1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "../include/proxmark3.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
24 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum
= 0;
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay
;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 static uint32_t NextTransferTime
;
107 static uint32_t LastTimeProxToAirStart
;
108 static uint32_t LastProxToAirDuration
;
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
127 const uint8_t OddByteParity
[256] = {
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
146 void iso14a_set_trigger(bool enable
) {
150 void iso14a_clear_trace() {
151 memset(trace
, 0x44, TRACE_SIZE
);
155 void iso14a_set_tracing(bool enable
) {
159 void iso14a_set_timeout(uint32_t timeout
) {
160 iso14a_timeout
= timeout
;
163 //-----------------------------------------------------------------------------
164 // Generate the parity value for a byte sequence
166 //-----------------------------------------------------------------------------
167 byte_t
oddparity (const byte_t bt
)
169 return OddByteParity
[bt
];
172 void GetParity(const uint8_t * pbtCmd
, uint16_t iLen
, uint8_t *par
)
174 uint16_t paritybit_cnt
= 0;
175 uint16_t paritybyte_cnt
= 0;
176 uint8_t parityBits
= 0;
178 for (uint16_t i
= 0; i
< iLen
; i
++) {
179 // Generate the parity bits
180 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
181 if (paritybit_cnt
== 7) {
182 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
183 parityBits
= 0; // and advance to next Parity Byte
191 // save remaining parity bits
192 par
[paritybyte_cnt
] = parityBits
;
196 void AppendCrc14443a(uint8_t* data
, int len
)
198 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
201 // The function LogTrace() is also used by the iClass implementation in iClass.c
202 bool RAMFUNC
LogTrace(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
)
204 if (!tracing
) return FALSE
;
206 uint16_t num_paritybytes
= (iLen
-1)/8 + 1; // number of valid paritybytes in *parity
207 uint16_t duration
= timestamp_end
- timestamp_start
;
209 // Return when trace is full
210 if (traceLen
+ sizeof(iLen
) + sizeof(timestamp_start
) + sizeof(duration
) + num_paritybytes
+ iLen
>= TRACE_SIZE
) {
211 tracing
= FALSE
; // don't trace any more
216 // 32 bits timestamp (little endian)
217 // 16 bits duration (little endian)
218 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
220 // x Bytes parity (one byte per 8 bytes data)
223 trace
[traceLen
++] = ((timestamp_start
>> 0) & 0xff);
224 trace
[traceLen
++] = ((timestamp_start
>> 8) & 0xff);
225 trace
[traceLen
++] = ((timestamp_start
>> 16) & 0xff);
226 trace
[traceLen
++] = ((timestamp_start
>> 24) & 0xff);
229 trace
[traceLen
++] = ((duration
>> 0) & 0xff);
230 trace
[traceLen
++] = ((duration
>> 8) & 0xff);
233 trace
[traceLen
++] = ((iLen
>> 0) & 0xff);
234 trace
[traceLen
++] = ((iLen
>> 8) & 0xff);
238 trace
[traceLen
- 1] |= 0x80;
242 if (btBytes
!= NULL
&& iLen
!= 0) {
243 memcpy(trace
+ traceLen
, btBytes
, iLen
);
248 if (parity
!= NULL
&& iLen
!= 0) {
249 memcpy(trace
+ traceLen
, parity
, num_paritybytes
);
251 traceLen
+= num_paritybytes
;
256 //=============================================================================
257 // ISO 14443 Type A - Miller decoder
258 //=============================================================================
260 // This decoder is used when the PM3 acts as a tag.
261 // The reader will generate "pauses" by temporarily switching of the field.
262 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
263 // The FPGA does a comparison with a threshold and would deliver e.g.:
264 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
265 // The Miller decoder needs to identify the following sequences:
266 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
267 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
268 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
269 // Note 1: the bitstream may start at any time. We therefore need to sync.
270 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
271 //-----------------------------------------------------------------------------
274 // Lookup-Table to decide if 4 raw bits are a modulation.
275 // We accept two or three consecutive "0" in any position with the rest "1"
276 const bool Mod_Miller_LUT
[] = {
277 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
278 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
280 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
281 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
285 Uart
.state
= STATE_UNSYNCD
;
287 Uart
.len
= 0; // number of decoded data bytes
288 Uart
.parityLen
= 0; // number of decoded parity bytes
289 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
290 Uart
.parityBits
= 0; // holds 8 parity bits
291 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
297 void UartInit(uint8_t *data
, uint8_t *parity
)
300 Uart
.parity
= parity
;
304 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
305 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
308 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
310 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
312 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
313 if (Uart
.twoBits
== 0xffff) {
319 Uart
.syncBit
= 0xFFFF; // not set
320 // look for 00xx1111 (the start bit)
321 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
322 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
323 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
324 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
325 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
326 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
327 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
328 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
329 if (Uart
.syncBit
!= 0xFFFF) {
330 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
331 Uart
.startTime
-= Uart
.syncBit
;
332 Uart
.endTime
= Uart
.startTime
;
333 Uart
.state
= STATE_START_OF_COMMUNICATION
;
339 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
340 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
343 } else { // Modulation in first half = Sequence Z = logic "0"
344 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
349 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
350 Uart
.state
= STATE_MILLER_Z
;
351 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
352 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
353 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
354 Uart
.parityBits
<<= 1; // make room for the parity bit
355 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
358 if((Uart
.len
& 0x0007) == 0) { // every 8 data bytes
359 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
366 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
368 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
369 Uart
.state
= STATE_MILLER_X
;
370 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
371 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
372 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
373 Uart
.parityBits
<<= 1; // make room for the new parity bit
374 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
377 if ((Uart
.len
& 0x0007) == 0) { // every 8 data bytes
378 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
382 } else { // no modulation in both halves - Sequence Y
383 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
384 Uart
.state
= STATE_UNSYNCD
;
385 Uart
.bitCount
--; // last "0" was part of EOC sequence
386 Uart
.shiftReg
<<= 1; // drop it
387 if(Uart
.bitCount
> 0) { // if we decoded some bits
388 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
389 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
390 Uart
.parityBits
<<= 1; // add a (void) parity bit
391 Uart
.parityBits
<<= (8 - (Uart
.len
& 0x0007)); // left align parity bits
392 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
394 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
395 Uart
.parityBits
<<= (8 - (Uart
.len
& 0x0007)); // left align remaining parity bits
396 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
399 return TRUE
; // we are finished with decoding the raw data sequence
401 UartReset(); // Nothing receiver - start over
404 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
407 } else { // a logic "0"
409 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
410 Uart
.state
= STATE_MILLER_Y
;
411 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
412 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
413 Uart
.parityBits
<<= 1; // make room for the parity bit
414 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
417 if ((Uart
.len
& 0x0007) == 0) { // every 8 data bytes
418 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
428 return FALSE
; // not finished yet, need more data
433 //=============================================================================
434 // ISO 14443 Type A - Manchester decoder
435 //=============================================================================
437 // This decoder is used when the PM3 acts as a reader.
