]> cvs.zerfleddert.de Git - proxmark3-svn/blob - fpga/hi_read_rx_xcorr.v
Mfp read plain (#704)
[proxmark3-svn] / fpga / hi_read_rx_xcorr.v
1 //-----------------------------------------------------------------------------
2 //
3 // Jonathan Westhues, April 2006
4 //-----------------------------------------------------------------------------
5
6 module hi_read_rx_xcorr(
7 pck0, ck_1356meg, ck_1356megb,
8 pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
9 adc_d, adc_clk,
10 ssp_frame, ssp_din, ssp_dout, ssp_clk,
11 cross_hi, cross_lo,
12 dbg,
13 xcorr_is_848, snoop, xcorr_quarter_freq
14 );
15 input pck0, ck_1356meg, ck_1356megb;
16 output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
17 input [7:0] adc_d;
18 output adc_clk;
19 input ssp_dout;
20 output ssp_frame, ssp_din, ssp_clk;
21 input cross_hi, cross_lo;
22 output dbg;
23 input xcorr_is_848, snoop, xcorr_quarter_freq;
24
25 // Carrier is steady on through this, unless we're snooping.
26 assign pwr_hi = ck_1356megb & (~snoop);
27 assign pwr_oe1 = 1'b0;
28 assign pwr_oe3 = 1'b0;
29 assign pwr_oe4 = 1'b0;
30 // Unused.
31 assign pwr_lo = 1'b0;
32 assign pwr_oe2 = 1'b0;
33
34 assign adc_clk = ck_1356megb; // sample frequency is 13,56 MHz
35
36 // When we're a reader, we just need to do the BPSK demod; but when we're an
37 // eavesdropper, we also need to pick out the commands sent by the reader,
38 // using AM. Do this the same way that we do it for the simulated tag.
39 reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
40 reg [11:0] has_been_low_for;
41 always @(negedge adc_clk)
42 begin
43 if(& adc_d[7:0]) after_hysteresis <= 1'b1;
44 else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
45
46 if(after_hysteresis)
47 begin
48 has_been_low_for <= 7'b0;
49 end
50 else
51 begin
52 if(has_been_low_for == 12'd4095)
53 begin
54 has_been_low_for <= 12'd0;
55 after_hysteresis <= 1'b1;
56 end
57 else
58 has_been_low_for <= has_been_low_for + 1;
59 end
60 end
61
62
63 // Let us report a correlation every 64 samples. I.e.
64 // one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
65 // one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers,
66 // one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
67 // We need a 6-bit counter for the timing.
68 reg [5:0] corr_i_cnt;
69 always @(negedge adc_clk)
70 begin
71 corr_i_cnt <= corr_i_cnt + 1;
72 end
73
74 // And a couple of registers in which to accumulate the correlations. From the 64 samples
75 // we would add at most 32 times the difference between unmodulated and modulated signal. It should
76 // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
77 // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
78 // Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
79 // maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits.
80 // Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
81 reg signed [13:0] corr_i_accum;
82 reg signed [13:0] corr_q_accum;
83 // we will report maximum 8 significant bits
84 reg signed [7:0] corr_i_out;
85 reg signed [7:0] corr_q_out;
86 // clock and frame signal for communication to ARM
87 reg ssp_clk;
88 reg ssp_frame;
89
90
91 // The subcarrier reference signals
92 reg subcarrier_I;
93 reg subcarrier_Q;
94
95 always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq)
96 begin
97 if (xcorr_is_848 & ~xcorr_quarter_freq) // 848 kHz
98 begin
99 subcarrier_I = ~corr_i_cnt[3];
100 subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
101 end
102 else if (xcorr_is_848 & xcorr_quarter_freq) // 212 kHz
103 begin
104 subcarrier_I = ~corr_i_cnt[5];
105 subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
106 end
107 else
108 begin // 424 kHz
109 subcarrier_I = ~corr_i_cnt[4];
110 subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]);
111 end
112 end
113
114 // ADC data appears on the rising edge, so sample it on the falling edge
115 always @(negedge adc_clk)
116 begin
117 // These are the correlators: we correlate against in-phase and quadrature
118 // versions of our reference signal, and keep the (signed) result to
119 // send out later over the SSP.
120 if(corr_i_cnt == 6'd0)
121 begin
122 if(snoop)
123 begin
124 // Send 7 most significant bits of tag signal (signed), plus 1 bit reader signal
125 if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
126 corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
127 else // truncate to maximum value
128 if (corr_i_accum[13] == 1'b0)
129 corr_i_out <= {7'b0111111, after_hysteresis_prev_prev};
130 else
131 corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
132 if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
133 corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
134 else // truncate to maximum value
135 if (corr_q_accum[13] == 1'b0)
136 corr_q_out <= {7'b0111111, after_hysteresis_prev};
137 else
138 corr_q_out <= {7'b1000000, after_hysteresis_prev};
139 after_hysteresis_prev_prev <= after_hysteresis;
140 end
141 else
142 begin
143 // Send 8 bits of tag signal
144 if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
145 corr_i_out <= corr_i_accum[11:4];
146 else // truncate to maximum value
147 if (corr_i_accum[13] == 1'b0)
148 corr_i_out <= 8'b01111111;
149 else
150 corr_i_out <= 8'b10000000;
151 if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
152 corr_q_out <= corr_q_accum[11:4];
153 else // truncate to maximum value
154 if (corr_q_accum[13] == 1'b0)
155 corr_q_out <= 8'b01111111;
156 else
157 corr_q_out <= 8'b10000000;
158 end
159 // Initialize next correlation.
160 // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
161 corr_i_accum <= $signed({1'b0,adc_d});
162 corr_q_accum <= $signed({1'b0,adc_d});
163 end
164 else
165 begin
166 if (subcarrier_I)
167 corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d});
168 else
169 corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d});
170
171 if (subcarrier_Q)
172 corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d});
173 else
174 corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d});
175
176 end
177
178 // for each Q/I pair report two reader signal samples when sniffing
179 if(corr_i_cnt == 6'd32)
180 after_hysteresis_prev <= after_hysteresis;
181
182 // Then the result from last time is serialized and send out to the ARM.
183 // We get one report each cycle, and each report is 16 bits, so the
184 // ssp_clk should be the adc_clk divided by 64/16 = 4.
185
186 if(corr_i_cnt[1:0] == 2'b10)
187 ssp_clk <= 1'b0;
188
189 if(corr_i_cnt[1:0] == 2'b00)
190 begin
191 ssp_clk <= 1'b1;
192 // Don't shift if we just loaded new data, obviously.
193 if(corr_i_cnt != 6'd0)
194 begin
195 corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
196 corr_q_out[7:1] <= corr_q_out[6:0];
197 end
198 end
199
200 // set ssp_frame signal for corr_i_cnt = 0..3
201 // (send one frame with 16 Bits)
202 if(corr_i_cnt[5:2] == 4'b0000)
203 ssp_frame = 1'b1;
204 else
205 ssp_frame = 1'b0;
206
207 end
208
209 assign ssp_din = corr_i_out[7];
210
211 assign dbg = corr_i_cnt[3];
212
213 endmodule
Impressum, Datenschutz