                                                                         // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); 
2044                                                                         // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;  
2045                                                                         // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); 
2046                                                                         // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { 
2047                                                                                 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");  
2057         } while (there_might_be_more_work
); 
2063 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
) 
2065         // printf("Generating crypto1 state candidates... \n"); 
2067         // estimate maximum candidate states 
2068         // maximum_states = 0; 
2069         // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { 
2070                 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { 
2071                         // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { 
2072                                 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])  
2073                                                                 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]); 
2077         // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); 
2079         init_statelist_cache(); 
2080         init_book_of_work(); 
2082         // create mutexes for accessing the statelist cache and our "book of work" 
2083         pthread_mutex_init(&statelist_cache_mutex
, NULL
); 
2084         pthread_mutex_init(&book_of_work_mutex
, NULL
); 
2086         // create and run worker threads 
2087         pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
]; 
2089         uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3]; 
2090         for (uint16_t i 
= 0; i 
< NUM_REDUCTION_WORKING_THREADS
; i
++) { 
2091                 sums
[i
][0] = sum_a0_idx
; 
2092                 sums
[i
][1] = sum_a8_idx
; 
2094                 pthread_create(thread_id 
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]); 
2097         // wait for threads to terminate: 
2098         for (uint16_t i 
= 0; i 
< NUM_REDUCTION_WORKING_THREADS
; i
++) { 
2099                 pthread_join(thread_id
[i
], NULL
); 
2103         pthread_mutex_destroy(&statelist_cache_mutex
); 
2106         for (statelist_t 
*sl 
= candidates
; sl 
!= NULL
; sl 
= sl
->next
) { 
2107                 maximum_states 
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
]; 
2110         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
2111                 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx 
== sum_a8_idx
) { 
2112                         nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states 
= maximum_states
; 
2116         update_expected_brute_force(best_first_bytes
[0]); 
2118         hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0); 
2122 static void     free_candidates_memory(statelist_t 
*sl
) 
2127                 free_candidates_memory(sl
->next
); 
2133 static void pre_XOR_nonces(void) 
2135         // prepare acquired nonces for faster brute forcing.  
2137         // XOR the cryptoUID and its parity 
2138         for (uint16_t i 
= 0; i 
< 256; i
++) { 
2139                 noncelistentry_t 
*test_nonce 
= nonces
[i
].first
; 
2140                 while (test_nonce 
!= NULL
) { 
2141                         test_nonce
->nonce_enc 
^= cuid
; 
2142                         test_nonce
->par_enc 
^= oddparity8(cuid 
>>  0 & 0xff) << 0; 
2143                         test_nonce
->par_enc 
^= oddparity8(cuid 
>>  8 & 0xff) << 1; 
2144                         test_nonce
->par_enc 
^= oddparity8(cuid 
>> 16 & 0xff) << 2; 
2145                         test_nonce
->par_enc 
^= oddparity8(cuid 
>> 24 & 0xff) << 3; 
2146                         test_nonce 
= test_nonce
->next
; 
2152 static bool brute_force(void) 
2154         if (known_target_key 
!= -1) { 
2155                 TestIfKeyExists(known_target_key
); 
2157         return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
); 
2161 static uint16_t SumProperty(struct Crypto1State 
*s
) 
2163         uint16_t sum_odd 
= PartialSumProperty(s
->odd
, ODD_STATE
); 
2164         uint16_t sum_even 
= PartialSumProperty(s
->even
, EVEN_STATE
); 
2165         return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
); 
2172 /*      #define NUM_STATISTICS 100000 
2173         uint32_t statistics_odd[17]; 
2174         uint64_t statistics[257]; 
2175         uint32_t statistics_even[17]; 
2176         struct Crypto1State cs; 
2177         uint64_t time1 = msclock(); 
2179         for (uint16_t i = 0; i < 257; i++) { 
2182         for (uint16_t i = 0; i < 17; i++) { 
2183                 statistics_odd[i] = 0; 
2184                 statistics_even[i] = 0; 
2187         for (uint64_t i = 0; i < NUM_STATISTICS; i++) { 
2188                 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2189                 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2190                 uint16_t sum_property = SumProperty(&cs); 
2191                 statistics[sum_property] += 1; 
2192                 sum_property = PartialSumProperty(cs.even, EVEN_STATE); 
2193                 statistics_even[sum_property]++; 
2194                 sum_property = PartialSumProperty(cs.odd, ODD_STATE); 
2195                 statistics_odd[sum_property]++; 
2196                 if (i%(NUM_STATISTICS/100) == 0) printf(".");  
2199         printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); 
2200         for (uint16_t i = 0; i < 257; i++) { 
2201                 if (statistics[i] != 0) { 
2202                         printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); 
2205         for (uint16_t i = 0; i <= 16; i++) { 
2206                 if (statistics_odd[i] != 0) { 
2207                         printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); 
2210         for (uint16_t i = 0; i <= 16; i++) { 
2211                 if (statistics_odd[i] != 0) { 
2212                         printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); 
