1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
83 101010101010101[0]000...
85 [5555fe852c5555555555555555fe0000]
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
97 signed char *dest
= (signed char *)BigBuf_get_addr();
98 uint16_t n
= BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
102 int i
, cycles
=0, samples
=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
118 // get TI tag data into the buffer
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 for (i
=0; i
<n
-1; i
++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
127 // after 16 cycles, measure the frequency
130 samples
=i
-samples
; // number of samples in these 16 cycles
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0
= (shift0
>>1) | (shift1
<< 31);
135 shift1
= (shift1
>>1) | (shift2
<< 31);
136 shift2
= (shift2
>>1) | (shift3
<< 31);
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
142 // low frequency represents a 1
144 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
145 // high frequency represents a 0
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3
= shift2
= shift1
= shift0
= 0;
153 // for each bit we receive, test if we've detected a valid tag
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
160 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
168 // if flag is set we have a tag
170 DbpString("Info: No valid tag detected.");
172 // put 64 bit data into shift1 and shift0
173 shift0
= (shift0
>>24) | (shift1
<< 8);
174 shift1
= (shift1
>>24) | (shift2
<< 8);
176 // align 16 bit crc into lower half of shift2
177 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
179 // if r/w tag, check ident match
180 if (shift3
& (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
186 DbpString("Info: TI tag ident is valid");
189 DbpString("Info: TI tag is readonly");
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
198 crc
= update_crc16(crc
, (shift0
)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
201 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
202 crc
= update_crc16(crc
, (shift1
)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
205 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
209 if (crc
!= (shift2
&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
212 DbpString("Info: CRC is good");
217 void WriteTIbyte(uint8_t b
)
221 // modulate 8 bits out to the antenna
225 // stop modulating antenna
232 // stop modulating antenna
242 void AcquireTiType(void)
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
250 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
251 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
255 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
259 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC
->SSC_CMR
= 12;
268 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
270 AT91C_BASE_SSC
->SSC_TCMR
= 0;
271 AT91C_BASE_SSC
->SSC_TFMR
= 0;
278 // Charge TI tag for 50ms.
281 // stop modulating antenna and listen
288 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
289 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
290 i
++; if(i
>= TIBUFLEN
) break;
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
297 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
299 char *dest
= (char *)BigBuf_get_addr();
302 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
303 for (j
=0; j
<32; j
++) {
304 if(BigBuf
[i
] & (1 << j
)) {
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
320 crc
= update_crc16(crc
, (idlo
)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
324 crc
= update_crc16(crc
, (idhi
)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
357 SpinDelay(50); // charge time
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo
)&0xff );
362 WriteTIbyte( (idlo
>>8 )&0xff );
363 WriteTIbyte( (idlo
>>16)&0xff );
364 WriteTIbyte( (idlo
>>24)&0xff );
365 WriteTIbyte( (idhi
)&0xff );
366 WriteTIbyte( (idhi
>>8 )&0xff );
367 WriteTIbyte( (idhi
>>16)&0xff );
368 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc
)&0xff ); // crc lo
370 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
374 SpinDelay(50); // programming time
378 // get TI tag data into the buffer
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
382 DbpString("Now use 'lf ti read' to check");
385 void SimulateTagLowFrequency(uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
388 uint8_t *tab
= BigBuf_get_addr();
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
393 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
396 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
405 if(BUTTON_PRESS() || usb_poll()) {
406 DbpString("Stopped");
421 //wait until SSC_CLK goes LOW
422 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
424 DbpString("Stopped");
442 #define DEBUG_FRAME_CONTENTS 1
443 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
447 // compose fc/8 fc/10 waveform (FSK2)
448 static void fc(int c
, int *n
)
450 uint8_t *dest
= BigBuf_get_addr();
453 // for when we want an fc8 pattern every 4 logical bits
465 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
467 for (idx
=0; idx
<6; idx
++) {
479 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
481 for (idx
=0; idx
<5; idx
++) {
