1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 BigBuf_Clear_keep_EM();
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
48 LFSetupFPGAForADC(sc
.divisor
, 1);
50 // And a little more time for the tag to fully power up
53 // now modulate the reader field
54 while(*command
!= '\0' && *command
!= ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
57 SpinDelayUs(delay_off
);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
62 if(*(command
++) == '0')
63 SpinDelayUs(period_0
);
65 SpinDelayUs(period_1
);
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
69 SpinDelayUs(delay_off
);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
75 DoAcquisition_config(false);
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
83 101010101010101[0]000...
85 [5555fe852c5555555555555555fe0000]
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
97 signed char *dest
= (signed char *)BigBuf_get_addr();
98 uint16_t n
= BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
102 int i
, cycles
=0, samples
=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
118 // get TI tag data into the buffer
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 for (i
=0; i
<n
-1; i
++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
127 // after 16 cycles, measure the frequency
130 samples
=i
-samples
; // number of samples in these 16 cycles
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0
= (shift0
>>1) | (shift1
<< 31);
135 shift1
= (shift1
>>1) | (shift2
<< 31);
136 shift2
= (shift2
>>1) | (shift3
<< 31);
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
142 // low frequency represents a 1
144 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
145 // high frequency represents a 0
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3
= shift2
= shift1
= shift0
= 0;
153 // for each bit we receive, test if we've detected a valid tag
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
160 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
168 // if flag is set we have a tag
170 DbpString("Info: No valid tag detected.");
172 // put 64 bit data into shift1 and shift0
173 shift0
= (shift0
>>24) | (shift1
<< 8);
174 shift1
= (shift1
>>24) | (shift2
<< 8);
176 // align 16 bit crc into lower half of shift2
177 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
179 // if r/w tag, check ident match
180 if (shift3
& (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
186 DbpString("Info: TI tag ident is valid");
189 DbpString("Info: TI tag is readonly");
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
198 crc
= update_crc16(crc
, (shift0
)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
201 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
202 crc
= update_crc16(crc
, (shift1
)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
205 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
209 if (crc
!= (shift2
&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
212 DbpString("Info: CRC is good");
217 void WriteTIbyte(uint8_t b
)
221 // modulate 8 bits out to the antenna
225 // stop modulating antenna
232 // stop modulating antenna
242 void AcquireTiType(void)
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
250 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
251 BigBuf_Clear_ext(false);
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
255 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
259 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC
->SSC_CMR
= 12;
268 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
270 AT91C_BASE_SSC
->SSC_TCMR
= 0;
271 AT91C_BASE_SSC
->SSC_TFMR
= 0;
278 // Charge TI tag for 50ms.
281 // stop modulating antenna and listen
288 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
289 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
290 i
++; if(i
>= TIBUFLEN
) break;
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
297 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
299 char *dest
= (char *)BigBuf_get_addr();
302 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
303 for (j
=0; j
<32; j
++) {
304 if(BigBuf
[i
] & (1 << j
)) {
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
320 crc
= update_crc16(crc
, (idlo
)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
324 crc
= update_crc16(crc
, (idhi
)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
357 SpinDelay(50); // charge time
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo
)&0xff );
362 WriteTIbyte( (idlo
>>8 )&0xff );
363 WriteTIbyte( (idlo
>>16)&0xff );
364 WriteTIbyte( (idlo
>>24)&0xff );
365 WriteTIbyte( (idhi
)&0xff );
366 WriteTIbyte( (idhi
>>8 )&0xff );
367 WriteTIbyte( (idhi
>>16)&0xff );
368 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc
)&0xff ); // crc lo
370 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
374 SpinDelay(50); // programming time
378 // get TI tag data into the buffer
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
382 DbpString("Now use `lf ti read` to check");
385 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
388 uint8_t *tab
= BigBuf_get_addr();
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
393 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
396 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 DbpString("Stopped");
421 //wait until SSC_CLK goes LOW
