1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuning(void)
185 uint8_t LF_Results
[256];
186 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
187 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
202 for (i
=255; i
>=19; i
--) {
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
206 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
207 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
208 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
210 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results
[i
] > peak
) {
213 peak
= LF_Results
[i
];
219 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
235 void MeasureAntennaTuningHf(void)
237 int vHf
= 0; // in mV
239 DbpString("Measuring HF antenna, press button to exit");
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
247 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 Dbprintf("%d mV",vHf
);
250 if (BUTTON_PRESS()) break;
252 DbpString("cancelled");
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void ReadMem(int addr
)
261 const uint8_t *data
= ((uint8_t *)addr
);
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
267 /* osimage version information is linked in */
268 extern struct version_information version_information
;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
271 void SendVersion(void)
273 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
274 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
280 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
298 uint32_t compressed_data_section_size
= common_area
.arg1
;
299 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
302 * Prints runtime information about the PM3.
304 void SendStatus(void)
306 BigBuf_print_status();
308 printConfig(); //LF Sampling config
310 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
311 Dbprintf(" ToSendMax........%d",ToSendMax
);
312 Dbprintf(" ToSendBit........%d",ToSendBit
);
315 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
319 void StandAloneMode()
321 DbpString("Stand-alone mode! No PC necessary.");
322 // Oooh pretty -- notify user we're in elite samy mode now
324 LED(LED_ORANGE
, 200);
326 LED(LED_ORANGE
, 200);
328 LED(LED_ORANGE
, 200);
330 LED(LED_ORANGE
, 200);
339 #ifdef WITH_ISO14443a_StandAlone
340 void StandAloneMode14a()
343 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
346 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
347 int cardRead
[OPTS
] = {0};
348 uint8_t readUID
[10] = {0};
349 uint32_t uid_1st
[OPTS
]={0};
350 uint32_t uid_2nd
[OPTS
]={0};
351 uint32_t uid_tmp1
= 0;
352 uint32_t uid_tmp2
= 0;
353 iso14a_card_select_t hi14a_card
[OPTS
];
355 LED(selected
+ 1, 0);
363 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
367 LED(selected
+ 1, 0);
371 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
372 /* need this delay to prevent catching some weird data */
374 /* Code for reading from 14a tag */
375 uint8_t uid
[10] ={0};
377 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
382 if (BUTTON_PRESS()) {
383 if (cardRead
[selected
]) {
384 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
387 else if (cardRead
[(selected
+1)%OPTS
]) {
388 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
389 selected
= (selected
+1)%OPTS
;
390 break; // playing = 1;
393 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
397 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
401 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
402 memcpy(readUID
,uid
,10*sizeof(uint8_t));
403 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
404 // Set UID byte order
405 for (int i
=0; i
<4; i
++)
407 dst
= (uint8_t *)&uid_tmp2
;
408 for (int i
=0; i
<4; i
++)
410 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
411 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
415 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
416 uid_1st
[selected
] = (uid_tmp1
)>>8;
417 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
420 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
421 uid_1st
[selected
] = uid_tmp1
;
422 uid_2nd
[selected
] = uid_tmp2
;
428 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
429 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
432 LED(LED_ORANGE
, 200);
434 LED(LED_ORANGE
, 200);
437 LED(selected
+ 1, 0);
439 // Next state is replay:
442 cardRead
[selected
] = 1;
444 /* MF Classic UID clone */
445 else if (iGotoClone
==1)
449 LED(selected
+ 1, 0);
450 LED(LED_ORANGE
, 250);
454 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
456 // wait for button to be released
457 while(BUTTON_PRESS())
459 // Delay cloning until card is in place
462 Dbprintf("Starting clone. [Bank: %u]", selected
);
463 // need this delay to prevent catching some weird data
465 // Begin clone function here:
466 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
467 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
468 memcpy(c.d.asBytes, data, 16);