495 // compose fc/X fc/Y waveform (FSKx)
496 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
498 uint8_t *dest
= BigBuf_get_addr();
499 uint8_t halfFC
= fc
/2;
500 uint8_t wavesPerClock
= clock
/fc
;
501 uint8_t mod
= clock
% fc
; //modifier
502 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
503 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
504 // loop through clock - step field clock
505 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
506 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
507 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
508 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
511 if (mod
>0) (*modCnt
)++;
512 if ((mod
>0) && modAdjOk
){ //fsk2
513 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
514 memset(dest
+(*n
), 0, fc
-halfFC
);
515 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
519 if (mod
>0 && !modAdjOk
){ //fsk1
520 memset(dest
+(*n
), 0, mod
-(mod
/2));
521 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
526 // prepare a waveform pattern in the buffer based on the ID given then
527 // simulate a HID tag until the button is pressed
528 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
532 HID tag bitstream format
533 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
534 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
535 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
536 A fc8 is inserted before every 4 bits
537 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
538 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 // special start of frame marker containing invalid bit sequences
547 fc(8, &n
); fc(8, &n
); // invalid
548 fc(8, &n
); fc(10, &n
); // logical 0
549 fc(10, &n
); fc(10, &n
); // invalid
550 fc(8, &n
); fc(10, &n
); // logical 0
553 // manchester encode bits 43 to 32
554 for (i
=11; i
>=0; i
--) {
555 if ((i
%4)==3) fc(0,&n
);
557 fc(10, &n
); fc(8, &n
); // low-high transition
559 fc(8, &n
); fc(10, &n
); // high-low transition
564 // manchester encode bits 31 to 0
565 for (i
=31; i
>=0; i
--) {
566 if ((i
%4)==3) fc(0,&n
);
568 fc(10, &n
); fc(8, &n
); // low-high transition
570 fc(8, &n
); fc(10, &n
); // high-low transition
576 SimulateTagLowFrequency(n
, 0, ledcontrol
);
582 // prepare a waveform pattern in the buffer based on the ID given then
583 // simulate a FSK tag until the button is pressed
584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
585 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
589 uint8_t fcHigh
= arg1
>> 8;
590 uint8_t fcLow
= arg1
& 0xFF;
592 uint8_t clk
= arg2
& 0xFF;
593 uint8_t invert
= (arg2
>> 8) & 1;
595 for (i
=0; i
<size
; i
++){
596 if (BitStream
[i
] == invert
){
597 fcAll(fcLow
, &n
, clk
, &modCnt
);
599 fcAll(fcHigh
, &n
, clk
, &modCnt
);
602 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
603 /*Dbprintf("DEBUG: First 32:");
604 uint8_t *dest = BigBuf_get_addr();
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
608 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
613 SimulateTagLowFrequency(n
, 0, ledcontrol
);
619 // compose ask waveform for one bit(ASK)
620 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
622 uint8_t *dest
= BigBuf_get_addr();
623 uint8_t halfClk
= clock
/2;
624 // c = current bit 1 or 0
626 memset(dest
+(*n
), c
, halfClk
);
627 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
629 memset(dest
+(*n
), c
, clock
);
634 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
636 uint8_t *dest
= BigBuf_get_addr();
637 uint8_t halfClk
= clock
/2;
639 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
640 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
642 memset(dest
+(*n
), c
^ *phase
, clock
);
648 // args clock, ask/man or askraw, invert, transmission separator
649 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
653 uint8_t clk
= (arg1
>> 8) & 0xFF;
654 uint8_t encoding
= arg1
& 1;
655 uint8_t separator
= arg2
& 1;
656 uint8_t invert
= (arg2
>> 8) & 1;
658 if (encoding
==2){ //biphase
660 for (i
=0; i
<size
; i
++){
661 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
663 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
664 for (i
=0; i
<size
; i
++){
665 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
668 } else { // ask/manchester || ask/raw
669 for (i
=0; i
<size
; i
++){
670 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
672 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
673 for (i
=0; i
<size
; i
++){
674 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
679 if (separator
==1) Dbprintf("sorry but separator option not yet available");
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
683 //Dbprintf("First 32:");
684 //uint8_t *dest = BigBuf_get_addr();
686 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
688 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
693 SimulateTagLowFrequency(n
, 0, ledcontrol
);
699 //carrier can be 2,4 or 8
700 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
702 uint8_t *dest
= BigBuf_get_addr();
703 uint8_t halfWave
= waveLen
/2;
707 // write phase change
708 memset(dest
+(*n
), *curPhase
^1, halfWave
);
709 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
714 //write each normal clock wave for the clock duration