2217 /*      #define NUM_STATISTICS 100000000LL 
2218         uint64_t statistics_a0[257]; 
2219         uint64_t statistics_a8[257][257]; 
2220         struct Crypto1State cs; 
2221         uint64_t time1 = msclock(); 
2223         for (uint16_t i = 0; i < 257; i++) { 
2224                 statistics_a0[i] = 0; 
2225                 for (uint16_t j = 0; j < 257; j++) { 
2226                         statistics_a8[i][j] = 0; 
2230         for (uint64_t i = 0; i < NUM_STATISTICS; i++) { 
2231                 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2232                 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2233                 uint16_t sum_property_a0 = SumProperty(&cs); 
2234                 statistics_a0[sum_property_a0]++; 
2235                 uint8_t first_byte = rand() & 0xff; 
2236                 crypto1_byte(&cs, first_byte, true); 
2237                 uint16_t sum_property_a8 = SumProperty(&cs); 
2238                 statistics_a8[sum_property_a0][sum_property_a8] += 1; 
2239                 if (i%(NUM_STATISTICS/100) == 0) printf(".");  
2242         printf("\nTests: Probability Distribution of a8 depending on a0:\n"); 
2244         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2245                 printf("%7d ", sums[i]); 
2247         printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); 
2249         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2250                 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS); 
2253         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2254                 printf("%3d   ", sums[i]); 
2255                 for (uint16_t j = 0; j < NUM_SUMS; j++) { 
2256                         printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]); 
2260         printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); 
2263 /*      #define NUM_STATISTICS 100000LL 
2264         uint64_t statistics_a8[257]; 
2265         struct Crypto1State cs; 
2266         uint64_t time1 = msclock(); 
2268         printf("\nTests: Probability Distribution of a8 depending on first byte:\n"); 
2270         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2271                 printf("%7d ", sums[i]); 
2273         printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); 
2274         for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { 
2275                 for (uint16_t i = 0; i < 257; i++) { 
2276                         statistics_a8[i] = 0; 
2278                 for (uint64_t i = 0; i < NUM_STATISTICS; i++) { 
2279                         cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2280                         cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2281                         crypto1_byte(&cs, first_byte, true); 
2282                         uint16_t sum_property_a8 = SumProperty(&cs); 
2283                         statistics_a8[sum_property_a8] += 1; 
2285                 printf("%03x   ", first_byte); 
2286                 for (uint16_t j = 0; j < NUM_SUMS; j++) { 
2287                         printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS); 
2291         printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); 
2294 /*      printf("Tests: Sum Probabilities based on Partial Sums\n"); 
2295         for (uint16_t i = 0; i < 257; i++) { 
2298         uint64_t num_states = 0; 
2299         for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { 
2300                 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { 
2301                         uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; 
2302                         statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); 
2303                         num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); 
2306         printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48)); 
2307         for (uint16_t i = 0; i < 257; i++) { 
2308                 if (statistics[i] != 0) { 
2309                         printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); 
2314 /*      struct Crypto1State *pcs; 
2315         pcs = crypto1_create(0xffffffffffff); 
2316         printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",  
2317                 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2318         crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); 
2319         printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2320                 best_first_bytes[0], 
2322                 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2323         //test_state_odd = pcs->odd & 0x00ffffff; 
2324         //test_state_even = pcs->even & 0x00ffffff; 
2325         crypto1_destroy(pcs); 
2326         pcs = crypto1_create(0xa0a1a2a3a4a5); 
2327         printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2328                 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2329         crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); 
2330         printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2331                 best_first_bytes[0], 
2333                 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2334         //test_state_odd = pcs->odd & 0x00ffffff; 
2335         //test_state_even = pcs->even & 0x00ffffff; 
2336         crypto1_destroy(pcs); 
2337         pcs = crypto1_create(0xa6b9aa97b955); 
2338         printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2339                 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2340         crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); 
2341         printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2342                 best_first_bytes[0], 
2344                 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2345         test_state_odd = pcs->odd & 0x00ffffff; 
2346         test_state_even = pcs->even & 0x00ffffff; 
2347         crypto1_destroy(pcs); 
2350         // printf("\nTests: Sorted First Bytes:\n"); 
2351         // for (uint16_t i = 0; i < 20; i++) { 
2352                 // uint8_t best_byte = best_first_bytes[i]; 
2353                 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",  
2354                 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum); 
2355                 // for (uint16_t j = 0; j < 3; j++) { 
