1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
25 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum
= 0;
33 // CARD TO READER - manchester
34 // Sequence D: 11110000 modulation with subcarrier during first half
35 // Sequence E: 00001111 modulation with subcarrier during second half
36 // Sequence F: 00000000 no modulation with subcarrier
37 // READER TO CARD - miller
38 // Sequence X: 00001100 drop after half a period
39 // Sequence Y: 00000000 no drop
40 // Sequence Z: 11000000 drop at start
48 const uint8_t OddByteParity
[256] = {
49 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
50 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
51 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
52 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
58 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
59 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
60 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
61 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
62 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
63 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
64 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
68 void iso14a_set_trigger(bool enable
) {
72 void iso14a_clear_trace() {
73 memset(trace
, 0x44, TRACE_SIZE
);
77 void iso14a_set_tracing(bool enable
) {
81 void iso14a_set_timeout(uint32_t timeout
) {
82 iso14a_timeout
= timeout
;
85 //-----------------------------------------------------------------------------
86 // Generate the parity value for a byte sequence
88 //-----------------------------------------------------------------------------
89 byte_t
oddparity (const byte_t bt
)
91 return OddByteParity
[bt
];
94 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
99 // Generate the encrypted data
100 for (i
= 0; i
< iLen
; i
++) {
101 // Save the encrypted parity bit
102 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
107 void AppendCrc14443a(uint8_t* data
, int len
)
109 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
112 // The function LogTrace() is also used by the iClass implementation in iClass.c
113 int RAMFUNC
LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
115 // Return when trace is full
116 if (traceLen
>= TRACE_SIZE
) return FALSE
;
118 // Trace the random, i'm curious
119 rsamples
+= iSamples
;
120 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
121 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
122 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
123 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
125 trace
[traceLen
- 1] |= 0x80;
127 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
128 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
129 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
130 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
131 trace
[traceLen
++] = iLen
;
132 memcpy(trace
+ traceLen
, btBytes
, iLen
);
137 //-----------------------------------------------------------------------------
138 // The software UART that receives commands from the reader, and its state
140 //-----------------------------------------------------------------------------
143 static RAMFUNC
int MillerDecoding(int bit
)
148 if(!Uart
.bitBuffer
) {
149 Uart
.bitBuffer
= bit
^ 0xFF0;
153 Uart
.bitBuffer
<<= 4;
154 Uart
.bitBuffer
^= bit
;
159 if(Uart
.state
!= STATE_UNSYNCD
) {
162 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
168 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
174 if(bit
!= bitright
) { bit
= bitright
; }
176 if(Uart
.posCnt
== 1) {
177 // measurement first half bitperiod
179 Uart
.drop
= DROP_FIRST_HALF
;
183 // measurement second half bitperiod
184 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
185 Uart
.drop
= DROP_SECOND_HALF
;
188 // measured a drop in first and second half
189 // which should not be possible
190 Uart
.state
= STATE_ERROR_WAIT
;
197 case STATE_START_OF_COMMUNICATION
:
199 if(Uart
.drop
== DROP_SECOND_HALF
) {
200 // error, should not happen in SOC
201 Uart
.state
= STATE_ERROR_WAIT
;
206 Uart
.state
= STATE_MILLER_Z
;
213 if(Uart
.drop
== DROP_NONE
) {
214 // logic '0' followed by sequence Y
215 // end of communication
216 Uart
.state
= STATE_UNSYNCD
;
219 // if(Uart.drop == DROP_FIRST_HALF) {
220 // Uart.state = STATE_MILLER_Z; stay the same
221 // we see a logic '0' }
222 if(Uart
.drop
== DROP_SECOND_HALF
) {
223 // we see a logic '1'
224 Uart
.shiftReg
|= 0x100;
225 Uart
.state
= STATE_MILLER_X
;
231 if(Uart
.drop
== DROP_NONE
) {
232 // sequence Y, we see a '0'
233 Uart
.state
= STATE_MILLER_Y
;
236 if(Uart
.drop
== DROP_FIRST_HALF
) {
237 // Would be STATE_MILLER_Z
238 // but Z does not follow X, so error
239 Uart
.state
= STATE_ERROR_WAIT
;
242 if(Uart
.drop
== DROP_SECOND_HALF
) {
243 // We see a '1' and stay in state X
244 Uart
.shiftReg
|= 0x100;
252 if(Uart
.drop
== DROP_NONE
) {
253 // logic '0' followed by sequence Y
254 // end of communication
255 Uart
.state
= STATE_UNSYNCD
;
258 if(Uart
.drop
== DROP_FIRST_HALF
) {
260 Uart
.state
= STATE_MILLER_Z
;
262 if(Uart
.drop
== DROP_SECOND_HALF
) {
263 // We see a '1' and go to state X
264 Uart
.shiftReg
|= 0x100;
265 Uart
.state
= STATE_MILLER_X
;
269 case STATE_ERROR_WAIT
:
270 // That went wrong. Now wait for at least two bit periods
271 // and try to sync again
272 if(Uart
.drop
== DROP_NONE
) {
274 Uart
.state
= STATE_UNSYNCD
;
279 Uart
.state
= STATE_UNSYNCD
;
284 Uart
.drop
= DROP_NONE
;
286 // should have received at least one whole byte...