715 for (; i
< clk
; i
+=waveLen
){
716 memset(dest
+(*n
), *curPhase
, halfWave
);
717 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
722 // args clock, carrier, invert,
723 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
727 uint8_t clk
= arg1
>> 8;
728 uint8_t carrier
= arg1
& 0xFF;
729 uint8_t invert
= arg2
& 0xFF;
730 uint8_t curPhase
= 0;
731 for (i
=0; i
<size
; i
++){
732 if (BitStream
[i
] == curPhase
){
733 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
735 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
738 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
739 //Dbprintf("DEBUG: First 32:");
740 //uint8_t *dest = BigBuf_get_addr();
742 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
744 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
748 SimulateTagLowFrequency(n
, 0, ledcontrol
);
754 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
755 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
757 uint8_t *dest
= BigBuf_get_addr();
758 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
760 uint32_t hi2
=0, hi
=0, lo
=0;
762 // Configure to go in 125Khz listen mode
763 LFSetupFPGAForADC(95, true);
765 while(!BUTTON_PRESS()) {
768 if (ledcontrol
) LED_A_ON();
770 DoAcquisition_default(-1,true);
772 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
773 size
= 50*128*2; //big enough to catch 2 sequences of largest format
774 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
776 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
777 // go over previously decoded manchester data and decode into usable tag ID
778 if (hi2
!= 0){ //extra large HID tags 88/192 bits
779 Dbprintf("TAG ID: %x%08x%08x (%d)",
780 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
781 }else { //standard HID tags 44/96 bits
782 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
785 uint32_t cardnum
= 0;
786 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
788 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
790 while(lo2
> 1){ //find last bit set to 1 (format len bit)
798 cardnum
= (lo
>>1)&0xFFFF;
802 cardnum
= (lo
>>1)&0x7FFFF;
803 fc
= ((hi
&0xF)<<12)|(lo
>>20);
806 cardnum
= (lo
>>1)&0xFFFF;
807 fc
= ((hi
&1)<<15)|(lo
>>17);
810 cardnum
= (lo
>>1)&0xFFFFF;
811 fc
= ((hi
&1)<<11)|(lo
>>21);
814 else { //if bit 38 is not set then 37 bit format is used
819 cardnum
= (lo
>>1)&0x7FFFF;
820 fc
= ((hi
&0xF)<<12)|(lo
>>20);
823 //Dbprintf("TAG ID: %x%08x (%d)",
824 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
825 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
826 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
827 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
830 if (ledcontrol
) LED_A_OFF();
837 hi2
= hi
= lo
= idx
= 0;
840 DbpString("Stopped");
841 if (ledcontrol
) LED_A_OFF();
844 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
846 uint8_t *dest
= BigBuf_get_addr();
848 size_t size
=0, idx
=0;
849 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
852 // Configure to go in 125Khz listen mode
853 LFSetupFPGAForADC(95, true);
855 while(!BUTTON_PRESS()) {
858 if (ledcontrol
) LED_A_ON();
860 DoAcquisition_default(-1,true);
861 size
= BigBuf_max_traceLen();
862 //askdemod and manchester decode
863 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
864 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
867 if (errCnt
<0) continue;
869 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
872 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
876 (uint32_t)(lo
&0xFFFF),
877 (uint32_t)((lo
>>16LL) & 0xFF),
878 (uint32_t)(lo
& 0xFFFFFF));
880 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
883 (uint32_t)(lo
&0xFFFF),
884 (uint32_t)((lo
>>16LL) & 0xFF),
885 (uint32_t)(lo
& 0xFFFFFF));
889 if (ledcontrol
) LED_A_OFF();
891 *low
=lo
& 0xFFFFFFFF;
896 hi
= lo
= size
= idx
= 0;
897 clk
= invert
= errCnt
= 0;
899 DbpString("Stopped");
900 if (ledcontrol
) LED_A_OFF();
903 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
905 uint8_t *dest
= BigBuf_get_addr();
907 uint32_t code
=0, code2
=0;
909 uint8_t facilitycode
=0;
912 uint16_t calccrc
= 0;
913 // Configure to go in 125Khz listen mode
914 LFSetupFPGAForADC(95, true);
916 while(!BUTTON_PRESS()) {
918 if (ledcontrol
) LED_A_ON();
919 DoAcquisition_default(-1,true);
920 //fskdemod and get start index
922 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
927 //0 10 20 30 40 50 60
929 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
930 //-----------------------------------------------------------------------------
931 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
934 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
935 //preamble F0 E0 01 03 B6 75
936 // How to calc checksum,
937 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
938 // F0 + E0 + 01 + 03 + B6 = 28A
942 //XSF(version)facility:codeone+codetwo
944 if(findone
){ //only print binary if we are doing one
945 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
946 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
947 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
948 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
949 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
