1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
24 #include "../include/hitag2.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void BufferClear(void)
47 memset(BigBuf
,0,sizeof(BigBuf
));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
51 void ToSendReset(void)
57 void ToSendStuffBit(int b
)
61 ToSend
[ToSendMax
] = 0;
66 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
71 if(ToSendMax
>= sizeof(ToSend
)) {
73 DbpString("ToSendStuffBit overflowed!");
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
81 void DbpString(char *str
)
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
88 void DbpIntegers(int x1
, int x2
, int x3
)
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
94 void Dbprintf(const char *fmt
, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string
[128];
100 kvsprintf(fmt
, output_string
, 10, ap
);
103 DbpString(output_string
);
106 // prints HEX & ASCII
107 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
120 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
123 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
125 Dbprintf("%*D",l
,d
," ");
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch
)
142 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
143 AT91C_BASE_ADC
->ADC_MR
=
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
149 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
150 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
152 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
157 int AvgAdc(int ch
) // was static - merlok
162 for(i
= 0; i
< 32; i
++) {
166 return (a
+ 15) >> 5;
169 void MeasureAntennaTuning(void)
171 uint8_t LF_Results
[256];
172 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
173 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
178 * Sweeps the useful LF range of the proxmark from
179 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
180 * read the voltage in the antenna, the result left
181 * in the buffer is a graph which should clearly show
182 * the resonating frequency of your LF antenna
183 * ( hopefully around 95 if it is tuned to 125kHz!)
186 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
188 for (i
=255; i
>=19; i
--) {
190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
192 // Vref = 3.3V, and a 10000:240 voltage divider on the input
193 // can measure voltages up to 137500 mV
194 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
195 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
196 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
198 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
199 if(LF_Results
[i
] > peak
) {
201 peak
= LF_Results
[i
];
207 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
218 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
219 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
225 void MeasureAntennaTuningHf(void)
227 int vHf
= 0; // in mV
229 DbpString("Measuring HF antenna, press button to exit");
232 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
233 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
240 Dbprintf("%d mV",vHf
);
241 if (BUTTON_PRESS()) break;
243 DbpString("cancelled");
247 void SimulateTagHfListen(void)
249 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
254 // We're using this mode just so that I can test it out; the simulated
255 // tag mode would work just as well and be simpler.
256 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
259 // We need to listen to the high-frequency, peak-detected path.
260 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
266 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
267 AT91C_BASE_SSC
->SSC_THR
= 0xff;
269 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
270 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
284 if(i
>= FREE_BUFFER_SIZE
) {
290 DbpString("simulate tag (now type bitsamples)");
293 void ReadMem(int addr
)
295 const uint8_t *data
= ((uint8_t *)addr
);
297 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
298 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
301 /* osimage version information is linked in */
302 extern struct version_information version_information
;
303 /* bootrom version information is pointed to from _bootphase1_version_pointer */
304 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
305 void SendVersion(void)
307 char temp
[512]; /* Limited data payload in USB packets */
308 DbpString("Prox/RFID mark3 RFID instrument");
310 /* Try to find the bootrom version information. Expect to find a pointer at
311 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
312 * pointer, then use it.
314 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
315 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
316 DbpString("bootrom version information appears invalid");
318 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
322 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
325 FpgaGatherVersion(temp
, sizeof(temp
));
328 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
332 // samy's sniff and repeat routine
335 DbpString("Stand-alone mode! No PC necessary.");
336 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
338 // 3 possible options? no just 2 for now
341 int high
[OPTS
], low
[OPTS
];
343 // Oooh pretty -- notify user we're in elite samy mode now
345 LED(LED_ORANGE
, 200);
347 LED(LED_ORANGE
, 200);
349 LED(LED_ORANGE
, 200);
351 LED(LED_ORANGE
, 200);
358 // Turn on selected LED
359 LED(selected
+ 1, 0);
366 // Was our button held down or pressed?