438 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
439 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
440 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
441 // The Manchester decoder needs to identify the following sequences:
442 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
443 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
444 // 8 ticks unmodulated: Sequence F = end of communication
445 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
446 // Note 1: the bitstream may start at any time. We therefore need to sync.
447 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
450 // Lookup-Table to decide if 4 raw bits are a modulation.
451 // We accept three or four "1" in any position
452 const bool Mod_Manchester_LUT
[] = {
453 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
454 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
457 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
458 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
463 Demod
.state
= DEMOD_UNSYNCD
;
464 Demod
.len
= 0; // number of decoded data bytes
466 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
467 Demod
.parityBits
= 0; //
468 Demod
.collisionPos
= 0; // Position of collision bit
469 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
475 void DemodInit(uint8_t *data
, uint8_t *parity
)
478 Demod
.parity
= parity
;
482 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
483 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
486 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
488 if (Demod
.state
== DEMOD_UNSYNCD
) {
490 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
491 if (Demod
.twoBits
== 0x0000) {
497 Demod
.syncBit
= 0xFFFF; // not set
498 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
499 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
500 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
501 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
502 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
503 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
504 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
505 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
506 if (Demod
.syncBit
!= 0xFFFF) {
507 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
508 Demod
.startTime
-= Demod
.syncBit
;
509 Demod
.bitCount
= offset
; // number of decoded data bits
510 Demod
.state
= DEMOD_MANCHESTER_DATA
;
516 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
517 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
518 if (!Demod
.collisionPos
) {
519 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
521 } // modulation in first half only - Sequence D = 1
523 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
524 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
525 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
526 Demod
.parityBits
<<= 1; // make room for the parity bit
527 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
530 if((Demod
.len
& 0x0007) == 0) { // every 8 data bytes
531 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
532 Demod
.parityBits
= 0;
535 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
536 } else { // no modulation in first half
537 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
539 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
540 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
541 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
542 Demod
.parityBits
<<= 1; // make room for the new parity bit
543 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
546 if ((Demod
.len
& 0x0007) == 0) { // every 8 data bytes
547 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
548 Demod
.parityBits
= 0;
551 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
552 } else { // no modulation in both halves - End of communication
553 if(Demod
.bitCount
> 0) { // there are some remaining data bits
554 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
555 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
556 Demod
.parityBits
<<= 1; // add a (void) parity bit
557 Demod
.parityBits
<<= (8 - (Demod
.len
& 0x0007)); // left align remaining parity bits
558 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
560 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
561 Demod
.parityBits
<<= (8 - (Demod
.len
& 0x0007)); // left align remaining parity bits
562 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
565 return TRUE
; // we are finished with decoding the raw data sequence
566 } else { // nothing received. Start over
574 return FALSE
; // not finished yet, need more data
577 //=============================================================================
578 // Finally, a `sniffer' for ISO 14443 Type A
579 // Both sides of communication!
580 //=============================================================================
582 //-----------------------------------------------------------------------------
583 // Record the sequence of commands sent by the reader to the tag, with
584 // triggering so that we start recording at the point that the tag is moved
586 //-----------------------------------------------------------------------------
587 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
589 // bit 0 - trigger from first card answer
590 // bit 1 - trigger from first reader 7-bit request
594 iso14a_clear_trace();
595 iso14a_set_tracing(TRUE
);
597 // We won't start recording the frames that we acquire until we trigger;
598 // a good trigger condition to get started is probably when we see a
599 // response from the tag.
600 // triggered == FALSE -- to wait first for card
601 bool triggered
= !(param
& 0x03);
603 // The command (reader -> tag) that we're receiving.
604 // The length of a received command will in most cases be no more than 18 bytes.
605 // So 32 should be enough!
606 uint8_t *receivedCmd
= ((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
;
607 uint8_t *receivedCmdPar
= ((uint8_t *)BigBuf
) + RECV_CMD_PAR_OFFSET
;
609 // The response (tag -> reader) that we're receiving.
610 uint8_t *receivedResponse
= ((uint8_t *)BigBuf
) + RECV_RESP_OFFSET
;
611 uint8_t *receivedResponsePar
= ((uint8_t *)BigBuf
) + RECV_RESP_PAR_OFFSET
;
613 // As we receive stuff, we copy it from receivedCmd or receivedResponse
614 // into trace, along with its length and other annotations.
615 //uint8_t *trace = (uint8_t *)BigBuf;
617 // The DMA buffer, used to stream samples from the FPGA
618 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
619 uint8_t *data
= dmaBuf
;
620 uint8_t previous_data
= 0;
623 bool TagIsActive
= FALSE
;
624 bool ReaderIsActive
= FALSE
;
626 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
628 // Set up the demodulator for tag -> reader responses.
629 DemodInit(receivedResponse
, receivedResponsePar
);
631 // Set up the demodulator for the reader -> tag commands
632 UartInit(receivedCmd
, receivedCmdPar
);
634 // Setup and start DMA.
635 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
637 // And now we loop, receiving samples.
638 for(uint32_t rsamples
= 0; TRUE
; ) {
641 DbpString("cancelled by button");
648 int register readBufDataP
= data
- dmaBuf
;
649 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
650 if (readBufDataP
<= dmaBufDataP
){
651 dataLen
= dmaBufDataP
- readBufDataP
;
653 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
655 // test for length of buffer
656 if(dataLen
> maxDataLen
) {
657 maxDataLen
= dataLen
;
659 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
663 if(dataLen
< 1) continue;
665 // primary buffer was stopped( <-- we lost data!
666 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
667 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
668 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
669 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
671 // secondary buffer sets as primary, secondary buffer was stopped
672 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
673 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
674 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
679 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
681 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
682 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
683 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
686 // check - if there is a short 7bit request from reader
687 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
690 if (!LogTrace(receivedCmd
,
692 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
693 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
697 /* And ready to receive another command. */
699 /* And also reset the demod code, which might have been */
700 /* false-triggered by the commands from the reader. */
704 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
707 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
708 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
709 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
712 if (!LogTrace(receivedResponse
,
714 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
715 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
719 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
721 // And ready to receive another response.