422 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
424 DbpString("Stopped");
442 #define DEBUG_FRAME_CONTENTS 1
443 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
447 // compose fc/8 fc/10 waveform (FSK2)
448 static void fc(int c
, int *n
)
450 uint8_t *dest
= BigBuf_get_addr();
453 // for when we want an fc8 pattern every 4 logical bits
465 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
467 for (idx
=0; idx
<6; idx
++) {
479 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
481 for (idx
=0; idx
<5; idx
++) {
495 // compose fc/X fc/Y waveform (FSKx)
496 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
498 uint8_t *dest
= BigBuf_get_addr();
499 uint8_t halfFC
= fc
/2;
500 uint8_t wavesPerClock
= clock
/fc
;
501 uint8_t mod
= clock
% fc
; //modifier
502 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
503 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
504 // loop through clock - step field clock
505 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
506 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
507 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
508 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
511 if (mod
>0) (*modCnt
)++;
512 if ((mod
>0) && modAdjOk
){ //fsk2
513 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
514 memset(dest
+(*n
), 0, fc
-halfFC
);
515 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
519 if (mod
>0 && !modAdjOk
){ //fsk1
520 memset(dest
+(*n
), 0, mod
-(mod
/2));
521 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
526 // prepare a waveform pattern in the buffer based on the ID given then
527 // simulate a HID tag until the button is pressed
528 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
532 HID tag bitstream format
533 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
534 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
535 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
536 A fc8 is inserted before every 4 bits
537 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
538 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 // special start of frame marker containing invalid bit sequences
547 fc(8, &n
); fc(8, &n
); // invalid
548 fc(8, &n
); fc(10, &n
); // logical 0
549 fc(10, &n
); fc(10, &n
); // invalid
550 fc(8, &n
); fc(10, &n
); // logical 0
553 // manchester encode bits 43 to 32
554 for (i
=11; i
>=0; i
--) {
555 if ((i
%4)==3) fc(0,&n
);
557 fc(10, &n
); fc(8, &n
); // low-high transition
559 fc(8, &n
); fc(10, &n
); // high-low transition
564 // manchester encode bits 31 to 0
565 for (i
=31; i
>=0; i
--) {
566 if ((i
%4)==3) fc(0,&n
);
568 fc(10, &n
); fc(8, &n
); // low-high transition
570 fc(8, &n
); fc(10, &n
); // high-low transition
576 SimulateTagLowFrequency(n
, 0, ledcontrol
);
582 // prepare a waveform pattern in the buffer based on the ID given then
583 // simulate a FSK tag until the button is pressed
584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
585 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
589 uint8_t fcHigh
= arg1
>> 8;
590 uint8_t fcLow
= arg1
& 0xFF;
592 uint8_t clk
= arg2
& 0xFF;
593 uint8_t invert
= (arg2
>> 8) & 1;
595 for (i
=0; i
<size
; i
++){
596 if (BitStream
[i
] == invert
){
597 fcAll(fcLow
, &n
, clk
, &modCnt
);
599 fcAll(fcHigh
, &n
, clk
, &modCnt
);
602 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
603 /*Dbprintf("DEBUG: First 32:");
604 uint8_t *dest = BigBuf_get_addr();
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
608 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
613 SimulateTagLowFrequency(n
, 0, ledcontrol
);
619 // compose ask waveform for one bit(ASK)
620 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
622 uint8_t *dest
= BigBuf_get_addr();
623 uint8_t halfClk
= clock
/2;
624 // c = current bit 1 or 0
626 memset(dest
+(*n
), c
, halfClk
);
627 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
629 memset(dest
+(*n
), c
, clock
);
634 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
636 uint8_t *dest
= BigBuf_get_addr();
637 uint8_t halfClk
= clock
/2;
639 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
640 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
642 memset(dest
+(*n
), c
^ *phase
, clock
);
648 static void stAskSimBit(int *n
, uint8_t clock
) {
649 uint8_t *dest
= BigBuf_get_addr();
650 uint8_t halfClk
= clock
/2;
651 //ST = .5 high .5 low 1.5 high .5 low 1 high
652 memset(dest
+(*n
), 1, halfClk
);
653 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
654 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
655 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
656 memset(dest
+(*n
) + clock
*3, 1, clock
);
660 // args clock, ask/man or askraw, invert, transmission separator
661 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
665 uint8_t clk
= (arg1
>> 8) & 0xFF;
666 uint8_t encoding
= arg1
& 0xFF;
667 uint8_t separator
= arg2
& 1;
668 uint8_t invert
= (arg2
>> 8) & 1;
670 if (encoding
==2){ //biphase
672 for (i
=0; i
<size
; i
++){
673 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
675 if (phase
==1) { //run a second set inverted to keep phase in check
676 for (i
=0; i
<size
; i
++){
677 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
680 } else { // ask/manchester || ask/raw
681 for (i
=0; i
<size
; i
++){
682 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