367 int button_pressed
= BUTTON_HELD(1000);
370 // Button was held for a second, begin recording
371 if (button_pressed
> 0 && cardRead
== 0)
374 LED(selected
+ 1, 0);
378 DbpString("Starting recording");
380 // wait for button to be released
381 while(BUTTON_PRESS())
384 /* need this delay to prevent catching some weird data */
387 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
388 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
391 LED(selected
+ 1, 0);
392 // Finished recording
394 // If we were previously playing, set playing off
395 // so next button push begins playing what we recorded
402 else if (button_pressed
> 0 && cardRead
== 1)
405 LED(selected
+ 1, 0);
409 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
411 // wait for button to be released
412 while(BUTTON_PRESS())
415 /* need this delay to prevent catching some weird data */
418 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
419 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
422 LED(selected
+ 1, 0);
423 // Finished recording
425 // If we were previously playing, set playing off
426 // so next button push begins playing what we recorded
433 // Change where to record (or begin playing)
434 else if (button_pressed
)
436 // Next option if we were previously playing
438 selected
= (selected
+ 1) % OPTS
;
442 LED(selected
+ 1, 0);
444 // Begin transmitting
448 DbpString("Playing");
449 // wait for button to be released
450 while(BUTTON_PRESS())
452 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
453 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
454 DbpString("Done playing");
455 if (BUTTON_HELD(1000) > 0)
457 DbpString("Exiting");
462 /* We pressed a button so ignore it here with a delay */
465 // when done, we're done playing, move to next option
466 selected
= (selected
+ 1) % OPTS
;
469 LED(selected
+ 1, 0);
472 while(BUTTON_PRESS())
481 Listen and detect an external reader. Determine the best location
485 Inside the ListenReaderField() function, there is two mode.
486 By default, when you call the function, you will enter mode 1.
487 If you press the PM3 button one time, you will enter mode 2.
488 If you press the PM3 button a second time, you will exit the function.
490 DESCRIPTION OF MODE 1:
491 This mode just listens for an external reader field and lights up green
492 for HF and/or red for LF. This is the original mode of the detectreader
495 DESCRIPTION OF MODE 2:
496 This mode will visually represent, using the LEDs, the actual strength of the
497 current compared to the maximum current detected. Basically, once you know
498 what kind of external reader is present, it will help you spot the best location to place
499 your antenna. You will probably not get some good results if there is a LF and a HF reader
500 at the same place! :-)
504 static const char LIGHT_SCHEME
[] = {
505 0x0, /* ---- | No field detected */
506 0x1, /* X--- | 14% of maximum current detected */
507 0x2, /* -X-- | 29% of maximum current detected */
508 0x4, /* --X- | 43% of maximum current detected */
509 0x8, /* ---X | 57% of maximum current detected */
510 0xC, /* --XX | 71% of maximum current detected */
511 0xE, /* -XXX | 86% of maximum current detected */
512 0xF, /* XXXX | 100% of maximum current detected */
514 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
516 void ListenReaderField(int limit
)
518 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
519 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
520 int mode
=1, display_val
, display_max
, i
;
527 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
529 if(limit
!= HF_ONLY
) {
530 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
534 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
536 if (limit
!= LF_ONLY
) {
537 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
542 if (BUTTON_PRESS()) {
547 DbpString("Signal Strength Mode");
551 DbpString("Stopped");
559 if (limit
!= HF_ONLY
) {
561 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
566 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
567 // see if there's a significant change
568 if(abs(lf_av
- lf_av_new
) > 10) {
569 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
577 if (limit
!= LF_ONLY
) {
579 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
584 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
585 // see if there's a significant change
586 if(abs(hf_av
- hf_av_new
) > 10) {
587 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
596 if (limit
== LF_ONLY
) {
598 display_max
= lf_max
;
599 } else if (limit
== HF_ONLY
) {
601 display_max
= hf_max
;
602 } else { /* Pick one at random */
603 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
605 display_max
= hf_max
;
608 display_max
= lf_max
;
611 for (i
=0; i
<LIGHT_LEN
; i
++) {
612 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
613 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
614 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
615 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