725 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
729 previous_data
= *data
;
732 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
737 DbpString("COMMAND FINISHED");
740 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
741 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
745 //-----------------------------------------------------------------------------
746 // Prepare tag messages
747 //-----------------------------------------------------------------------------
748 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
752 // Correction bit, might be removed when not needed
757 ToSendStuffBit(1); // 1
763 ToSend
[++ToSendMax
] = SEC_D
;
764 LastProxToAirDuration
= 8 * ToSendMax
- 4;
766 for( uint16_t i
= 0; i
< len
; i
++) {
770 for(uint16_t j
= 0; j
< 8; j
++) {
772 ToSend
[++ToSendMax
] = SEC_D
;
774 ToSend
[++ToSendMax
] = SEC_E
;
779 // Get the parity bit
780 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
781 ToSend
[++ToSendMax
] = SEC_D
;
782 LastProxToAirDuration
= 8 * ToSendMax
- 4;
784 ToSend
[++ToSendMax
] = SEC_E
;
785 LastProxToAirDuration
= 8 * ToSendMax
;
790 ToSend
[++ToSendMax
] = SEC_F
;
792 // Convert from last byte pos to length
796 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
798 uint8_t par
[MAX_PARITY_SIZE
];
800 GetParity(cmd
, len
, par
);
801 CodeIso14443aAsTagPar(cmd
, len
, par
);
805 static void Code4bitAnswerAsTag(uint8_t cmd
)
811 // Correction bit, might be removed when not needed
816 ToSendStuffBit(1); // 1
822 ToSend
[++ToSendMax
] = SEC_D
;
825 for(i
= 0; i
< 4; i
++) {
827 ToSend
[++ToSendMax
] = SEC_D
;
828 LastProxToAirDuration
= 8 * ToSendMax
- 4;
830 ToSend
[++ToSendMax
] = SEC_E
;
831 LastProxToAirDuration
= 8 * ToSendMax
;
837 ToSend
[++ToSendMax
] = SEC_F
;
839 // Convert from last byte pos to length
843 //-----------------------------------------------------------------------------
844 // Wait for commands from reader
845 // Stop when button is pressed
846 // Or return TRUE when command is captured
847 //-----------------------------------------------------------------------------
848 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
850 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
851 // only, since we are receiving, not transmitting).
852 // Signal field is off with the appropriate LED
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
856 // Now run a `software UART' on the stream of incoming samples.
857 UartInit(received
, parity
);
860 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
865 if(BUTTON_PRESS()) return FALSE
;
867 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
868 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
869 if(MillerDecoding(b
, 0)) {
877 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
878 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
879 int EmSend4bit(uint8_t resp
);
880 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
881 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
882 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
883 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
884 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
885 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
887 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
894 uint32_t ProxToAirDuration
;
895 } tag_response_info_t
;
897 void reset_free_buffer() {
898 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
901 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
902 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
903 // This will need the following byte array for a modulation sequence
904 // 144 data bits (18 * 8)
907 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
908 // 1 just for the case
910 // 166 bytes, since every bit that needs to be send costs us a byte
913 // Prepare the tag modulation bits from the message
914 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
916 // Make sure we do not exceed the free buffer space
917 if (ToSendMax
> max_buffer_size
) {
918 Dbprintf("Out of memory, when modulating bits for tag answer:");
919 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
923 // Copy the byte array, used for this modulation to the buffer position
924 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
926 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
927 response_info
->modulation_n
= ToSendMax
;
928 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
933 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
934 // Retrieve and store the current buffer index
935 response_info
->modulation
= free_buffer_pointer
;
937 // Determine the maximum size we can use from our buffer
938 size_t max_buffer_size
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ FREE_BUFFER_SIZE
) - free_buffer_pointer
;
940 // Forward the prepare tag modulation function to the inner function
941 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
942 // Update the free buffer offset
943 free_buffer_pointer
+= ToSendMax
;
950 //-----------------------------------------------------------------------------
951 // Main loop of simulated tag: receive commands from reader, decide what
952 // response to send, and send it.
953 //-----------------------------------------------------------------------------
954 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
956 // Enable and clear the trace
957 iso14a_clear_trace();
958 iso14a_set_tracing(TRUE
);
962 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
963 uint8_t response1
[2];
966 case 1: { // MIFARE Classic
967 // Says: I am Mifare 1k - original line
972 case 2: { // MIFARE Ultralight
973 // Says: I am a stupid memory tag, no crypto
978 case 3: { // MIFARE DESFire
979 // Says: I am a DESFire tag, ph33r me
984 case 4: { // ISO/IEC 14443-4
985 // Says: I am a javacard (JCOP)
990 case 5: { // MIFARE TNP3XXX
997 Dbprintf("Error: unkown tagtype (%d)",tagType
);
1002 // The second response contains the (mandatory) first 24 bits of the UID
1003 uint8_t response2
[5];
1005 // Check if the uid uses the (optional) part
1006 uint8_t response2a
[5];
1008 response2
[0] = 0x88;
1009 num_to_bytes(uid_1st
,3,response2
+1);
1010 num_to_bytes(uid_2nd
,4,response2a
);
1011 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1013 // Configure the ATQA and SAK accordingly
1014 response1
[0] |= 0x40;
1017 num_to_bytes(uid_1st
,4,response2
);
1018 // Configure the ATQA and SAK accordingly
1019 response1
[0] &= 0xBF;
1023 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1024 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1026 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1027 uint8_t response3
[3];
1029 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1031 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1032 uint8_t response3a
[3];
1033 response3a
[0] = sak
& 0xFB;
1034 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1036 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1037 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1038 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1039 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1040 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1041 // TC(1) = 0x02: CID supported, NAD not supported
1042 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1044 #define TAG_RESPONSE_COUNT 7
1045 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1046 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1047 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1048 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1049 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1050 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1051 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1052 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1055 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1056 // Such a response is less time critical, so we can prepare them on the fly
1057 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1058 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1059 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1060 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1061 tag_response_info_t dynamic_response_info
= {
1062 .response
= dynamic_response_buffer
,
1064 .modulation
= dynamic_modulation_buffer
,
1068 // Reset the offset pointer of the free buffer
1069 reset_free_buffer();
1071 // Prepare the responses of the anticollision phase
1072 // there will be not enough time to do this at the moment the reader sends it REQA
1073 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1074 prepare_allocated_tag_modulation(&responses
[i
]);
1079 // To control where we are in the protocol
1083 // Just to allow some checks
1088 // We need to listen to the high-frequency, peak-detected path.
1089 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1091 // buffers used on software Uart:
1092 uint8_t *receivedCmd
= ((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
;
1093 uint8_t *receivedCmdPar
= ((uint8_t *)BigBuf
) + RECV_CMD_PAR_OFFSET
;
1096 tag_response_info_t
* p_response
;
1100 // Clean receive command buffer
1102 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1103 DbpString("Button press");
1109 // Okay, look at the command now.