684 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
685 for (i
=0; i
<size
; i
++){
686 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
690 if (separator
==1 && encoding
== 1)
691 stAskSimBit(&n
, clk
);
692 else if (separator
==1)
693 Dbprintf("sorry but separator option not yet available");
695 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
697 //Dbprintf("First 32:");
698 //uint8_t *dest = BigBuf_get_addr();
700 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
702 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
704 if (ledcontrol
) LED_A_ON();
705 SimulateTagLowFrequency(n
, 0, ledcontrol
);
706 if (ledcontrol
) LED_A_OFF();
709 //carrier can be 2,4 or 8
710 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
712 uint8_t *dest
= BigBuf_get_addr();
713 uint8_t halfWave
= waveLen
/2;
717 // write phase change
718 memset(dest
+(*n
), *curPhase
^1, halfWave
);
719 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
724 //write each normal clock wave for the clock duration
725 for (; i
< clk
; i
+=waveLen
){
726 memset(dest
+(*n
), *curPhase
, halfWave
);
727 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
732 // args clock, carrier, invert,
733 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
737 uint8_t clk
= arg1
>> 8;
738 uint8_t carrier
= arg1
& 0xFF;
739 uint8_t invert
= arg2
& 0xFF;
740 uint8_t curPhase
= 0;
741 for (i
=0; i
<size
; i
++){
742 if (BitStream
[i
] == curPhase
){
743 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
745 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
748 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
749 //Dbprintf("DEBUG: First 32:");
750 //uint8_t *dest = BigBuf_get_addr();
752 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
754 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
756 if (ledcontrol
) LED_A_ON();
757 SimulateTagLowFrequency(n
, 0, ledcontrol
);
758 if (ledcontrol
) LED_A_OFF();
761 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
762 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
764 uint8_t *dest
= BigBuf_get_addr();
765 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
767 uint32_t hi2
=0, hi
=0, lo
=0;
769 // Configure to go in 125Khz listen mode
770 LFSetupFPGAForADC(95, true);
773 BigBuf_Clear_keep_EM();
775 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
778 if (ledcontrol
) LED_A_ON();
780 DoAcquisition_default(-1,true);
782 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
783 size
= 50*128*2; //big enough to catch 2 sequences of largest format
784 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
786 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
787 // go over previously decoded manchester data and decode into usable tag ID
788 if (hi2
!= 0){ //extra large HID tags 88/192 bits
789 Dbprintf("TAG ID: %x%08x%08x (%d)",
790 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
791 }else { //standard HID tags 44/96 bits
792 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
795 uint32_t cardnum
= 0;
796 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
798 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
800 while(lo2
> 1){ //find last bit set to 1 (format len bit)
808 cardnum
= (lo
>>1)&0xFFFF;
812 cardnum
= (lo
>>1)&0x7FFFF;
813 fc
= ((hi
&0xF)<<12)|(lo
>>20);
816 cardnum
= (lo
>>1)&0xFFFF;
817 fc
= ((hi
&1)<<15)|(lo
>>17);
820 cardnum
= (lo
>>1)&0xFFFFF;
821 fc
= ((hi
&1)<<11)|(lo
>>21);
824 else { //if bit 38 is not set then 37 bit format is used
829 cardnum
= (lo
>>1)&0x7FFFF;
830 fc
= ((hi
&0xF)<<12)|(lo
>>20);
833 //Dbprintf("TAG ID: %x%08x (%d)",
834 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
835 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
836 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
837 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
840 if (ledcontrol
) LED_A_OFF();
847 hi2
= hi
= lo
= idx
= 0;
850 DbpString("Stopped");
851 if (ledcontrol
) LED_A_OFF();
854 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
855 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
857 uint8_t *dest
= BigBuf_get_addr();
861 BigBuf_Clear_keep_EM();
862 // Configure to go in 125Khz listen mode
863 LFSetupFPGAForADC(95, true);
865 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
868 if (ledcontrol
) LED_A_ON();
870 DoAcquisition_default(-1,true);
872 size
= 50*128*2; //big enough to catch 2 sequences of largest format
873 idx
= AWIDdemodFSK(dest
, &size
);
875 if (idx
<=0 || size
!=96) continue;
877 // 0 10 20 30 40 50 60
879 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
880 // -----------------------------------------------------------------------------
881 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
882 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
883 // |---26 bit---| |-----117----||-------------142-------------|
884 // b = format bit len, o = odd parity of last 3 bits
885 // f = facility code, c = card number
886 // w = wiegand parity
887 // (26 bit format shown)
889 //get raw ID before removing parities
890 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
891 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
892 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
894 size
= removeParity(dest
, idx
+8, 4, 1, 88);
895 if (size
!= 66) continue;
896 // ok valid card found!