616 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
624 void UsbPacketReceived(uint8_t *packet
, int len
)
626 UsbCommand
*c
= (UsbCommand
*)packet
;
628 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
632 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
633 AcquireRawAdcSamples125k(c
->arg
[0]);
634 cmd_send(CMD_ACK
,0,0,0,0,0);
636 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
637 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
639 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
640 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
641 cmd_send(CMD_ACK
,0,0,0,0,0);
643 case CMD_HID_DEMOD_FSK
:
644 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
646 case CMD_HID_SIM_TAG
:
647 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
649 case CMD_HID_CLONE_TAG
:
650 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
652 case CMD_IO_DEMOD_FSK
:
653 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
655 case CMD_IO_CLONE_TAG
:
656 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
658 case CMD_EM410X_DEMOD
:
659 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
661 case CMD_EM410X_WRITE_TAG
:
662 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
664 case CMD_READ_TI_TYPE
:
667 case CMD_WRITE_TI_TYPE
:
668 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
670 case CMD_SIMULATE_TAG_125K
:
671 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
672 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
674 case CMD_LF_SIMULATE_BIDIR
:
675 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
677 case CMD_INDALA_CLONE_TAG
:
678 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
680 case CMD_INDALA_CLONE_TAG_L
:
681 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
683 case CMD_T55XX_READ_BLOCK
:
684 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
686 case CMD_T55XX_WRITE_BLOCK
:
687 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
689 case CMD_T55XX_READ_TRACE
:
692 case CMD_PCF7931_READ
:
694 cmd_send(CMD_ACK
,0,0,0,0,0);
696 case CMD_EM4X_READ_WORD
:
697 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
699 case CMD_EM4X_WRITE_WORD
:
700 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
705 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
706 SnoopHitag(c
->arg
[0]);
708 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
709 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
711 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
712 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
718 AcquireRawAdcSamplesIso15693();
720 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
721 RecordRawAdcSamplesIso15693();
724 case CMD_ISO_15693_COMMAND
:
725 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
728 case CMD_ISO_15693_FIND_AFI
:
729 BruteforceIso15693Afi(c
->arg
[0]);
732 case CMD_ISO_15693_DEBUG
:
733 SetDebugIso15693(c
->arg
[0]);
736 case CMD_READER_ISO_15693
:
737 ReaderIso15693(c
->arg
[0]);
739 case CMD_SIMTAG_ISO_15693
:
740 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
745 case CMD_SIMULATE_TAG_LEGIC_RF
:
746 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
749 case CMD_WRITER_LEGIC_RF
:
750 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
753 case CMD_READER_LEGIC_RF
:
754 LegicRfReader(c
->arg
[0], c
->arg
[1]);
758 #ifdef WITH_ISO14443b
759 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
760 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
762 case CMD_READ_SRI512_TAG
:
763 ReadSTMemoryIso14443(0x0F);
765 case CMD_READ_SRIX4K_TAG
:
766 ReadSTMemoryIso14443(0x7F);
768 case CMD_SNOOP_ISO_14443
:
771 case CMD_SIMULATE_TAG_ISO_14443
:
772 SimulateIso14443Tag();
774 case CMD_ISO_14443B_COMMAND
:
775 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
779 #ifdef WITH_ISO14443a
780 case CMD_SNOOP_ISO_14443a
:
781 SnoopIso14443a(c
->arg
[0]);
783 case CMD_READER_ISO_14443a
:
786 case CMD_SIMULATE_TAG_ISO_14443a
:
787 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
790 case CMD_EPA_PACE_COLLECT_NONCE
:
791 EPA_PACE_Collect_Nonce(c
);
798 case CMD_READER_MIFARE
:
799 ReaderMifare(c
->arg
[0]);
801 case CMD_MIFARE_READBL
:
802 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
804 case CMD_MIFAREU_READBL
:
805 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
807 case CMD_MIFAREUC_AUTH1
:
808 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
810 case CMD_MIFAREUC_AUTH2
:
811 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
813 case CMD_MIFAREU_READCARD
:
814 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
816 case CMD_MIFAREUC_READCARD
:
817 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
819 case CMD_MIFARE_READSC
:
820 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
822 case CMD_MIFARE_WRITEBL
:
823 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
825 case CMD_MIFAREU_WRITEBL_COMPAT
:
826 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
828 case CMD_MIFAREU_WRITEBL
:
829 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
831 case CMD_MIFARE_NESTED