471 Block read is similar:
472 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
473 We need to imitate that call with blockNo 0 to set a uid.
475 The get and set commands are handled in this file:
476 // Work with "magic Chinese" card
477 case CMD_MIFARE_CSETBLOCK:
478 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
480 case CMD_MIFARE_CGETBLOCK:
481 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
484 mfCSetUID provides example logic for UID set workflow:
485 -Read block0 from card in field with MifareCGetBlock()
486 -Configure new values without replacing reserved bytes
487 memcpy(block0, uid, 4); // Copy UID bytes from byte array
489 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
490 Bytes 5-7 are reserved SAK and ATQA for mifare classic
491 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
493 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
494 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
495 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
496 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
497 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
501 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
502 memcpy(newBlock0
,oldBlock0
,16);
503 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
505 newBlock0
[0] = uid_1st
[selected
]>>24;
506 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
507 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
508 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
509 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
510 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
511 MifareCSetBlock(0, 0xFF,0, newBlock0
);
512 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
513 if (memcmp(testBlock0
,newBlock0
,16)==0)
515 DbpString("Cloned successfull!");
516 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
519 selected
= (selected
+1) % OPTS
;
522 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
527 LED(selected
+ 1, 0);
530 // Change where to record (or begin playing)
531 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
534 LED(selected
+ 1, 0);
536 // Begin transmitting
540 DbpString("Playing");
543 int button_action
= BUTTON_HELD(1000);
544 if (button_action
== 0) { // No button action, proceed with sim
545 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
546 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
547 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
548 DbpString("Mifare Classic");
549 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
551 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
552 DbpString("Mifare Ultralight");
553 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
555 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
556 DbpString("Mifare DESFire");
557 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
560 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
561 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
564 else if (button_action
== BUTTON_SINGLE_CLICK
) {
565 selected
= (selected
+ 1) % OPTS
;
566 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
570 else if (button_action
== BUTTON_HOLD
) {
571 Dbprintf("Playtime over. Begin cloning...");
578 /* We pressed a button so ignore it here with a delay */
581 LED(selected
+ 1, 0);
584 while(BUTTON_PRESS())
590 // samy's sniff and repeat routine
594 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
596 int high
[OPTS
], low
[OPTS
];
601 // Turn on selected LED
602 LED(selected
+ 1, 0);
609 // Was our button held down or pressed?
610 int button_pressed
= BUTTON_HELD(1000);
613 // Button was held for a second, begin recording
614 if (button_pressed
> 0 && cardRead
== 0)
617 LED(selected
+ 1, 0);
621 DbpString("Starting recording");
623 // wait for button to be released
624 while(BUTTON_PRESS())
627 /* need this delay to prevent catching some weird data */
630 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
631 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
634 LED(selected
+ 1, 0);
635 // Finished recording
637 // If we were previously playing, set playing off
638 // so next button push begins playing what we recorded
645 else if (button_pressed
> 0 && cardRead
== 1)
648 LED(selected
+ 1, 0);
652 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
654 // wait for button to be released
655 while(BUTTON_PRESS())
658 /* need this delay to prevent catching some weird data */
661 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
662 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
665 LED(selected
+ 1, 0);
666 // Finished recording
668 // If we were previously playing, set playing off
669 // so next button push begins playing what we recorded
676 // Change where to record (or begin playing)
677 else if (button_pressed
)
679 // Next option if we were previously playing
681 selected
= (selected
+ 1) % OPTS
;
685 LED(selected
+ 1, 0);
687 // Begin transmitting
691 DbpString("Playing");
692 // wait for button to be released
693 while(BUTTON_PRESS())
695 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
696 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
697 DbpString("Done playing");
698 if (BUTTON_HELD(1000) > 0)
700 DbpString("Exiting");
705 /* We pressed a button so ignore it here with a delay */
708 // when done, we're done playing, move to next option
709 selected
= (selected
+ 1) % OPTS
;
712 LED(selected
+ 1, 0);
715 while(BUTTON_PRESS())