1111 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1112 p_response
= &responses
[0]; order
= 1;
1113 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1114 p_response
= &responses
[0]; order
= 6;
1115 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1116 p_response
= &responses
[1]; order
= 2;
1117 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1118 p_response
= &responses
[2]; order
= 20;
1119 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1120 p_response
= &responses
[3]; order
= 3;
1121 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1122 p_response
= &responses
[4]; order
= 30;
1123 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1124 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1125 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1126 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1128 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1131 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1134 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1135 p_response
= &responses
[5]; order
= 7;
1136 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1137 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1138 EmSend4bit(CARD_NACK_NA
);
1141 p_response
= &responses
[6]; order
= 70;
1143 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1145 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1147 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1148 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1149 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1151 // Check for ISO 14443A-4 compliant commands, look at left nibble
1152 switch (receivedCmd
[0]) {
1155 case 0x0A: { // IBlock (command)
1156 dynamic_response_info
.response
[0] = receivedCmd
[0];
1157 dynamic_response_info
.response
[1] = 0x00;
1158 dynamic_response_info
.response
[2] = 0x90;
1159 dynamic_response_info
.response
[3] = 0x00;
1160 dynamic_response_info
.response_n
= 4;
1164 case 0x1B: { // Chaining command
1165 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1166 dynamic_response_info
.response_n
= 2;
1171 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1172 dynamic_response_info
.response_n
= 2;
1176 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1177 dynamic_response_info
.response_n
= 2;
1181 case 0xC2: { // Readers sends deselect command
1182 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1183 dynamic_response_info
.response_n
= 2;
1187 // Never seen this command before
1189 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1191 Dbprintf("Received unknown command (len=%d):",len
);
1192 Dbhexdump(len
,receivedCmd
,false);
1194 dynamic_response_info
.response_n
= 0;
1198 if (dynamic_response_info
.response_n
> 0) {
1199 // Copy the CID from the reader query
1200 dynamic_response_info
.response
[1] = receivedCmd
[1];
1202 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1203 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1204 dynamic_response_info
.response_n
+= 2;
1206 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1207 Dbprintf("Error preparing tag response");
1209 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1213 p_response
= &dynamic_response_info
;
1217 // Count number of wakeups received after a halt
1218 if(order
== 6 && lastorder
== 5) { happened
++; }
1220 // Count number of other messages after a halt
1221 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1223 if(cmdsRecvd
> 999) {
1224 DbpString("1000 commands later...");
1229 if (p_response
!= NULL
) {
1230 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1231 // do the tracing for the previous reader request and this tag answer:
1232 uint8_t par
[MAX_PARITY_SIZE
];
1233 GetParity(p_response
->response
, p_response
->response_n
, par
);
1235 EmLogTrace(Uart
.output
,
1237 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1238 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1240 p_response
->response
,
1241 p_response
->response_n
,
1242 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1243 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1248 Dbprintf("Trace Full. Simulation stopped.");
1253 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1258 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1259 // of bits specified in the delay parameter.
1260 void PrepareDelayedTransfer(uint16_t delay
)
1262 uint8_t bitmask
= 0;
1263 uint8_t bits_to_shift
= 0;
1264 uint8_t bits_shifted
= 0;
1268 for (uint16_t i
= 0; i
< delay
; i
++) {
1269 bitmask
|= (0x01 << i
);
1271 ToSend
[ToSendMax
++] = 0x00;
1272 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1273 bits_to_shift
= ToSend
[i
] & bitmask
;
1274 ToSend
[i
] = ToSend
[i
] >> delay
;
1275 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1276 bits_shifted
= bits_to_shift
;
1282 //-------------------------------------------------------------------------------------
1283 // Transmit the command (to the tag) that was placed in ToSend[].
1284 // Parameter timing:
1285 // if NULL: transfer at next possible time, taking into account
1286 // request guard time and frame delay time
1287 // if == 0: transfer immediately and return time of transfer
1288 // if != 0: delay transfer until time specified
1289 //-------------------------------------------------------------------------------------
1290 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1293 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1295 uint32_t ThisTransferTime
= 0;
1298 if(*timing
== 0) { // Measure time
1299 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1301 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1303 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1304 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1305 LastTimeProxToAirStart
= *timing
;
1307 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1308 while(GetCountSspClk() < ThisTransferTime
);
1309 LastTimeProxToAirStart
= ThisTransferTime
;
1313 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1317 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1318 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1326 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1330 //-----------------------------------------------------------------------------
1331 // Prepare reader command (in bits, support short frames) to send to FPGA
1332 //-----------------------------------------------------------------------------
1333 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, uint16_t bits
, const uint8_t *parity
)
1341 // Start of Communication (Seq. Z)
1342 ToSend
[++ToSendMax
] = SEC_Z
;
1343 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1346 size_t bytecount
= nbytes(bits
);
1347 // Generate send structure for the data bits
1348 for (i
= 0; i
< bytecount
; i
++) {
1349 // Get the current byte to send
1351 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1353 for (j
= 0; j
< bitsleft
; j
++) {
1356 ToSend
[++ToSendMax
] = SEC_X
;
1357 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1362 ToSend
[++ToSendMax
] = SEC_Z
;
1363 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1366 ToSend
[++ToSendMax
] = SEC_Y
;
1373 // Only transmit parity bit if we transmitted a complete byte
1375 // Get the parity bit
1376 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1378 ToSend
[++ToSendMax
] = SEC_X
;
1379 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1384 ToSend
[++ToSendMax
] = SEC_Z
;
1385 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1388 ToSend
[++ToSendMax
] = SEC_Y
;
1395 // End of Communication: Logic 0 followed by Sequence Y
1398 ToSend
[++ToSendMax
] = SEC_Z
;
1399 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1402 ToSend
[++ToSendMax
] = SEC_Y
;
1405 ToSend
[++ToSendMax
] = SEC_Y
;
1407 // Convert to length of command:
1411 //-----------------------------------------------------------------------------
1412 // Prepare reader command to send to FPGA
1413 //-----------------------------------------------------------------------------
1414 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, uint16_t len
, const uint8_t *parity
)
1416 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1419 //-----------------------------------------------------------------------------
1420 // Wait for commands from reader
1421 // Stop when button is pressed (return 1) or field was gone (return 2)
1422 // Or return 0 when command is captured
1423 //-----------------------------------------------------------------------------
1424 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1428 uint32_t timer
= 0, vtime
= 0;
1432 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1433 // only, since we are receiving, not transmitting).
1434 // Signal field is off with the appropriate LED
1436 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1438 // Set ADC to read field strength
1439 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1440 AT91C_BASE_ADC
->ADC_MR
=
1441 ADC_MODE_PRESCALE(32) |
1442 ADC_MODE_STARTUP_TIME(16) |
1443 ADC_MODE_SAMPLE_HOLD_TIME(8);
1444 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1446 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1448 // Now run a 'software UART' on the stream of incoming samples.