950 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
951 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
953 code
= bytebits_to_byte(dest
+idx
,32);
954 code2
= bytebits_to_byte(dest
+idx
+32,32);
955 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
956 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
957 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
959 crc
= bytebits_to_byte(dest
+idx
+54,8);
960 for (uint8_t i
=1; i
<6; ++i
)
961 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
963 calccrc
= 0xff - calccrc
;
965 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
967 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
968 // if we're only looking for one tag
970 if (ledcontrol
) LED_A_OFF();
977 version
=facilitycode
=0;
983 DbpString("Stopped");
984 if (ledcontrol
) LED_A_OFF();
987 /*------------------------------
988 * T5555/T5557/T5567 routines
989 *------------------------------
992 /* T55x7 configuration register definitions */
993 #define T55x7_POR_DELAY 0x00000001
994 #define T55x7_ST_TERMINATOR 0x00000008
995 #define T55x7_PWD 0x00000010
996 #define T55x7_MAXBLOCK_SHIFT 5
997 #define T55x7_AOR 0x00000200
998 #define T55x7_PSKCF_RF_2 0
999 #define T55x7_PSKCF_RF_4 0x00000400
1000 #define T55x7_PSKCF_RF_8 0x00000800
1001 #define T55x7_MODULATION_DIRECT 0
1002 #define T55x7_MODULATION_PSK1 0x00001000
1003 #define T55x7_MODULATION_PSK2 0x00002000
1004 #define T55x7_MODULATION_PSK3 0x00003000
1005 #define T55x7_MODULATION_FSK1 0x00004000
1006 #define T55x7_MODULATION_FSK2 0x00005000
1007 #define T55x7_MODULATION_FSK1a 0x00006000
1008 #define T55x7_MODULATION_FSK2a 0x00007000
1009 #define T55x7_MODULATION_MANCHESTER 0x00008000
1010 #define T55x7_MODULATION_BIPHASE 0x00010000
1011 #define T55x7_BITRATE_RF_8 0
1012 #define T55x7_BITRATE_RF_16 0x00040000
1013 #define T55x7_BITRATE_RF_32 0x00080000
1014 #define T55x7_BITRATE_RF_40 0x000C0000
1015 #define T55x7_BITRATE_RF_50 0x00100000
1016 #define T55x7_BITRATE_RF_64 0x00140000
1017 #define T55x7_BITRATE_RF_100 0x00180000
1018 #define T55x7_BITRATE_RF_128 0x001C0000
1020 /* T5555 (Q5) configuration register definitions */
1021 #define T5555_ST_TERMINATOR 0x00000001
1022 #define T5555_MAXBLOCK_SHIFT 0x00000001
1023 #define T5555_MODULATION_MANCHESTER 0
1024 #define T5555_MODULATION_PSK1 0x00000010
1025 #define T5555_MODULATION_PSK2 0x00000020
1026 #define T5555_MODULATION_PSK3 0x00000030
1027 #define T5555_MODULATION_FSK1 0x00000040
1028 #define T5555_MODULATION_FSK2 0x00000050
1029 #define T5555_MODULATION_BIPHASE 0x00000060
1030 #define T5555_MODULATION_DIRECT 0x00000070
1031 #define T5555_INVERT_OUTPUT 0x00000080
1032 #define T5555_PSK_RF_2 0
1033 #define T5555_PSK_RF_4 0x00000100
1034 #define T5555_PSK_RF_8 0x00000200
1035 #define T5555_USE_PWD 0x00000400
1036 #define T5555_USE_AOR 0x00000800
1037 #define T5555_BITRATE_SHIFT 12
1038 #define T5555_FAST_WRITE 0x00004000
1039 #define T5555_PAGE_SELECT 0x00008000
1042 * Relevant times in microsecond
1043 * To compensate antenna falling times shorten the write times
1044 * and enlarge the gap ones.
1046 #define START_GAP 50*8 // 10 - 50fc 250
1047 #define WRITE_GAP 20*8 // 8 - 30fc
1048 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1049 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1051 // VALUES TAKEN FROM EM4x function: SendForward
1052 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1053 // WRITE_GAP = 128; (16*8)
1054 // WRITE_1 = 256 32*8; (32*8)
1056 // These timings work for 4469/4269/4305 (with the 55*8 above)
1057 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1059 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1060 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1061 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1062 // T0 = TIMER_CLOCK1 / 125000 = 192
1063 // 1 Cycle = 8 microseconds(us)
1065 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1067 // Write one bit to card
1068 void T55xxWriteBit(int bit
)
1070 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1071 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1072 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1074 SpinDelayUs(WRITE_0
);
1076 SpinDelayUs(WRITE_1
);
1077 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1078 SpinDelayUs(WRITE_GAP
);
1081 // Write one card block in page 0, no lock
1082 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1086 // Set up FPGA, 125kHz
1087 // Wait for config.. (192+8190xPOW)x8 == 67ms
1088 LFSetupFPGAForADC(0, true);
1090 // Now start writting
1091 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1092 SpinDelayUs(START_GAP
);
1096 T55xxWriteBit(0); //Page 0
1099 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1100 T55xxWriteBit(Pwd
& i
);
1106 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1107 T55xxWriteBit(Data
& i
);
1110 for (i
= 0x04; i
!= 0; i
>>= 1)
1111 T55xxWriteBit(Block
& i
);
1113 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1114 // so wait a little more)
1115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1121 void TurnReadLFOn(){
1122 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1123 // Give it a bit of time for the resonant antenna to settle.