2356                         // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0); 
2358                 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",  
2359                         // nonces[best_byte].sum_a8_guess[0].num_states,  
2360                         // nonces[best_byte].sum_a8_guess[1].num_states, 
2361                         // nonces[best_byte].sum_a8_guess[2].num_states, 
2362                         // nonces[best_byte].expected_num_brute_force); 
2365         // printf("\nTests: Actual BitFlipProperties of best byte:\n"); 
2366         // printf("[%02x]:", best_first_bytes[0]); 
2367         // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { 
2368                 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; 
2369                 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) { 
2370                         // printf(" %03" PRIx16 , bitflip_prop); 
2375         // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n"); 
2376         // printf("[%02x]:", best_first_byte_smallest_bitarray); 
2377         // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { 
2378                 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; 
2379                 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) { 
2380                         // printf(" %03" PRIx16 , bitflip_prop); 
2385         if (known_target_key 
!= -1) { 
2386                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2387                         uint32_t *bitset 
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
]; 
2388                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2389                                 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",  
2390                                         odd_even
==EVEN_STATE
?"even":"odd ",  
2391                                         best_first_bytes
[0]); 
2396         if (known_target_key 
!= -1) { 
2397                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2398                         uint32_t *bitset 
= all_bitflips_bitarray
[odd_even
]; 
2399                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2400                                 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",  
2401                                         odd_even
==EVEN_STATE
?"even":"odd "); 
2406         // if (known_target_key != -1) { 
2407                 // int16_t p = -1, q = -1, r = -1, s = -1; 
2409                 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n"); 
2410                 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { 
2411                         // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); 
2412                         // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { 
2413                                 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i]; 
2414                                 // if (test_bit24(bitset, test_state[odd_even])) { 
2415                                         // printf("%d ", i); 
2416                                         // if (odd_even == ODD_STATE) { 
2426                 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n"); 
2427                 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { 
2428                         // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); 
2429                         // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { 
2430                                 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i]; 
2431                                 // if (test_bit24(bitset, test_state[odd_even])) { 
2432                                         // printf("%d ", i); 
2433                                         // if (odd_even == ODD_STATE) { 
2443                 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q); 
2444                 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s); 
2447         /*      printf("\nTests: parity performance\n"); 
2448         uint64_t time1p = msclock(); 
2449         uint32_t par_sum = 0; 
2450         for (uint32_t i = 0; i < 100000000; i++) { 
2451                 par_sum += parity(i); 
2453         printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); 
2457         for (uint32_t i = 0; i < 100000000; i++) { 
2458                 par_sum += evenparity32(i); 
2460         printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); 
2466 static void Tests2(void)  
2468         if (known_target_key 
!= -1) { 
2469                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2470                         uint32_t *bitset 
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
]; 
2471                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2472                                 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", 
2473                                         odd_even
==EVEN_STATE
?"even":"odd ",  
2474                                         best_first_byte_smallest_bitarray
); 
2479         if (known_target_key 
!= -1) { 
2480                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2481                         uint32_t *bitset 
= all_bitflips_bitarray
[odd_even
]; 
2482                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2483                                 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",  
2484                                         odd_even
==EVEN_STATE
?"even":"odd "); 
2492 static uint16_t real_sum_a8 
= 0; 
2494 static void set_test_state(uint8_t byte
)  
2496         struct Crypto1State 
*pcs
; 
2497         pcs 
= crypto1_create(known_target_key
); 
2498         crypto1_byte(pcs
, (cuid 
>> 24) ^ byte
, true); 
2499         test_state
[ODD_STATE
] = pcs
->odd 
& 0x00ffffff; 
2500         test_state
[EVEN_STATE
] = pcs
->even 
& 0x00ffffff; 
2501         real_sum_a8 
= SumProperty(pcs
); 
2502         crypto1_destroy(pcs
); 
2506 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)  
2508         char progress_text
[80]; 
2510         char instr_set
[12] = {0}; 
2511         get_SIMD_instruction_set(instr_set
); 
2512         PrintAndLog("Using %s SIMD core.", instr_set
); 
2514         srand((unsigned) time(NULL
)); 
2515         brute_force_per_second 
= brute_force_benchmark(); 
2516         write_stats 
= false; 