1449 UartInit(received
, parity
);
1452 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1457 if (BUTTON_PRESS()) return 1;
1459 // test if the field exists
1460 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1462 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1463 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1464 if (analogCnt
>= 32) {
1465 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1466 vtime
= GetTickCount();
1467 if (!timer
) timer
= vtime
;
1468 // 50ms no field --> card to idle state
1469 if (vtime
- timer
> 50) return 2;
1471 if (timer
) timer
= 0;
1477 // receive and test the miller decoding
1478 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1479 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1480 if(MillerDecoding(b
, 0)) {
1490 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1494 uint32_t ThisTransferTime
;
1496 // Modulate Manchester
1497 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1499 // include correction bit if necessary
1500 if (Uart
.parityBits
& 0x01) {
1501 correctionNeeded
= TRUE
;
1503 if(correctionNeeded
) {
1504 // 1236, so correction bit needed
1510 // clear receiving shift register and holding register
1511 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1512 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1513 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1514 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1516 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1517 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1518 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1519 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1522 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1525 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1528 for(; i
<= respLen
; ) {
1529 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1530 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1531 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1534 if(BUTTON_PRESS()) {
1539 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1540 for (i
= 0; i
< 2 ; ) {
1541 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1542 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1543 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1548 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1553 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1554 Code4bitAnswerAsTag(resp
);
1555 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1556 // do the tracing for the previous reader request and this tag answer:
1558 GetParity(&resp
, 1, par
);
1559 EmLogTrace(Uart
.output
,
1561 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1562 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1566 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1567 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1572 int EmSend4bit(uint8_t resp
){
1573 return EmSend4bitEx(resp
, false);
1576 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1577 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1578 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1579 // do the tracing for the previous reader request and this tag answer:
1580 EmLogTrace(Uart
.output
,
1582 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1583 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1587 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1588 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1593 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1594 uint8_t par
[MAX_PARITY_SIZE
];
1595 GetParity(resp
, respLen
, par
);
1596 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1599 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1600 uint8_t par
[MAX_PARITY_SIZE
];
1601 GetParity(resp
, respLen
, par
);
1602 return EmSendCmdExPar(resp
, respLen
, false, par
);
1605 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1606 return EmSendCmdExPar(resp
, respLen
, false, par
);
1609 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1610 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1613 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1614 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1615 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1616 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1617 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1618 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1619 reader_EndTime
= tag_StartTime
- exact_fdt
;
1620 reader_StartTime
= reader_EndTime
- reader_modlen
;
1621 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1623 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1629 //-----------------------------------------------------------------------------
1630 // Wait a certain time for tag response
1631 // If a response is captured return TRUE
1632 // If it takes too long return FALSE
1633 //-----------------------------------------------------------------------------
1634 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1638 // Set FPGA mode to "reader listen mode", no modulation (listen
1639 // only, since we are receiving, not transmitting).
1640 // Signal field is on with the appropriate LED
1642 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1644 // Now get the answer from the card
1645 DemodInit(receivedResponse
, receivedResponsePar
);
1648 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1654 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1655 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1656 if(ManchesterDecoding(b
, offset
, 0)) {
1657 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1659 } else if (c
++ > iso14a_timeout
) {
1666 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1668 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1670 // Send command to tag
1671 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1675 // Log reader command in trace buffer
1677 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1681 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1683 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1686 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1688 // Generate parity and redirect
1689 uint8_t par
[MAX_PARITY_SIZE
];
1690 GetParity(frame
, len
/8, par
);
1691 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1694 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1696 // Generate parity and redirect
1697 uint8_t par
[MAX_PARITY_SIZE
];
1698 GetParity(frame
, len
, par
);
1699 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1702 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1704 if (!GetIso14443aAnswerFromTag(receivedAnswer
,parity
,offset
)) return FALSE
;
1706 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1711 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1713 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1715 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1720 /* performs iso14443a anticollision procedure
1721 * fills the uid pointer unless NULL
1722 * fills resp_data unless NULL */
1723 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1725 //uint8_t deselect[] = {0xc2}; //DESELECT
1726 //uint8_t halt[] = { 0x50, 0x00, 0x57, 0xCD }; // HALT
1727 uint8_t wupa
[] = { 0x52 }; // WAKE-UP
1728 //uint8_t reqa[] = { 0x26 }; // REQUEST A
1729 uint8_t sel_all
[] = { 0x93,0x20 };
1730 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1731 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1732 uint8_t *resp
= ((uint8_t *)BigBuf
) + RECV_RESP_OFFSET
;
1733 uint8_t *resp_par
= ((uint8_t *)BigBuf
) + RECV_RESP_PAR_OFFSET
;
1736 size_t uid_resp_len
;
1737 uint8_t sak
= 0x04; // cascade uid
1738 int cascade_level
= 0;
1741 // test for the SKYLANDERS TOY.
1742 // ReaderTransmit(deselect,sizeof(deselect), NULL);
1743 // len = ReaderReceive(resp, resp_par);
1745 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1746 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1749 if(!ReaderReceive(resp
, resp_par
)) return 0;
1752 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1753 p_hi14a_card
->uidlen
= 0;
1754 memset(p_hi14a_card
->uid
,0,10);
1759 memset(uid_ptr
,0,10);
1762 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1763 // which case we need to make a cascade 2 request and select - this is a long UID
1764 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1765 for(; sak
& 0x04; cascade_level
++) {
1766 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1767 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1770 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1771 if (!ReaderReceive(resp
, resp_par
)) return 0;
1773 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1774 memset(uid_resp
, 0, 4);
1775 uint16_t uid_resp_bits
= 0;
1776 uint16_t collision_answer_offset
= 0;
1777 // anti-collision-loop:
1778 while (Demod
.collisionPos
) {
1779 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1780 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1781 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1782 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1784 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1786 // construct anticollosion command:
1787 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1788 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1789 sel_uid
[2+i
] = uid_resp
[i
];
1791 collision_answer_offset
= uid_resp_bits
%8;
1792 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1793 if (!ReaderReceiveOffset(resp
, collision_answer_offset
,resp_par
)) return 0;
1795 // finally, add the last bits and BCC of the UID
1796 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1797 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1798 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1801 } else { // no collision, use the response to SELECT_ALL as current uid
1802 memcpy(uid_resp
,resp
,4);
1806 // calculate crypto UID. Always use last 4 Bytes.