724 Listen and detect an external reader. Determine the best location
728 Inside the ListenReaderField() function, there is two mode.
729 By default, when you call the function, you will enter mode 1.
730 If you press the PM3 button one time, you will enter mode 2.
731 If you press the PM3 button a second time, you will exit the function.
733 DESCRIPTION OF MODE 1:
734 This mode just listens for an external reader field and lights up green
735 for HF and/or red for LF. This is the original mode of the detectreader
738 DESCRIPTION OF MODE 2:
739 This mode will visually represent, using the LEDs, the actual strength of the
740 current compared to the maximum current detected. Basically, once you know
741 what kind of external reader is present, it will help you spot the best location to place
742 your antenna. You will probably not get some good results if there is a LF and a HF reader
743 at the same place! :-)
747 static const char LIGHT_SCHEME
[] = {
748 0x0, /* ---- | No field detected */
749 0x1, /* X--- | 14% of maximum current detected */
750 0x2, /* -X-- | 29% of maximum current detected */
751 0x4, /* --X- | 43% of maximum current detected */
752 0x8, /* ---X | 57% of maximum current detected */
753 0xC, /* --XX | 71% of maximum current detected */
754 0xE, /* -XXX | 86% of maximum current detected */
755 0xF, /* XXXX | 100% of maximum current detected */
757 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
759 void ListenReaderField(int limit
)
761 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
762 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
763 int mode
=1, display_val
, display_max
, i
;
767 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
770 // switch off FPGA - we don't want to measure our own signal
771 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
772 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
776 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
778 if(limit
!= HF_ONLY
) {
779 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
783 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
785 if (limit
!= LF_ONLY
) {
786 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
791 if (BUTTON_PRESS()) {
796 DbpString("Signal Strength Mode");
800 DbpString("Stopped");
808 if (limit
!= HF_ONLY
) {
810 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
816 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
817 // see if there's a significant change
818 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
819 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
826 if (limit
!= LF_ONLY
) {
828 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
834 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
835 // see if there's a significant change
836 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
837 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
845 if (limit
== LF_ONLY
) {
847 display_max
= lf_max
;
848 } else if (limit
== HF_ONLY
) {
850 display_max
= hf_max
;
851 } else { /* Pick one at random */
852 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
854 display_max
= hf_max
;
857 display_max
= lf_max
;
860 for (i
=0; i
<LIGHT_LEN
; i
++) {
861 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
862 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
863 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
864 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
865 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
873 void UsbPacketReceived(uint8_t *packet
, int len
)
875 UsbCommand
*c
= (UsbCommand
*)packet
;
877 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
881 case CMD_SET_LF_SAMPLING_CONFIG
:
882 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
884 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
885 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
887 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
888 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
890 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
891 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
893 case CMD_HID_DEMOD_FSK
:
894 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
896 case CMD_HID_SIM_TAG
:
897 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
899 case CMD_FSK_SIM_TAG
:
900 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
902 case CMD_ASK_SIM_TAG
:
903 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
905 case CMD_PSK_SIM_TAG
:
906 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
908 case CMD_HID_CLONE_TAG
:
909 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
911 case CMD_IO_DEMOD_FSK
:
912 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
914 case CMD_IO_CLONE_TAG
:
915 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
917 case CMD_EM410X_DEMOD
:
918 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
920 case CMD_EM410X_WRITE_TAG
:
921 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
923 case CMD_READ_TI_TYPE
:
926 case CMD_WRITE_TI_TYPE
:
927 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
929 case CMD_SIMULATE_TAG_125K
:
931 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
934 case CMD_LF_SIMULATE_BIDIR
:
935 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
937 case CMD_INDALA_CLONE_TAG
:
938 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
940 case CMD_INDALA_CLONE_TAG_L
:
941 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
943 case CMD_T55XX_READ_BLOCK
:
944 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
946 case CMD_T55XX_WRITE_BLOCK
:
947 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
948 cmd_send(CMD_ACK
,0,0,0,0,0);
950 case CMD_T55XX_READ_TRACE
:
953 case CMD_PCF7931_READ
:
955 cmd_send(CMD_ACK
,0,0,0,0,0);
957 case CMD_EM4X_READ_WORD
:
958 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
960 case CMD_EM4X_WRITE_WORD
:
961 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
963 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
964 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
969 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
970 SnoopHitag(c
->arg
[0]);
972 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
973 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
975 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
976 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
981 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
982 AcquireRawAdcSamplesIso15693();
984 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
985 RecordRawAdcSamplesIso15693();
988 case CMD_ISO_15693_COMMAND
:
989 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
992 case CMD_ISO_15693_FIND_AFI
:
993 BruteforceIso15693Afi(c
->arg
[0]);
996 case CMD_ISO_15693_DEBUG
:
997 SetDebugIso15693(c
->arg
[0]);
1000 case CMD_READER_ISO_15693
:
1001 ReaderIso15693(c
->arg
[0]);
1003 case CMD_SIMTAG_ISO_15693