2519                 // set the correct locale for the stats printing 
2521                 setlocale(LC_NUMERIC
, ""); 
2522                 if ((fstats 
= fopen("hardnested_stats.txt","a")) == NULL
) {  
2523                         PrintAndLog("Could not create/open file hardnested_stats.txt"); 
2526                 for (uint32_t i 
= 0; i 
< tests
; i
++) { 
2527                         start_time 
= msclock(); 
2528                         print_progress_header(); 
2529                         sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0)); 
2530                         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
2531                         sprintf(progress_text
, "Starting Test #%" PRIu32 
" ...", i
+1); 
2532                         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
2533                         if (trgkey 
!= NULL
) { 
2534                                 known_target_key 
= bytes_to_num(trgkey
, 6); 
2536                                 known_target_key 
= -1; 
2539                         init_bitflip_bitarrays(); 
2540                         init_part_sum_bitarrays(); 
2541                         init_sum_bitarrays(); 
2542                         init_allbitflips_array(); 
2543                         init_nonce_memory(); 
2544                         update_reduction_rate(0.0, true); 
2546                         simulate_acquire_nonces(); 
2548                         set_test_state(best_first_bytes
[0]); 
2551                         free_bitflip_bitarrays(); 
2553                         fprintf(fstats
, "%" PRIu16 
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0)); 
2554                         fprintf(fstats
, "%" PRIu16 
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0)); 
2555                         fprintf(fstats
, "%" PRIu16 
";", real_sum_a8
); 
2557 #ifdef DEBUG_KEY_ELIMINATION 
2560                         bool key_found 
= false; 
2561                         num_keys_tested 
= 0; 
2562                         uint32_t num_odd 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
]; 
2563                         uint32_t num_even 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; 
2564                         float expected_brute_force1 
= (float)num_odd 
* num_even 
/ 2.0; 
2565                         float expected_brute_force2 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2566                         fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0)); 
2567                         if (expected_brute_force1 
< expected_brute_force2
) { 
2568                                 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0); 
2569                                 set_test_state(best_first_byte_smallest_bitarray
); 
2570                                 add_bitflip_candidates(best_first_byte_smallest_bitarray
); 
2573                                 for (statelist_t 
*sl 
= candidates
; sl 
!= NULL
; sl 
= sl
->next
) { 
2574                                         maximum_states 
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
]; 
2576                                 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); 
2577                                 // fprintf("fstats, "%" PRIu64 ";", maximum_states); 
2578                                 best_first_bytes
[0] = best_first_byte_smallest_bitarray
; 
2580                                 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2581                                 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0); 
2582                                 key_found 
= brute_force(); 
2583                                 free(candidates
->states
[ODD_STATE
]); 
2584                                 free(candidates
->states
[EVEN_STATE
]); 
2585                                 free_candidates_memory(candidates
); 
2589                                 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2590                                 for (uint8_t j 
= 0; j 
< NUM_SUMS 
&& !key_found
; j
++) { 
2591                                         float expected_brute_force 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2592                                         sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16 
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]); 
2593                                         hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);  
2594                                         if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) { 
2595                                                 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 
")", real_sum_a8
); 
2596                                                 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0); 
2598                                         // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); 
2599                                         generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
); 
2600                                         // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); 
2601                                         hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0); 
2602                                         key_found 
= brute_force(); 
2603                                         free_statelist_cache(); 
2604                                         free_candidates_memory(candidates
); 
2607                                                 // update the statistics 
2608                                                 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob 
= 0; 
2609                                                 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states 
= 0; 
2610                                                 // and calculate new expected number of brute forces 
2611                                                 update_expected_brute_force(best_first_bytes
[0]); 
2615                         #ifdef DEBUG_KEY_ELIMINATION 
2616                         fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
); 
2618                         fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
); 
2621                         free_nonces_memory(); 
2622                         free_bitarray(all_bitflips_bitarray
[ODD_STATE
]); 