1808 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1811 // Construct SELECT UID command
1812 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1813 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1814 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1815 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1816 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1819 if (!ReaderReceive(resp
, resp_par
)) return 0;
1822 // Test if more parts of the uid are coming
1823 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1824 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1825 // http://www.nxp.com/documents/application_note/AN10927.pdf
1826 uid_resp
[0] = uid_resp
[1];
1827 uid_resp
[1] = uid_resp
[2];
1828 uid_resp
[2] = uid_resp
[3];
1834 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1838 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1839 p_hi14a_card
->uidlen
+= uid_resp_len
;
1844 p_hi14a_card
->sak
= sak
;
1845 p_hi14a_card
->ats_len
= 0;
1848 // non iso14443a compliant tag
1849 if( (sak
& 0x20) == 0) return 2;
1851 // Request for answer to select
1852 AppendCrc14443a(rats
, 2);
1853 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1855 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1859 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1860 p_hi14a_card
->ats_len
= len
;
1863 // reset the PCB block number
1864 iso14_pcb_blocknum
= 0;
1868 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1869 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1870 // Set up the synchronous serial port
1872 // connect Demodulated Signal to ADC:
1873 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1875 // Signal field is on with the appropriate LED
1876 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
|| fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1881 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1888 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1889 iso14a_set_timeout(1050); // 10ms default 10*105 =
1892 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1893 uint8_t parity
[MAX_PARITY_SIZE
];
1894 uint8_t real_cmd
[cmd_len
+4];
1895 real_cmd
[0] = 0x0a; //I-Block
1896 // put block number into the PCB
1897 real_cmd
[0] |= iso14_pcb_blocknum
;
1898 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1899 memcpy(real_cmd
+2, cmd
, cmd_len
);
1900 AppendCrc14443a(real_cmd
,cmd_len
+2);
1902 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1903 size_t len
= ReaderReceive(data
, parity
);
1904 uint8_t * data_bytes
= (uint8_t *) data
;
1906 return 0; //DATA LINK ERROR
1907 // if we received an I- or R(ACK)-Block with a block number equal to the
1908 // current block number, toggle the current block number
1909 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1910 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1911 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1912 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1914 iso14_pcb_blocknum
^= 1;
1920 //-----------------------------------------------------------------------------
1921 // Read an ISO 14443a tag. Send out commands and store answers.
1923 //-----------------------------------------------------------------------------
1924 void ReaderIso14443a(UsbCommand
*c
)
1926 iso14a_command_t param
= c
->arg
[0];
1927 uint8_t *cmd
= c
->d
.asBytes
;
1928 size_t len
= c
->arg
[1];
1929 size_t lenbits
= c
->arg
[2];
1931 byte_t buf
[USB_CMD_DATA_SIZE
];
1932 uint8_t par
[MAX_PARITY_SIZE
];
1934 if(param
& ISO14A_CONNECT
) {
1935 iso14a_clear_trace();
1938 iso14a_set_tracing(TRUE
);
1940 if(param
& ISO14A_REQUEST_TRIGGER
) {
1941 iso14a_set_trigger(TRUE
);
1944 if(param
& ISO14A_CONNECT
) {
1945 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1946 if(!(param
& ISO14A_NO_SELECT
)) {
1947 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1948 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1949 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1953 if(param
& ISO14A_SET_TIMEOUT
) {
1954 iso14a_set_timeout(c
->arg
[2]);
1957 if(param
& ISO14A_APDU
) {
1958 arg0
= iso14_apdu(cmd
, len
, buf
);
1959 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1962 if(param
& ISO14A_RAW
) {
1963 if(param
& ISO14A_APPEND_CRC
) {
1964 AppendCrc14443a(cmd
,len
);
1966 if (lenbits
) lenbits
+= 16;
1969 GetParity(cmd
, lenbits
/8, par
);
1970 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
);
1972 ReaderTransmit(cmd
,len
, NULL
);
1974 arg0
= ReaderReceive(buf
, par
);
1975 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1978 if(param
& ISO14A_REQUEST_TRIGGER
) {
1979 iso14a_set_trigger(FALSE
);
1982 if(param
& ISO14A_NO_DISCONNECT
) {
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1991 // Determine the distance between two nonces.
1992 // Assume that the difference is small, but we don't know which is first.
1993 // Therefore try in alternating directions.
1994 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1997 uint32_t nttmp1
, nttmp2
;
1999 if (nt1
== nt2
) return 0;
2004 for (i
= 1; i
< 32768; i
++) {
2005 nttmp1
= prng_successor(nttmp1
, 1);
2006 if (nttmp1
== nt2
) return i
;
2007 nttmp2
= prng_successor(nttmp2
, 1);
2008 if (nttmp2
== nt1
) return -i
;
2011 return(-99999); // either nt1 or nt2 are invalid nonces
2015 //-----------------------------------------------------------------------------
2016 // Recover several bits of the cypher stream. This implements (first stages of)
2017 // the algorithm described in "The Dark Side of Security by Obscurity and
2018 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2019 // (article by Nicolas T. Courtois, 2009)
2020 //-----------------------------------------------------------------------------
2021 void ReaderMifare(bool first_try
)
2024 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2025 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2026 static uint8_t mf_nr_ar3
;
2028 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + RECV_RESP_OFFSET
);
2029 uint8_t* receivedAnswerPar
= (((uint8_t *)BigBuf
) + RECV_RESP_PAR_OFFSET
);
2031 iso14a_clear_trace();
2032 iso14a_set_tracing(TRUE
);
2035 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2036 static byte_t par_low
= 0;
2038 uint8_t uid
[10] ={0};
2042 uint32_t previous_nt
= 0;
2043 static uint32_t nt_attacked
= 0;
2044 byte_t par_list
[8] = {0x00};
2045 byte_t ks_list
[8] = {0x00};
2047 static uint32_t sync_time
;
2048 static uint32_t sync_cycles
;
2049 int catch_up_cycles
= 0;
2050 int last_catch_up
= 0;
2051 uint16_t consecutive_resyncs
= 0;
2056 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2057 sync_time
= GetCountSspClk() & 0xfffffff8;
2058 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2064 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2066 mf_nr_ar
[3] = mf_nr_ar3
;
2075 for(uint16_t i
= 0; TRUE
; i
++) {
2079 // Test if the action was cancelled
2080 if(BUTTON_PRESS()) {
2086 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2087 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2091 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2092 catch_up_cycles
= 0;
2094 // if we missed the sync time already, advance to the next nonce repeat
2095 while(GetCountSspClk() > sync_time
) {
2096 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2099 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2100 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2102 // Receive the (4 Byte) "random" nonce
2103 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2104 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2109 nt
= bytes_to_num(receivedAnswer
, 4);
2111 // Transmit reader nonce with fake par
2112 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2114 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2115 int nt_distance
= dist_nt(previous_nt
, nt
);
2116 if (nt_distance
== 0) {
2120 if (nt_distance
== -99999) { // invalid nonce received, try again
2123 sync_cycles
= (sync_cycles
- nt_distance
);
2124 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2129 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2130 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2131 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2132 catch_up_cycles
= 0;
2135 if (catch_up_cycles
== last_catch_up
) {
2136 consecutive_resyncs
++;
2139 last_catch_up
= catch_up_cycles
;
2140 consecutive_resyncs
= 0;
2142 if (consecutive_resyncs
< 3) {
2143 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2146 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2147 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2152 consecutive_resyncs
= 0;
2154 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2155 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2157 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2161 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2165 if(led_on
) LED_B_ON(); else LED_B_OFF();
2167 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2168 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2170 // Test if the information is complete
2171 if (nt_diff
== 0x07) {
2176 nt_diff
= (nt_diff
+ 1) & 0x07;
2177 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2180 if (nt_diff
== 0 && first_try
)
2184 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2190 mf_nr_ar
[3] &= 0x1F;
2193 memcpy(buf
+ 0, uid
, 4);
2194 num_to_bytes(nt
, 4, buf
+ 4);
2195 memcpy(buf
+ 8, par_list
, 8);
2196 memcpy(buf
+ 16, ks_list
, 8);
2197 memcpy(buf
+ 24, mf_nr_ar
, 4);
2199 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2202 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2205 iso14a_set_tracing(FALSE
);
2209 *MIFARE 1K simulate.