287 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
291 if(Uart
.bitCnt
== 9) {
292 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
295 Uart
.parityBits
<<= 1;
296 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
299 // when End of Communication received and
300 // all data bits processed..
307 Uart.output[Uart.byteCnt] = 0xAA;
309 Uart.output[Uart.byteCnt] = error & 0xFF;
311 Uart.output[Uart.byteCnt] = 0xAA;
313 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
315 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
317 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
319 Uart.output[Uart.byteCnt] = 0xAA;
327 bit
= Uart
.bitBuffer
& 0xf0;
331 // should have been high or at least (4 * 128) / fc
332 // according to ISO this should be at least (9 * 128 + 20) / fc
333 if(Uart
.highCnt
== 8) {
334 // we went low, so this could be start of communication
335 // it turns out to be safer to choose a less significant
336 // syncbit... so we check whether the neighbour also represents the drop
337 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
338 Uart
.syncBit
= bit
& 8;
340 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
341 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
342 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
343 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
344 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
345 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
348 // the first half bit period is expected in next sample
353 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
356 Uart
.state
= STATE_START_OF_COMMUNICATION
;
357 Uart
.drop
= DROP_FIRST_HALF
;
368 if(Uart
.highCnt
< 8) {
377 //=============================================================================
378 // ISO 14443 Type A - Manchester
379 //=============================================================================
382 static RAMFUNC
int ManchesterDecoding(int v
)
398 if(Demod
.state
==DEMOD_UNSYNCD
) {
399 Demod
.output
[Demod
.len
] = 0xfa;
402 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
405 Demod
.syncBit
= 0x08;
412 Demod
.syncBit
= 0x04;
419 Demod
.syncBit
= 0x02;
422 if(bit
& 0x01 && Demod
.syncBit
) {
423 Demod
.syncBit
= 0x01;
428 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
429 Demod
.sub
= SUB_FIRST_HALF
;
432 Demod
.parityBits
= 0;
435 if(trigger
) LED_A_OFF();
436 switch(Demod
.syncBit
) {
437 case 0x08: Demod
.samples
= 3; break;
438 case 0x04: Demod
.samples
= 2; break;
439 case 0x02: Demod
.samples
= 1; break;
440 case 0x01: Demod
.samples
= 0; break;
447 //modulation = bit & Demod.syncBit;
448 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
452 if(Demod
.posCount
==0) {
455 Demod
.sub
= SUB_FIRST_HALF
;
458 Demod
.sub
= SUB_NONE
;
463 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
464 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
465 Demod
.state
= DEMOD_ERROR_WAIT
;
466 Demod
.output
[Demod
.len
] = 0xaa;
470 else if(modulation
) {
471 Demod
.sub
= SUB_SECOND_HALF
;
474 switch(Demod
.state
) {
475 case DEMOD_START_OF_COMMUNICATION
:
476 if(Demod
.sub
== SUB_FIRST_HALF
) {
477 Demod
.state
= DEMOD_MANCHESTER_D
;
480 Demod
.output
[Demod
.len
] = 0xab;
481 Demod
.state
= DEMOD_ERROR_WAIT
;
486 case DEMOD_MANCHESTER_D
:
487 case DEMOD_MANCHESTER_E
:
488 if(Demod
.sub
== SUB_FIRST_HALF
) {
490 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
491 Demod
.state
= DEMOD_MANCHESTER_D
;
493 else if(Demod
.sub
== SUB_SECOND_HALF
) {
495 Demod
.shiftReg
>>= 1;
496 Demod
.state
= DEMOD_MANCHESTER_E
;
499 Demod
.state
= DEMOD_MANCHESTER_F
;
503 case DEMOD_MANCHESTER_F
:
504 // Tag response does not need to be a complete byte!