899 // 0 10 20 30 40 50 60
901 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
902 // -----------------------------------------------------------------------------
903 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
904 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
905 // |26 bit| |-117--| |-----142------|
906 // b = format bit len, o = odd parity of last 3 bits
907 // f = facility code, c = card number
908 // w = wiegand parity
909 // (26 bit format shown)
912 uint32_t cardnum
= 0;
915 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
917 fc
= bytebits_to_byte(dest
+9, 8);
918 cardnum
= bytebits_to_byte(dest
+17, 16);
919 code1
= bytebits_to_byte(dest
+8,fmtLen
);
920 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
922 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
924 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
925 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
926 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
928 code1
= bytebits_to_byte(dest
+8,fmtLen
);
929 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
933 if (ledcontrol
) LED_A_OFF();
940 DbpString("Stopped");
941 if (ledcontrol
) LED_A_OFF();
944 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
946 uint8_t *dest
= BigBuf_get_addr();
948 size_t size
=0, idx
=0;
949 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
953 BigBuf_Clear_keep_EM();
954 // Configure to go in 125Khz listen mode
955 LFSetupFPGAForADC(95, true);
957 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
960 if (ledcontrol
) LED_A_ON();
962 DoAcquisition_default(-1,true);
963 size
= BigBuf_max_traceLen();
964 //askdemod and manchester decode
965 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
966 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
969 if (errCnt
<0) continue;
971 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
974 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
978 (uint32_t)(lo
&0xFFFF),
979 (uint32_t)((lo
>>16LL) & 0xFF),
980 (uint32_t)(lo
& 0xFFFFFF));
982 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
985 (uint32_t)(lo
&0xFFFF),
986 (uint32_t)((lo
>>16LL) & 0xFF),
987 (uint32_t)(lo
& 0xFFFFFF));
991 if (ledcontrol
) LED_A_OFF();
993 *low
=lo
& 0xFFFFFFFF;
998 hi
= lo
= size
= idx
= 0;
999 clk
= invert
= errCnt
= 0;
1001 DbpString("Stopped");
1002 if (ledcontrol
) LED_A_OFF();
1005 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1007 uint8_t *dest
= BigBuf_get_addr();
1009 uint32_t code
=0, code2
=0;
1011 uint8_t facilitycode
=0;
1014 BigBuf_Clear_keep_EM();
1015 // Configure to go in 125Khz listen mode
1016 LFSetupFPGAForADC(95, true);
1018 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1020 if (ledcontrol
) LED_A_ON();
1021 DoAcquisition_default(-1,true);
1022 //fskdemod and get start index
1024 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1025 if (idx
<0) continue;
1029 //0 10 20 30 40 50 60
1031 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1032 //-----------------------------------------------------------------------------
1033 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1035 //XSF(version)facility:codeone+codetwo
1037 if(findone
){ //only print binary if we are doing one
1038 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1039 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1040 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1041 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1042 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1043 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1044 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1046 code
= bytebits_to_byte(dest
+idx
,32);
1047 code2
= bytebits_to_byte(dest
+idx
+32,32);
1048 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1049 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1050 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1052 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
1053 // if we're only looking for one tag
1055 if (ledcontrol
) LED_A_OFF();
1062 version
=facilitycode
=0;
1068 DbpString("Stopped");
1069 if (ledcontrol
) LED_A_OFF();
1072 /*------------------------------
1073 * T5555/T5557/T5567/T5577 routines
1074 *------------------------------
1075 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1077 * Relevant communication times in microsecond
1078 * To compensate antenna falling times shorten the write times
1079 * and enlarge the gap ones.
1080 * Q5 tags seems to have issues when these values changes.
1082 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1083 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1084 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1085 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1086 #define READ_GAP 15*8
1088 void TurnReadLFOn(int delay
) {
1089 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1090 // Give it a bit of time for the resonant antenna to settle.