:
1004 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1009 case CMD_SIMULATE_TAG_LEGIC_RF
:
1010 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1013 case CMD_WRITER_LEGIC_RF
:
1014 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1017 case CMD_READER_LEGIC_RF
:
1018 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1022 #ifdef WITH_ISO14443b
1023 case CMD_READ_SRI512_TAG
:
1024 ReadSTMemoryIso14443b(0x0F);
1026 case CMD_READ_SRIX4K_TAG
:
1027 ReadSTMemoryIso14443b(0x7F);
1029 case CMD_SNOOP_ISO_14443B
:
1032 case CMD_SIMULATE_TAG_ISO_14443B
:
1033 SimulateIso14443bTag();
1035 case CMD_ISO_14443B_COMMAND
:
1036 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1040 #ifdef WITH_ISO14443a
1041 case CMD_SNOOP_ISO_14443a
:
1042 SnoopIso14443a(c
->arg
[0]);
1044 case CMD_READER_ISO_14443a
:
1047 case CMD_SIMULATE_TAG_ISO_14443a
:
1048 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1051 case CMD_EPA_PACE_COLLECT_NONCE
:
1052 EPA_PACE_Collect_Nonce(c
);
1054 case CMD_EPA_PACE_REPLAY
:
1058 case CMD_READER_MIFARE
:
1059 ReaderMifare(c
->arg
[0]);
1061 case CMD_MIFARE_READBL
:
1062 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1064 case CMD_MIFAREU_READBL
:
1065 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1067 case CMD_MIFAREUC_AUTH
:
1068 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1070 case CMD_MIFAREU_READCARD
:
1071 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1073 case CMD_MIFAREUC_SETPWD
:
1074 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1076 case CMD_MIFARE_READSC
:
1077 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1079 case CMD_MIFARE_WRITEBL
:
1080 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1082 //case CMD_MIFAREU_WRITEBL_COMPAT:
1083 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1085 case CMD_MIFAREU_WRITEBL
:
1086 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1088 case CMD_MIFARE_NESTED
:
1089 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1091 case CMD_MIFARE_CHKKEYS
:
1092 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1094 case CMD_SIMULATE_MIFARE_CARD
:
1095 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1099 case CMD_MIFARE_SET_DBGMODE
:
1100 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1102 case CMD_MIFARE_EML_MEMCLR
:
1103 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1105 case CMD_MIFARE_EML_MEMSET
:
1106 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1108 case CMD_MIFARE_EML_MEMGET
:
1109 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1111 case CMD_MIFARE_EML_CARDLOAD
:
1112 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1115 // Work with "magic Chinese" card
1116 case CMD_MIFARE_CSETBLOCK
:
1117 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1119 case CMD_MIFARE_CGETBLOCK
:
1120 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1122 case CMD_MIFARE_CIDENT
:
1127 case CMD_MIFARE_SNIFFER
:
1128 SniffMifare(c
->arg
[0]);
1134 // Makes use of ISO14443a FPGA Firmware
1135 case CMD_SNOOP_ICLASS
:
1138 case CMD_SIMULATE_TAG_ICLASS
:
1139 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_READER_ICLASS
:
1142 ReaderIClass(c
->arg
[0]);
1144 case CMD_READER_ICLASS_REPLAY
:
1145 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1147 case CMD_ICLASS_EML_MEMSET
:
1148 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1152 case CMD_BUFF_CLEAR
:
1156 case CMD_MEASURE_ANTENNA_TUNING
:
1157 MeasureAntennaTuning();
1160 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1161 MeasureAntennaTuningHf();
1164 case CMD_LISTEN_READER_FIELD
:
1165 ListenReaderField(c
->arg
[0]);
1168 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1169 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1171 LED_D_OFF(); // LED D indicates field ON or OFF
1174 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1177 uint8_t *BigBuf
= BigBuf_get_addr();
1178 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1179 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1180 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1182 // Trigger a finish downloading signal with an ACK frame
1183 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1187 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1188 uint8_t *b
= BigBuf_get_addr();
1189 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1190 cmd_send(CMD_ACK
,0,0,0,0,0);
1197 case CMD_SET_LF_DIVISOR
:
1198 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1199 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1202 case CMD_SET_ADC_MUX
:
1204 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1205 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1206 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1207 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1218 cmd_send(CMD_ACK
,0,0,0,0,0);
1228 case CMD_SETUP_WRITE
:
1229 case CMD_FINISH_WRITE
:
1230 case CMD_HARDWARE_RESET
:
1234 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1236 // We're going to reset, and the bootrom will take control.
1240 case CMD_START_FLASH
:
1241 if(common_area
.flags
.bootrom_present
) {
1242 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1245 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1249 case CMD_DEVICE_INFO
: {
1250 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1251 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1252 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1256 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1261 void __attribute__((noreturn
)) AppMain(void)
1265 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1266 /* Initialize common area */
1267 memset(&common_area
, 0, sizeof(common_area
));
1268 common_area
.magic
= COMMON_AREA_MAGIC
;
1269 common_area
.version
= 1;
1271 common_area
.flags
.osimage_present
= 1;
1281 // The FPGA gets its clock from us from PCK0 output, so set that up.
1282 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1283 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1284 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1285 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1286 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1287 AT91C_PMC_PRES_CLK_4
;
1288 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1291 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1293 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1295 // Load the FPGA image, which we have stored in our flash.
1296 // (the HF version by default)
1297 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1305 byte_t rx
[sizeof(UsbCommand
)];
1310 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1312 UsbPacketReceived(rx
,rx_len
);
1318 #ifndef WITH_ISO14443a_StandAlone
1319 if (BUTTON_HELD(1000) > 0)
1323 #ifdef WITH_ISO14443a
1324 #ifdef WITH_ISO14443a_StandAlone
1325 if (BUTTON_HELD(1000) > 0)
1326 StandAloneMode14a();