1128 // Read one card block in page 0
1129 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1132 uint8_t *dest
= BigBuf_get_addr();
1133 uint16_t bufferlength
= BigBuf_max_traceLen();
1134 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1135 bufferlength
= T55xx_SAMPLES_SIZE
;
1137 // Clear destination buffer before sending the command
1138 memset(dest
, 0x80, bufferlength
);
1140 // Set up FPGA, 125kHz
1141 // Wait for config.. (192+8190xPOW)x8 == 67ms
1142 LFSetupFPGAForADC(0, true);
1143 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1144 SpinDelayUs(START_GAP
);
1148 T55xxWriteBit(0); //Page 0
1151 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1152 T55xxWriteBit(Pwd
& i
);
1157 for (i
= 0x04; i
!= 0; i
>>= 1)
1158 T55xxWriteBit(Block
& i
);
1160 // Turn field on to read the response
1162 // Now do the acquisition
1165 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1166 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1169 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1170 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1173 if (i
>= bufferlength
) break;
1177 cmd_send(CMD_ACK
,0,0,0,0,0);
1178 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1182 // Read card traceability data (page 1)
1183 void T55xxReadTrace(void){
1186 uint8_t *dest
= BigBuf_get_addr();
1187 uint16_t bufferlength
= BigBuf_max_traceLen();
1188 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1189 bufferlength
= T55xx_SAMPLES_SIZE
;
1191 // Clear destination buffer before sending the command
1192 memset(dest
, 0x80, bufferlength
);
1194 LFSetupFPGAForADC(0, true);
1195 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1196 SpinDelayUs(START_GAP
);
1200 T55xxWriteBit(1); //Page 1
1202 // Turn field on to read the response
1205 // Now do the acquisition
1207 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1208 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1211 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1212 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1216 if (i
>= bufferlength
) break;
1220 cmd_send(CMD_ACK
,0,0,0,0,0);
1221 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1225 /*-------------- Cloning routines -----------*/
1226 // Copy HID id to card and setup block 0 config
1227 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1229 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1233 // Ensure no more than 84 bits supplied
1235 DbpString("Tags can only have 84 bits.");
1238 // Build the 6 data blocks for supplied 84bit ID
1240 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1241 for (int i
=0;i
<4;i
++) {
1242 if (hi2
& (1<<(19-i
)))
1243 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1245 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1249 for (int i
=0;i
<16;i
++) {
1250 if (hi2
& (1<<(15-i
)))
1251 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1253 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1257 for (int i
=0;i
<16;i
++) {
1258 if (hi
& (1<<(31-i
)))
1259 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1261 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1265 for (int i
=0;i
<16;i
++) {
1266 if (hi
& (1<<(15-i
)))
1267 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1269 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1273 for (int i
=0;i
<16;i
++) {
1274 if (lo
& (1<<(31-i
)))
1275 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1277 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1281 for (int i
=0;i
<16;i
++) {
1282 if (lo
& (1<<(15-i
)))
1283 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1285 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1289 // Ensure no more than 44 bits supplied
1291 DbpString("Tags can only have 44 bits.");
1295 // Build the 3 data blocks for supplied 44bit ID
1298 data1
= 0x1D000000; // load preamble
1300 for (int i
=0;i
<12;i
++) {
1301 if (hi
& (1<<(11-i
)))
1302 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1304 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1308 for (int i
=0;i
<16;i
++) {
1309 if (lo
& (1<<(31-i
)))
1310 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1312 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1316 for (int i
=0;i
<16;i
++) {
1317 if (lo
& (1<<(15-i
)))
1318 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1320 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1325 // Program the data blocks for supplied ID
1326 // and the block 0 for HID format
1327 T55xxWriteBlock(data1
,1,0,0);
1328 T55xxWriteBlock(data2
,2,0,0);
1329 T55xxWriteBlock(data3
,3,0,0);
1331 if (longFMT
) { // if long format there are 6 blocks
1332 T55xxWriteBlock(data4
,4,0,0);
1333 T55xxWriteBlock(data5
,5,0,0);
1334 T55xxWriteBlock(data6
,6,0,0);
1337 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1338 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1339 T55x7_MODULATION_FSK2a
|
1340 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1348 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1350 int data1
=0, data2
=0; //up to six blocks for long format
1352 data1
= hi
; // load preamble
1356 // Program the data blocks for supplied ID
1357 // and the block 0 for HID format
1358 T55xxWriteBlock(data1
,1,0,0);
1359 T55xxWriteBlock(data2
,2,0,0);
1362 T55xxWriteBlock(0x00147040,0,0,0);
1368 // Define 9bit header for EM410x tags
1369 #define EM410X_HEADER 0x1FF
1370 #define EM410X_ID_LENGTH 40
1372 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1375 uint64_t id
= EM410X_HEADER
;
1376 uint64_t rev_id
= 0; // reversed ID
1377 int c_parity
[4]; // column parity
1378 int r_parity
= 0; // row parity
1381 // Reverse ID bits given as parameter (for simpler operations)
1382 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1384 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1387 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1392 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1393 id_bit
= rev_id
& 1;
1396 // Don't write row parity bit at start of parsing
1398 id
= (id
<< 1) | r_parity
;
1399 // Start counting parity for new row
1406 // First elements in column?