2623                         free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]); 
2624                         free_sum_bitarrays(); 
2625                         free_part_sum_bitarrays(); 
2629                 start_time 
= msclock(); 
2630                 print_progress_header(); 
2631                 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0)); 
2632                 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
2633                 init_bitflip_bitarrays(); 
2634                 init_part_sum_bitarrays(); 
2635                 init_sum_bitarrays(); 
2636                 init_allbitflips_array(); 
2637                 init_nonce_memory(); 
2638                 update_reduction_rate(0.0, true); 
2640                 if (nonce_file_read
) {          // use pre-acquired data from file nonces.bin 
2641                         if (read_nonce_file() != 0) { 
2642                                 free_bitflip_bitarrays(); 
2643                                 free_nonces_memory(); 
2644                                 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]); 
2645                                 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]); 
2646                                 free_sum_bitarrays(); 
2647                                 free_part_sum_bitarrays(); 
2650                         hardnested_stage 
= CHECK_1ST_BYTES 
| CHECK_2ND_BYTES
; 
2651                         update_nonce_data(false); 
2653                         shrink_key_space(&brute_force
); 
2654                 } else {                                        // acquire nonces. 
2655                         uint16_t is_OK 
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
); 
2657                                 free_bitflip_bitarrays(); 
2658                                 free_nonces_memory(); 
2659                                 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]); 
2660                                 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]); 
2661                                 free_sum_bitarrays(); 
2662                                 free_part_sum_bitarrays(); 
2667                 if (trgkey 
!= NULL
) { 
2668                         known_target_key 
= bytes_to_num(trgkey
, 6); 
2669                         set_test_state(best_first_bytes
[0]); 
2671                         known_target_key 
= -1; 
2676                 free_bitflip_bitarrays(); 
2677                 bool key_found 
= false; 
2678                 num_keys_tested 
= 0; 
2679                 uint32_t num_odd 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
]; 
2680                 uint32_t num_even 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; 
2681                 float expected_brute_force1 
= (float)num_odd 
* num_even 
/ 2.0; 
2682                 float expected_brute_force2 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2683                 if (expected_brute_force1 
< expected_brute_force2
) { 
2684                         hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0); 
2685                         set_test_state(best_first_byte_smallest_bitarray
); 
2686                         add_bitflip_candidates(best_first_byte_smallest_bitarray
); 
2689                         for (statelist_t 
*sl 
= candidates
; sl 
!= NULL
; sl 
= sl
->next
) { 
2690                                 maximum_states 
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
]; 
2692                         // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); 
2693                         best_first_bytes
[0] = best_first_byte_smallest_bitarray
; 
2695                         prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2696                         hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0); 
2697                         key_found 
= brute_force(); 
2698                         free(candidates
->states
[ODD_STATE
]); 
2699                         free(candidates
->states
[EVEN_STATE
]); 
2700                         free_candidates_memory(candidates
); 
2704                         prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2705                         for (uint8_t j 
= 0; j 
< NUM_SUMS 
&& !key_found
; j
++) { 
2706                                 float expected_brute_force 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2707                                 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16 
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]); 
2708                                 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);  
2709                                 if (trgkey 
!= NULL 
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) { 
2710                                         sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 
")", real_sum_a8
); 
2711                                         hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0); 
2713                                 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); 
2714                                 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
); 
2715                                 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); 
2716                                 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0); 
2717                                 key_found 
= brute_force(); 
2718                                 free_statelist_cache(); 
2719                                 free_candidates_memory(candidates
); 
2722                                         // update the statistics 
2723                                         nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob 
= 0; 
2724                                         nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states 
= 0; 
2725                                         // and calculate new expected number of brute forces 
2726                                         update_expected_brute_force(best_first_bytes
[0]); 
2732                 free_nonces_memory(); 
2733                 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]); 
2734                 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]); 
2735                 free_sum_bitarrays(); 
2736                 free_part_sum_bitarrays();