2212 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2213 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2214 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2215 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2216 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2218 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2220 int cardSTATE
= MFEMUL_NOFIELD
;
2222 int vHf
= 0; // in mV
2224 uint32_t selTimer
= 0;
2225 uint32_t authTimer
= 0;
2227 uint8_t cardWRBL
= 0;
2228 uint8_t cardAUTHSC
= 0;
2229 uint8_t cardAUTHKEY
= 0xff; // no authentication
2230 uint32_t cardRr
= 0;
2232 //uint32_t rn_enc = 0;
2234 uint32_t cardINTREG
= 0;
2235 uint8_t cardINTBLOCK
= 0;
2236 struct Crypto1State mpcs
= {0, 0};
2237 struct Crypto1State
*pcs
;
2239 uint32_t numReads
= 0;//Counts numer of times reader read a block
2240 uint8_t* receivedCmd
= get_bigbufptr_recvcmdbuf();
2241 uint8_t* receivedCmd_par
= receivedCmd
+ MAX_FRAME_SIZE
;
2242 uint8_t* response
= get_bigbufptr_recvrespbuf();
2243 uint8_t* response_par
= response
+ MAX_FRAME_SIZE
;
2245 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2246 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2247 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2248 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2249 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2251 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2252 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2254 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2255 // This can be used in a reader-only attack.
2256 // (it can also be retrieved via 'hf 14a list', but hey...
2257 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2258 uint8_t ar_nr_collected
= 0;
2261 iso14a_clear_trace();
2262 iso14a_set_tracing(TRUE
);
2264 // Authenticate response - nonce
2265 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2267 //-- Determine the UID
2268 // Can be set from emulator memory, incoming data
2269 // and can be 7 or 4 bytes long
2270 if (flags
& FLAG_4B_UID_IN_DATA
)
2272 // 4B uid comes from data-portion of packet
2273 memcpy(rUIDBCC1
,datain
,4);
2274 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2276 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2277 // 7B uid comes from data-portion of packet
2278 memcpy(&rUIDBCC1
[1],datain
,3);
2279 memcpy(rUIDBCC2
, datain
+3, 4);
2282 // get UID from emul memory
2283 emlGetMemBt(receivedCmd
, 7, 1);
2284 _7BUID
= !(receivedCmd
[0] == 0x00);
2285 if (!_7BUID
) { // ---------- 4BUID
2286 emlGetMemBt(rUIDBCC1
, 0, 4);
2287 } else { // ---------- 7BUID
2288 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2289 emlGetMemBt(rUIDBCC2
, 3, 4);
2294 * Regardless of what method was used to set the UID, set fifth byte and modify
2295 * the ATQA for 4 or 7-byte UID
2297 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2301 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2304 // We need to listen to the high-frequency, peak-detected path.
2305 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2308 if (MF_DBGLEVEL
>= 1) {
2310 Dbprintf("4B UID: %02x%02x%02x%02x",
2311 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2313 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2314 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2315 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2319 bool finished
= FALSE
;
2320 while (!BUTTON_PRESS() && !finished
) {
2323 // find reader field
2324 // Vref = 3300mV, and an 10:1 voltage divider on the input
2325 // can measure voltages up to 33000 mV
2326 if (cardSTATE
== MFEMUL_NOFIELD
) {
2327 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2328 if (vHf
> MF_MINFIELDV
) {
2329 cardSTATE_TO_IDLE();
2333 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2337 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2338 if (res
== 2) { //Field is off!
2339 cardSTATE
= MFEMUL_NOFIELD
;
2342 } else if (res
== 1) {
2343 break; //return value 1 means button press
2346 // REQ or WUP request in ANY state and WUP in HALTED state
2347 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2348 selTimer
= GetTickCount();
2349 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2350 cardSTATE
= MFEMUL_SELECT1
;
2352 // init crypto block
2355 crypto1_destroy(pcs
);
2360 switch (cardSTATE
) {
2361 case MFEMUL_NOFIELD
:
2364 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2367 case MFEMUL_SELECT1
:{
2369 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2370 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2371 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2375 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2377 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2381 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2382 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2383 cuid
= bytes_to_num(rUIDBCC1
, 4);
2385 cardSTATE
= MFEMUL_WORK
;
2387 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2390 cardSTATE
= MFEMUL_SELECT2
;
2398 cardSTATE_TO_IDLE();
2399 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2402 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2403 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2406 if(ar_nr_collected
< 2){
2407 if(ar_nr_responses
[2] != ar
)
2408 {// Avoid duplicates... probably not necessary, ar should vary.
2409 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2410 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2411 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2412 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2418 crypto1_word(pcs
, ar
, 1);
2419 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2422 if (cardRr
!= prng_successor(nonce
, 64)){
2423 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2424 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2425 cardRr
, prng_successor(nonce
, 64));
2426 // Shouldn't we respond anything here?
2427 // Right now, we don't nack or anything, which causes the
2428 // reader to do a WUPA after a while. /Martin
2429 // -- which is the correct response. /piwi
2430 cardSTATE_TO_IDLE();
2431 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2435 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2437 num_to_bytes(ans
, 4, rAUTH_AT
);
2439 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2441 cardSTATE
= MFEMUL_WORK
;
2442 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2443 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2444 GetTickCount() - authTimer
);
2447 case MFEMUL_SELECT2
:{
2449 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2452 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2453 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2459 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2460 EmSendCmd(rSAK
, sizeof(rSAK
));
2461 cuid
= bytes_to_num(rUIDBCC2
, 4);
2462 cardSTATE
= MFEMUL_WORK
;
2464 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2468 // i guess there is a command). go into the work state.