1408 // Fill out first elements
1409 c_parity
[i
] = id_bit
;
1411 // Count column parity
1412 c_parity
[i
% 4] ^= id_bit
;
1415 id
= (id
<< 1) | id_bit
;
1419 // Insert parity bit of last row
1420 id
= (id
<< 1) | r_parity
;
1422 // Fill out column parity at the end of tag
1423 for (i
= 0; i
< 4; ++i
)
1424 id
= (id
<< 1) | c_parity
[i
];
1429 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1433 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1434 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1436 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1438 // Clock rate is stored in bits 8-15 of the card value
1439 clock
= (card
& 0xFF00) >> 8;
1440 Dbprintf("Clock rate: %d", clock
);
1444 clock
= T55x7_BITRATE_RF_32
;
1447 clock
= T55x7_BITRATE_RF_16
;
1450 // A value of 0 is assumed to be 64 for backwards-compatibility
1453 clock
= T55x7_BITRATE_RF_64
;
1456 Dbprintf("Invalid clock rate: %d", clock
);
1460 // Writing configuration for T55x7 tag
1461 T55xxWriteBlock(clock
|
1462 T55x7_MODULATION_MANCHESTER
|
1463 2 << T55x7_MAXBLOCK_SHIFT
,
1467 // Writing configuration for T5555(Q5) tag
1468 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1469 T5555_MODULATION_MANCHESTER
|
1470 2 << T5555_MAXBLOCK_SHIFT
,
1474 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1475 (uint32_t)(id
>> 32), (uint32_t)id
);
1478 // Clone Indala 64-bit tag by UID to T55x7
1479 void CopyIndala64toT55x7(int hi
, int lo
)
1482 //Program the 2 data blocks for supplied 64bit UID
1483 // and the block 0 for Indala64 format
1484 T55xxWriteBlock(hi
,1,0,0);
1485 T55xxWriteBlock(lo
,2,0,0);
1486 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1487 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1488 T55x7_MODULATION_PSK1
|
1489 2 << T55x7_MAXBLOCK_SHIFT
,
1491 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1492 // T5567WriteBlock(0x603E1042,0);
1498 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1501 //Program the 7 data blocks for supplied 224bit UID
1502 // and the block 0 for Indala224 format
1503 T55xxWriteBlock(uid1
,1,0,0);
1504 T55xxWriteBlock(uid2
,2,0,0);
1505 T55xxWriteBlock(uid3
,3,0,0);
1506 T55xxWriteBlock(uid4
,4,0,0);
1507 T55xxWriteBlock(uid5
,5,0,0);
1508 T55xxWriteBlock(uid6
,6,0,0);
1509 T55xxWriteBlock(uid7
,7,0,0);
1510 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1511 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1512 T55x7_MODULATION_PSK1
|
1513 7 << T55x7_MAXBLOCK_SHIFT
,
1515 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1516 // T5567WriteBlock(0x603E10E2,0);
1523 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1524 #define max(x,y) ( x<y ? y:x)
1526 int DemodPCF7931(uint8_t **outBlocks
) {
1528 uint8_t bits
[256] = {0x00};
1529 uint8_t blocks
[8][16];
1530 uint8_t *dest
= BigBuf_get_addr();
1532 int GraphTraceLen
= BigBuf_max_traceLen();
1533 if ( GraphTraceLen
> 18000 )
1534 GraphTraceLen
= 18000;
1537 int i
, j
, lastval
, bitidx
, half_switch
;
1539 int tolerance
= clock
/ 8;
1540 int pmc
, block_done
;
1541 int lc
, warnings
= 0;
1543 int lmin
=128, lmax
=128;
1546 LFSetupFPGAForADC(95, true);
1547 DoAcquisition_default(0, true);
1554 /* Find first local max/min */
1555 if(dest
[1] > dest
[0]) {
1556 while(i
< GraphTraceLen
) {
1557 if( !(dest
[i
] > dest
[i
-1]) && dest
[i
] > lmax
)
1564 while(i
< GraphTraceLen
) {
1565 if( !(dest
[i
] < dest
[i
-1]) && dest
[i
] < lmin
)
1577 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1579 if ( (dest
[i
-1] > dest
[i
] && dir
== 1 && dest
[i
] > lmax
) || (dest
[i
-1] < dest
[i
] && dir
== 0 && dest
[i
] < lmin
))
1584 // Switch depending on lc length:
1585 // Tolerance is 1/8 of clock rate (arbitrary)
1586 if (abs(lc
-clock
/4) < tolerance
) {
1588 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1590 i
+= (128+127+16+32+33+16)-1;
1598 } else if (abs(lc
-clock
/2) < tolerance
) {
1600 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1602 i
+= (128+127+16+32+33)-1;
1607 else if(half_switch
== 1) {
1613 } else if (abs(lc
-clock
) < tolerance
) {
1621 Dbprintf("Error: too many detection errors, aborting.");
1626 if(block_done
== 1) {
1628 for(j
=0; j
<16; j
++) {
1629 blocks
[num_blocks
][j
] = 128*bits
[j
*8+7]+
1645 if(i
< GraphTraceLen
)
1646 dir
=(dest
[i
-1] > dest
[i
]) ? 0 : 1;
1651 if(num_blocks
== 4) break;
1653 memcpy(outBlocks
, blocks
, 16*num_blocks
);
1657 int IsBlock0PCF7931(uint8_t *Block
) {
1658 // Assume RFU means 0 :)
1659 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1661 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1666 int IsBlock1PCF7931(uint8_t *Block