1091 SpinDelayUs(delay
); //155*8 //50*8
1094 // Write one bit to card
1095 void T55xxWriteBit(int bit
) {
1097 TurnReadLFOn(WRITE_0
);
1099 TurnReadLFOn(WRITE_1
);
1100 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1101 SpinDelayUs(WRITE_GAP
);
1104 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1105 void T55xxResetRead(void) {
1107 //clear buffer now so it does not interfere with timing later
1108 BigBuf_Clear_keep_EM();
1110 // Set up FPGA, 125kHz
1111 LFSetupFPGAForADC(95, true);
1113 // Trigger T55x7 in mode.
1114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1115 SpinDelayUs(START_GAP
);
1117 // reset tag - op code 00
1121 // Turn field on to read the response
1122 TurnReadLFOn(READ_GAP
);
1125 doT55x7Acquisition(BigBuf_max_traceLen());
1127 // Turn the field off
1128 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1129 cmd_send(CMD_ACK
,0,0,0,0,0);
1133 // Write one card block in page 0, no lock
1134 void T55xxWriteBlockExt(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1136 bool PwdMode
= arg
& 0x1;
1137 uint8_t Page
= (arg
& 0x2)>>1;
1140 // Set up FPGA, 125kHz
1141 LFSetupFPGAForADC(95, true);
1143 // Trigger T55x7 in mode.
1144 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1145 SpinDelayUs(START_GAP
);
1149 T55xxWriteBit(Page
); //Page 0
1152 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1153 T55xxWriteBit(Pwd
& i
);
1159 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1160 T55xxWriteBit(Data
& i
);
1162 // Send Block number
1163 for (i
= 0x04; i
!= 0; i
>>= 1)
1164 T55xxWriteBit(Block
& i
);
1166 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1167 // so wait a little more)
1168 TurnReadLFOn(20 * 1000);
1169 //could attempt to do a read to confirm write took
1170 // as the tag should repeat back the new block
1171 // until it is reset, but to confirm it we would
1172 // need to know the current block 0 config mode
1175 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1179 // Write one card block in page 0, no lock
1180 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1181 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1182 cmd_send(CMD_ACK
,0,0,0,0,0);
1185 // Read one card block in page [page]
1186 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1188 bool PwdMode
= arg0
& 0x1;
1189 uint8_t Page
= (arg0
& 0x2) >> 1;
1191 bool RegReadMode
= (Block
== 0xFF);
1193 //clear buffer now so it does not interfere with timing later
1194 BigBuf_Clear_ext(false);
1196 //make sure block is at max 7
1199 // Set up FPGA, 125kHz to power up the tag
1200 LFSetupFPGAForADC(95, true);
1202 // Trigger T55x7 Direct Access Mode with start gap
1203 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1204 SpinDelayUs(START_GAP
);
1208 T55xxWriteBit(Page
); //Page 0
1212 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1213 T55xxWriteBit(Pwd
& i
);
1215 // Send a zero bit separation
1218 // Send Block number (if direct access mode)
1220 for (i
= 0x04; i
!= 0; i
>>= 1)
1221 T55xxWriteBit(Block
& i
);
1223 // Turn field on to read the response
1224 TurnReadLFOn(READ_GAP
);
1227 doT55x7Acquisition(12000);
1229 // Turn the field off
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1231 cmd_send(CMD_ACK
,0,0,0,0,0);
1235 void T55xxWakeUp(uint32_t Pwd
){
1239 // Set up FPGA, 125kHz
1240 LFSetupFPGAForADC(95, true);
1242 // Trigger T55x7 Direct Access Mode
1243 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1244 SpinDelayUs(START_GAP
);
1248 T55xxWriteBit(0); //Page 0
1251 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1252 T55xxWriteBit(Pwd
& i
);
1254 // Turn and leave field on to let the begin repeating transmission
1255 TurnReadLFOn(20*1000);
1258 /*-------------- Cloning routines -----------*/
1260 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1261 // write last block first and config block last (if included)
1262 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--) {
1263 T55xxWriteBlockExt(blockdata
[i
-1],i
-1,0,0);
1267 // Copy HID id to card and setup block 0 config
1268 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1269 uint32_t data
[] = {0,0,0,0,0,0,0};
1270 uint8_t last_block
= 0;
1273 // Ensure no more than 84 bits supplied
1275 DbpString("Tags can only have 84 bits.");
1278 // Build the 6 data blocks for supplied 84bit ID
1280 // load preamble (1D) & long format identifier (9E manchester encoded)
1281 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1282 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1283 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1284 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1285 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1286 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1287 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1289 // Ensure no more than 44 bits supplied
1291 DbpString("Tags can only have 44 bits.");
1294 // Build the 3 data blocks for supplied 44bit ID