2470 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2473 cardSTATE
= MFEMUL_WORK
;
2475 //intentional fall-through to the next case-stmt
2480 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2484 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2486 if(encrypted_data
) {
2488 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2491 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2492 authTimer
= GetTickCount();
2493 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2494 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2495 crypto1_destroy(pcs
);//Added by martin
2496 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2498 if (!encrypted_data
) { // first authentication
2499 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2501 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2502 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2503 } else { // nested authentication
2504 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2505 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2506 num_to_bytes(ans
, 4, rAUTH_AT
);
2508 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2509 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2510 cardSTATE
= MFEMUL_AUTH1
;
2514 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2515 // BUT... ACK --> NACK
2516 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2517 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2521 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2522 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2523 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2528 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2532 if(receivedCmd
[0] == 0x30 // read block
2533 || receivedCmd
[0] == 0xA0 // write block
2534 || receivedCmd
[0] == 0xC0 // inc
2535 || receivedCmd
[0] == 0xC1 // dec
2536 || receivedCmd
[0] == 0xC2 // restore
2537 || receivedCmd
[0] == 0xB0) { // transfer
2538 if (receivedCmd
[1] >= 16 * 4) {
2539 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2540 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2544 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2545 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2546 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2551 if (receivedCmd
[0] == 0x30) {
2552 if (MF_DBGLEVEL
>= 4) {
2553 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2555 emlGetMem(response
, receivedCmd
[1], 1);
2556 AppendCrc14443a(response
, 16);
2557 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2558 EmSendCmdPar(response
, 18, response_par
);
2560 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2561 Dbprintf("%d reads done, exiting", numReads
);
2567 if (receivedCmd
[0] == 0xA0) {
2568 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2569 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2570 cardSTATE
= MFEMUL_WRITEBL2
;
2571 cardWRBL
= receivedCmd
[1];
2574 // increment, decrement, restore
2575 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2576 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2577 if (emlCheckValBl(receivedCmd
[1])) {
2578 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2579 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2582 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2583 if (receivedCmd
[0] == 0xC1)
2584 cardSTATE
= MFEMUL_INTREG_INC
;
2585 if (receivedCmd
[0] == 0xC0)
2586 cardSTATE
= MFEMUL_INTREG_DEC
;
2587 if (receivedCmd
[0] == 0xC2)
2588 cardSTATE
= MFEMUL_INTREG_REST
;
2589 cardWRBL
= receivedCmd
[1];
2593 if (receivedCmd
[0] == 0xB0) {
2594 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2595 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2596 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2598 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2602 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2605 cardSTATE
= MFEMUL_HALTED
;
2606 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2607 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2611 if (receivedCmd
[0] == 0xe0) {//RATS
2612 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2615 // command not allowed
2616 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2617 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2620 case MFEMUL_WRITEBL2
:{
2622 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2623 emlSetMem(receivedCmd
, cardWRBL
, 1);
2624 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2625 cardSTATE
= MFEMUL_WORK
;
2627 cardSTATE_TO_IDLE();
2628 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2633 case MFEMUL_INTREG_INC
:{
2634 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2635 memcpy(&ans
, receivedCmd
, 4);
2636 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2637 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2638 cardSTATE_TO_IDLE();
2641 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2642 cardINTREG
= cardINTREG
+ ans
;
2643 cardSTATE
= MFEMUL_WORK
;
2646 case MFEMUL_INTREG_DEC
:{
2647 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2648 memcpy(&ans
, receivedCmd
, 4);
2649 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2650 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2651 cardSTATE_TO_IDLE();
2654 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2655 cardINTREG
= cardINTREG
- ans
;
2656 cardSTATE
= MFEMUL_WORK
;
2659 case MFEMUL_INTREG_REST
:{
2660 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2661 memcpy(&ans
, receivedCmd
, 4);
2662 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2663 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2664 cardSTATE_TO_IDLE();
2667 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2668 cardSTATE
= MFEMUL_WORK
;
2674 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2677 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2679 //May just aswell send the collected ar_nr in the response aswell
2680 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2683 if(flags
& FLAG_NR_AR_ATTACK
)
2685 if(ar_nr_collected
> 1) {
2686 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2687 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2688 ar_nr_responses
[0], // UID
2689 ar_nr_responses
[1], //NT
2690 ar_nr_responses
[2], //AR1
2691 ar_nr_responses
[3], //NR1
2692 ar_nr_responses
[6], //AR2
2693 ar_nr_responses
[7] //NR2
2696 Dbprintf("Failed to obtain two AR/NR pairs!");
2697 if(ar_nr_collected
>0) {
2698 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2699 ar_nr_responses
[0], // UID
2700 ar_nr_responses
[1], //NT
2701 ar_nr_responses
[2], //AR1
2702 ar_nr_responses
[3] //NR1
2707 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2712 //-----------------------------------------------------------------------------
2715 //-----------------------------------------------------------------------------
2716 void RAMFUNC
SniffMifare(uint8_t param
) {
2718 // bit 0 - trigger from first card answer
2719 // bit 1 - trigger from first reader 7-bit request
2721 // C(red) A(yellow) B(green)
2723 // init trace buffer
2724 iso14a_clear_trace();
2725 iso14a_set_tracing(TRUE
);
2727 // The command (reader -> tag) that we're receiving.
2728 // The length of a received command will in most cases be no more than 18 bytes.
2729 // So 32 should be enough!
2730 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2731 uint8_t *receivedCmdPar
= ((uint8_t *)BigBuf
) + RECV_CMD_PAR_OFFSET
;
2732 // The response (tag -> reader) that we're receiving.
2733 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RESP_OFFSET
);
2734 uint8_t *receivedResponsePar
= ((uint8_t *)BigBuf
) + RECV_RESP_PAR_OFFSET
;
2736 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2737 // into trace, along with its length and other annotations.
2738 //uint8_t *trace = (uint8_t *)BigBuf;
2740 // The DMA buffer, used to stream samples from the FPGA
2741 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2742 uint8_t *data
= dmaBuf
;
2743 uint8_t previous_data
= 0;
2746 bool ReaderIsActive
= FALSE
;
2747 bool TagIsActive
= FALSE
;
2749 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2751 // Set up the demodulator for tag -> reader responses.
2752 DemodInit(receivedResponse
, receivedResponsePar
);
2754 // Set up the demodulator for the reader -> tag commands
2755 UartInit(receivedCmd
, receivedCmdPar
);
2757 // Setup for the DMA.
2758 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2765 // And now we loop, receiving samples.
2766 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2768 if(BUTTON_PRESS()) {
2769 DbpString("cancelled by button");
2776 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2777 // check if a transaction is completed (timeout after 2000ms).
2778 // if yes, stop the DMA transfer and send what we have so far to the client
2779 if (MfSniffSend(2000)) {
2780 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2784 ReaderIsActive
= FALSE
;
2785 TagIsActive
= FALSE
;
2786 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2790 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2791 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2792 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2793 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2795 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2797 // test for length of buffer
2798 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2799 maxDataLen
= dataLen
;
2801 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2805 if(dataLen
< 1) continue;
2807 // primary buffer was stopped ( <-- we lost data!
2808 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2809 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2810 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2811 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2813 // secondary buffer sets as primary, secondary buffer was stopped
2814 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2815 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2816 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2821 if (sniffCounter
& 0x01) {
2823 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2824 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2825 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2827 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2829 /* And ready to receive another command. */
2832 /* And also reset the demod code */
2835 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2838 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2839 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2840 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2843 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2845 // And ready to receive another response.
2848 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2852 previous_data
= *data
;
2855 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2861 DbpString("COMMAND FINISHED");
2863 FpgaDisableSscDma();
2866 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);