) {
1667 // Assume RFU means 0 :)
1668 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1669 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1677 void ReadPCF7931() {
1678 uint8_t Blocks
[8][17];
1679 uint8_t tmpBlocks
[4][16];
1680 int i
, j
, ind
, ind2
, n
;
1687 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1690 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1691 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1694 if(error
==10 && num_blocks
== 0) {
1695 Dbprintf("Error, no tag or bad tag");
1698 else if (tries
==20 || error
==10) {
1699 Dbprintf("Error reading the tag");
1700 Dbprintf("Here is the partial content");
1705 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1706 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1707 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1709 for(i
=0; i
<n
; i
++) {
1710 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1712 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1716 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1717 Blocks
[0][ALLOC
] = 1;
1718 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1719 Blocks
[1][ALLOC
] = 1;
1720 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1722 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1724 // Handle following blocks
1725 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1728 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1729 Blocks
[ind2
][ALLOC
] = 1;
1737 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1738 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1739 for(j
=0; j
<max_blocks
; j
++) {
1740 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1741 // Found an identical block
1742 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1745 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1746 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1747 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1748 Blocks
[ind2
][ALLOC
] = 1;
1750 if(num_blocks
== max_blocks
) goto end
;
1753 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1754 if(ind2
> max_blocks
)
1756 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1757 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1758 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1759 Blocks
[ind2
][ALLOC
] = 1;
1761 if(num_blocks
== max_blocks
) goto end
;
1770 if (BUTTON_PRESS()) return;
1771 } while (num_blocks
!= max_blocks
);
1773 Dbprintf("-----------------------------------------");
1774 Dbprintf("Memory content:");
1775 Dbprintf("-----------------------------------------");
1776 for(i
=0; i
<max_blocks
; i
++) {
1777 if(Blocks
[i
][ALLOC
]==1)
1778 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1779 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1780 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1782 Dbprintf("<missing block %d>", i
);
1784 Dbprintf("-----------------------------------------");
1790 //-----------------------------------
1791 // EM4469 / EM4305 routines
1792 //-----------------------------------
1793 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1794 #define FWD_CMD_WRITE 0xA
1795 #define FWD_CMD_READ 0x9
1796 #define FWD_CMD_DISABLE 0x5
1799 uint8_t forwardLink_data
[64]; //array of forwarded bits
1800 uint8_t * forward_ptr
; //ptr for forward message preparation
1801 uint8_t fwd_bit_sz
; //forwardlink bit counter
1802 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1804 //====================================================================
1805 // prepares command bits
1807 //====================================================================
1808 //--------------------------------------------------------------------
1809 uint8_t Prepare_Cmd( uint8_t cmd
) {
1810 //--------------------------------------------------------------------
1812 *forward_ptr
++ = 0; //start bit
1813 *forward_ptr
++ = 0; //second pause for 4050 code
1815 *forward_ptr
++ = cmd
;
1817 *forward_ptr
++ = cmd
;
1819 *forward_ptr
++ = cmd
;
1821 *forward_ptr
++ = cmd
;
1823 return 6; //return number of emited bits
1826 //====================================================================
1827 // prepares address bits
1829 //====================================================================
1831 //--------------------------------------------------------------------
1832 uint8_t Prepare_Addr( uint8_t addr
) {
1833 //--------------------------------------------------------------------
1835 register uint8_t line_parity
;
1840 *forward_ptr
++ = addr
;