1297 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1298 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1299 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1301 // load chip config block
1302 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1304 //TODO add selection of chip for Q5 or T55x7
1305 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1308 // Program the data blocks for supplied ID
1309 // and the block 0 for HID format
1310 WriteT55xx(data
, 0, last_block
+1);
1317 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1318 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1319 //TODO add selection of chip for Q5 or T55x7
1320 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1323 // Program the data blocks for supplied ID
1324 // and the block 0 config
1325 WriteT55xx(data
, 0, 3);
1332 // Clone Indala 64-bit tag by UID to T55x7
1333 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1334 //Program the 2 data blocks for supplied 64bit UID
1335 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1336 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1337 //TODO add selection of chip for Q5 or T55x7
1338 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1340 WriteT55xx(data
, 0, 3);
1341 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1342 // T5567WriteBlock(0x603E1042,0);
1345 // Clone Indala 224-bit tag by UID to T55x7
1346 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1347 //Program the 7 data blocks for supplied 224bit UID
1348 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1349 // and the block 0 for Indala224 format
1350 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1351 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1352 //TODO add selection of chip for Q5 or T55x7
1353 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1354 WriteT55xx(data
, 0, 8);
1355 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1356 // T5567WriteBlock(0x603E10E2,0);
1359 // clone viking tag to T55xx
1360 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1361 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1362 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1363 // Program the data blocks for supplied ID and the block 0 config
1364 WriteT55xx(data
, 0, 3);
1366 cmd_send(CMD_ACK
,0,0,0,0,0);
1369 // Define 9bit header for EM410x tags
1370 #define EM410X_HEADER 0x1FF
1371 #define EM410X_ID_LENGTH 40
1373 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1375 uint64_t id
= EM410X_HEADER
;
1376 uint64_t rev_id
= 0; // reversed ID
1377 int c_parity
[4]; // column parity
1378 int r_parity
= 0; // row parity
1381 // Reverse ID bits given as parameter (for simpler operations)
1382 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1384 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1387 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1392 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1393 id_bit
= rev_id
& 1;
1396 // Don't write row parity bit at start of parsing
1398 id
= (id
<< 1) | r_parity
;
1399 // Start counting parity for new row
1406 // First elements in column?
1408 // Fill out first elements
1409 c_parity
[i
] = id_bit
;
1411 // Count column parity
1412 c_parity
[i
% 4] ^= id_bit
;
1415 id
= (id
<< 1) | id_bit
;
1419 // Insert parity bit of last row
1420 id
= (id
<< 1) | r_parity
;
1422 // Fill out column parity at the end of tag
1423 for (i
= 0; i
< 4; ++i
)
1424 id
= (id
<< 1) | c_parity
[i
];
1429 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1433 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1435 clock
= (card
& 0xFF00) >> 8;
1436 clock
= (clock
== 0) ? 64 : clock
;
1437 Dbprintf("Clock rate: %d", clock
);
1438 if (card
& 0xFF) { //t55x7
1439 clock
= GetT55xxClockBit(clock
);
1441 Dbprintf("Invalid clock rate: %d", clock
);
1444 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1445 } else { //t5555 (Q5)
1446 clock
= (clock
-2)>>1; //n = (RF-2)/2
1447 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1450 WriteT55xx(data
, 0, 3);
1453 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1454 (uint32_t)(id
>> 32), (uint32_t)id
);
1457 //-----------------------------------
1458 // EM4469 / EM4305 routines
1459 //-----------------------------------
1460 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1461 #define FWD_CMD_WRITE 0xA
1462 #define FWD_CMD_READ 0x9
1463 #define FWD_CMD_DISABLE 0x5
1465 uint8_t forwardLink_data
[64]; //array of forwarded bits
1466 uint8_t * forward_ptr
; //ptr for forward message preparation
1467 uint8_t fwd_bit_sz
; //forwardlink bit counter
1468 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1470 //====================================================================
1471 // prepares command bits
1473 //====================================================================
1474 //--------------------------------------------------------------------