:
832 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
834 case CMD_MIFARE_CHKKEYS
:
835 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
837 case CMD_SIMULATE_MIFARE_CARD
:
838 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
842 case CMD_MIFARE_SET_DBGMODE
:
843 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
845 case CMD_MIFARE_EML_MEMCLR
:
846 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
848 case CMD_MIFARE_EML_MEMSET
:
849 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
851 case CMD_MIFARE_EML_MEMGET
:
852 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
854 case CMD_MIFARE_EML_CARDLOAD
:
855 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
858 // Work with "magic Chinese" card
859 case CMD_MIFARE_CSETBLOCK
:
860 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
862 case CMD_MIFARE_CGETBLOCK
:
863 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
865 case CMD_MIFARE_CIDENT
:
870 case CMD_MIFARE_SNIFFER
:
871 SniffMifare(c
->arg
[0]);
875 case CMD_MIFARE_DESFIRE_READBL
:
877 case CMD_MIFARE_DESFIRE_WRITEBL
:
879 case CMD_MIFARE_DESFIRE_AUTH1
:
880 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
882 case CMD_MIFARE_DESFIRE_AUTH2
:
883 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
885 // case CMD_MIFARE_DES_READER:
886 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
888 case CMD_MIFARE_DESFIRE_INFO
:
889 MifareDesfireGetInformation();
891 case CMD_MIFARE_DESFIRE
:
892 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
898 // Makes use of ISO14443a FPGA Firmware
899 case CMD_SNOOP_ICLASS
:
902 case CMD_SIMULATE_TAG_ICLASS
:
903 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
905 case CMD_READER_ICLASS
:
906 ReaderIClass(c
->arg
[0]);
908 case CMD_READER_ICLASS_REPLAY
:
909 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
913 case CMD_SIMULATE_TAG_HF_LISTEN
:
914 SimulateTagHfListen();
921 case CMD_MEASURE_ANTENNA_TUNING
:
922 MeasureAntennaTuning();
925 case CMD_MEASURE_ANTENNA_TUNING_HF
:
926 MeasureAntennaTuningHf();
929 case CMD_LISTEN_READER_FIELD
:
930 ListenReaderField(c
->arg
[0]);
933 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
936 LED_D_OFF(); // LED D indicates field ON or OFF
939 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
942 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
943 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
944 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
946 // Trigger a finish downloading signal with an ACK frame
947 cmd_send(CMD_ACK
,0,0,0,0,0);
951 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
952 uint8_t *b
= (uint8_t *)BigBuf
;
953 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
954 cmd_send(CMD_ACK
,0,0,0,0,0);
961 case CMD_SET_LF_DIVISOR
:
962 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
963 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
966 case CMD_SET_ADC_MUX
:
968 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
969 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
970 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
971 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
987 case CMD_SETUP_WRITE
:
988 case CMD_FINISH_WRITE
:
989 case CMD_HARDWARE_RESET
:
993 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
995 // We're going to reset, and the bootrom will take control.
999 case CMD_START_FLASH
:
1000 if(common_area
.flags
.bootrom_present
) {
1001 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1004 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1008 case CMD_DEVICE_INFO
: {
1009 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1010 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1011 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1015 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1020 void __attribute__((noreturn
)) AppMain(void)
1024 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1025 /* Initialize common area */
1026 memset(&common_area
, 0, sizeof(common_area
));
1027 common_area
.magic
= COMMON_AREA_MAGIC
;
1028 common_area
.version
= 1;
1030 common_area
.flags
.osimage_present
= 1;
1040 // The FPGA gets its clock from us from PCK0 output, so set that up.
1041 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1042 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1043 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1044 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1045 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1046 AT91C_PMC_PRES_CLK_4
;
1047 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1050 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1052 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1054 // Load the FPGA image, which we have stored in our flash.
1055 // (the HF version by default)
1056 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1064 byte_t rx
[sizeof(UsbCommand
)];
1069 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1071 UsbPacketReceived(rx
,rx_len
);
1077 if (BUTTON_HELD(1000) > 0)