1841 line_parity
^= addr
;
1845 *forward_ptr
++ = (line_parity
& 1);
1847 return 7; //return number of emited bits
1850 //====================================================================
1851 // prepares data bits intreleaved with parity bits
1853 //====================================================================
1855 //--------------------------------------------------------------------
1856 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1857 //--------------------------------------------------------------------
1859 register uint8_t line_parity
;
1860 register uint8_t column_parity
;
1861 register uint8_t i
, j
;
1862 register uint16_t data
;
1867 for(i
=0; i
<4; i
++) {
1869 for(j
=0; j
<8; j
++) {
1870 line_parity
^= data
;
1871 column_parity
^= (data
& 1) << j
;
1872 *forward_ptr
++ = data
;
1875 *forward_ptr
++ = line_parity
;
1880 for(j
=0; j
<8; j
++) {
1881 *forward_ptr
++ = column_parity
;
1882 column_parity
>>= 1;
1886 return 45; //return number of emited bits
1889 //====================================================================
1890 // Forward Link send function
1891 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1892 // fwd_bit_count set with number of bits to be sent
1893 //====================================================================
1894 void SendForward(uint8_t fwd_bit_count
) {
1896 fwd_write_ptr
= forwardLink_data
;
1897 fwd_bit_sz
= fwd_bit_count
;
1902 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1903 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1904 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1906 // Give it a bit of time for the resonant antenna to settle.
1907 // And for the tag to fully power up
1910 // force 1st mod pulse (start gap must be longer for 4305)
1911 fwd_bit_sz
--; //prepare next bit modulation
1913 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1914 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1915 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1916 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1917 SpinDelayUs(16*8); //16 cycles on (8us each)
1919 // now start writting
1920 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1921 if(((*fwd_write_ptr
++) & 1) == 1)
1922 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1924 //These timings work for 4469/4269/4305 (with the 55*8 above)
1925 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1926 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1927 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1928 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1929 SpinDelayUs(9*8); //16 cycles on (8us each)
1934 void EM4xLogin(uint32_t Password
) {
1936 uint8_t fwd_bit_count
;
1938 forward_ptr
= forwardLink_data
;
1939 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1940 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1942 SendForward(fwd_bit_count
);
1944 //Wait for command to complete
1949 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1951 uint8_t *dest
= BigBuf_get_addr();
1952 uint16_t bufferlength
= BigBuf_max_traceLen();
1955 // Clear destination buffer before sending the command 0x80 = average.
1956 memset(dest
, 0x80, bufferlength
);
1958 uint8_t fwd_bit_count
;
1960 //If password mode do login
1961 if (PwdMode
== 1) EM4xLogin(Pwd
);
1963 forward_ptr
= forwardLink_data
;
1964 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1965 fwd_bit_count
+= Prepare_Addr( Address
);
1967 // Connect the A/D to the peak-detected low-frequency path.
1968 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1969 // Now set up the SSC to get the ADC samples that are now streaming at us.
1972 SendForward(fwd_bit_count
);
1974 // Now do the acquisition
1977 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1978 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1980 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1981 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1983 if (i
>= bufferlength
) break;
1987 cmd_send(CMD_ACK
,0,0,0,0,0);
1988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1992 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1994 uint8_t fwd_bit_count
;
1996 //If password mode do login
1997 if (PwdMode
== 1) EM4xLogin(Pwd
);
1999 forward_ptr
= forwardLink_data
;
2000 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2001 fwd_bit_count
+= Prepare_Addr( Address
);
2002 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2004 SendForward(fwd_bit_count
);
2006 //Wait for write to complete
2008 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off