1475 // VALUES TAKEN FROM EM4x function: SendForward
1476 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1477 // WRITE_GAP = 128; (16*8)
1478 // WRITE_1 = 256 32*8; (32*8)
1480 // These timings work for 4469/4269/4305 (with the 55*8 above)
1481 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1483 uint8_t Prepare_Cmd( uint8_t cmd
) {
1485 *forward_ptr
++ = 0; //start bit
1486 *forward_ptr
++ = 0; //second pause for 4050 code
1488 *forward_ptr
++ = cmd
;
1490 *forward_ptr
++ = cmd
;
1492 *forward_ptr
++ = cmd
;
1494 *forward_ptr
++ = cmd
;
1496 return 6; //return number of emited bits
1499 //====================================================================
1500 // prepares address bits
1502 //====================================================================
1503 uint8_t Prepare_Addr( uint8_t addr
) {
1505 register uint8_t line_parity
;
1510 *forward_ptr
++ = addr
;
1511 line_parity
^= addr
;
1515 *forward_ptr
++ = (line_parity
& 1);
1517 return 7; //return number of emited bits
1520 //====================================================================
1521 // prepares data bits intreleaved with parity bits
1523 //====================================================================
1524 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1526 register uint8_t line_parity
;
1527 register uint8_t column_parity
;
1528 register uint8_t i
, j
;
1529 register uint16_t data
;
1534 for(i
=0; i
<4; i
++) {
1536 for(j
=0; j
<8; j
++) {
1537 line_parity
^= data
;
1538 column_parity
^= (data
& 1) << j
;
1539 *forward_ptr
++ = data
;
1542 *forward_ptr
++ = line_parity
;
1547 for(j
=0; j
<8; j
++) {
1548 *forward_ptr
++ = column_parity
;
1549 column_parity
>>= 1;
1553 return 45; //return number of emited bits
1556 //====================================================================
1557 // Forward Link send function
1558 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1559 // fwd_bit_count set with number of bits to be sent
1560 //====================================================================
1561 void SendForward(uint8_t fwd_bit_count
) {
1563 fwd_write_ptr
= forwardLink_data
;
1564 fwd_bit_sz
= fwd_bit_count
;
1568 // Set up FPGA, 125kHz
1569 LFSetupFPGAForADC(95, true);
1571 // force 1st mod pulse (start gap must be longer for 4305)
1572 fwd_bit_sz
--; //prepare next bit modulation
1574 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1575 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1576 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1577 SpinDelayUs(16*8); //16 cycles on (8us each)
1579 // now start writting
1580 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1581 if(((*fwd_write_ptr
++) & 1) == 1)
1582 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1584 //These timings work for 4469/4269/4305 (with the 55*8 above)
1585 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1586 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1587 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1588 SpinDelayUs(9*8); //16 cycles on (8us each)
1593 void EM4xLogin(uint32_t Password
) {
1595 uint8_t fwd_bit_count
;
1597 forward_ptr
= forwardLink_data
;
1598 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1599 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1601 SendForward(fwd_bit_count
);
1603 //Wait for command to complete
1607 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1609 uint8_t fwd_bit_count
;
1610 uint8_t *dest
= BigBuf_get_addr();
1611 uint16_t bufferlength
= BigBuf_max_traceLen();
1614 // Clear destination buffer before sending the command
1615 BigBuf_Clear_ext(false);
1617 //If password mode do login
1618 if (PwdMode
== 1) EM4xLogin(Pwd
);
1620 forward_ptr
= forwardLink_data
;
1621 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1622 fwd_bit_count
+= Prepare_Addr( Address
);
1624 // Connect the A/D to the peak-detected low-frequency path.
1625 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1626 // Now set up the SSC to get the ADC samples that are now streaming at us.
1629 SendForward(fwd_bit_count
);
1631 // Now do the acquisition
1634 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1635 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1637 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1638 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1640 if (i
>= bufferlength
) break;
1643 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1644 cmd_send(CMD_ACK
,0,0,0,0,0);
1648 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1650 uint8_t fwd_bit_count
;
1652 //If password mode do login
1653 if (PwdMode
== 1) EM4xLogin(Pwd
);
1655 forward_ptr
= forwardLink_data
;
1656 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1657 fwd_bit_count
+= Prepare_Addr( Address
);
1658 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1660 SendForward(fwd_bit_count
);
1662 //Wait for write to complete
1664 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off