505 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
506 if(Demod
.bitCount
> 0) {
507 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
508 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
510 // No parity bit, so just shift a 0
511 Demod
.parityBits
<<= 1;
514 Demod
.state
= DEMOD_UNSYNCD
;
518 Demod
.output
[Demod
.len
] = 0xad;
519 Demod
.state
= DEMOD_ERROR_WAIT
;
524 case DEMOD_ERROR_WAIT
:
525 Demod
.state
= DEMOD_UNSYNCD
;
529 Demod
.output
[Demod
.len
] = 0xdd;
530 Demod
.state
= DEMOD_UNSYNCD
;
534 if(Demod
.bitCount
>=9) {
535 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
538 Demod
.parityBits
<<= 1;
539 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
546 Demod.output[Demod.len] = 0xBB;
548 Demod.output[Demod.len] = error & 0xFF;
550 Demod.output[Demod.len] = 0xBB;
552 Demod.output[Demod.len] = bit & 0xFF;
554 Demod.output[Demod.len] = Demod.buffer & 0xFF;
556 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
558 Demod.output[Demod.len] = 0xBB;
565 } // end (state != UNSYNCED)
570 //=============================================================================
571 // Finally, a `sniffer' for ISO 14443 Type A
572 // Both sides of communication!
573 //=============================================================================
575 //-----------------------------------------------------------------------------
576 // Record the sequence of commands sent by the reader to the tag, with
577 // triggering so that we start recording at the point that the tag is moved
579 //-----------------------------------------------------------------------------
580 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
582 // bit 0 - trigger from first card answer
583 // bit 1 - trigger from first reader 7-bit request
587 iso14a_clear_trace();
589 // We won't start recording the frames that we acquire until we trigger;
590 // a good trigger condition to get started is probably when we see a
591 // response from the tag.
592 // triggered == FALSE -- to wait first for card
593 int triggered
= !(param
& 0x03);
595 // The command (reader -> tag) that we're receiving.
596 // The length of a received command will in most cases be no more than 18 bytes.
597 // So 32 should be enough!
598 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
599 // The response (tag -> reader) that we're receiving.
600 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
602 // As we receive stuff, we copy it from receivedCmd or receivedResponse
603 // into trace, along with its length and other annotations.
604 //uint8_t *trace = (uint8_t *)BigBuf;
606 // The DMA buffer, used to stream samples from the FPGA
607 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
608 int8_t *data
= dmaBuf
;
612 // Set up the demodulator for tag -> reader responses.
613 Demod
.output
= receivedResponse
;
615 Demod
.state
= DEMOD_UNSYNCD
;
617 // Set up the demodulator for the reader -> tag commands
618 memset(&Uart
, 0, sizeof(Uart
));
619 Uart
.output
= receivedCmd
;
620 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
621 Uart
.state
= STATE_UNSYNCD
;
623 // Setup for the DMA.
625 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
627 // And put the FPGA in the appropriate mode
628 // Signal field is off with the appropriate LED
630 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
631 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
633 // Count of samples received so far, so that we can include timing
634 // information in the trace buffer.
636 // And now we loop, receiving samples.
639 DbpString("cancelled by button");
646 int register readBufDataP
= data
- dmaBuf
;
647 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
648 if (readBufDataP
<= dmaBufDataP
){
649 dataLen
= dmaBufDataP
- readBufDataP
;
651 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
+ 1;
653 // test for length of buffer
654 if(dataLen
> maxDataLen
) {
655 maxDataLen
= dataLen
;
657 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
661 if(dataLen
< 1) continue;
663 // primary buffer was stopped( <-- we lost data!
664 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
665 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
666 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
668 // secondary buffer sets as primary, secondary buffer was stopped
669 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
670 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
671 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
677 if(MillerDecoding((data
[0] & 0xF0) >> 4)) {
680 // check - if there is a short 7bit request from reader
681 if ((!triggered
) && (param
& 0x02) && (Uart
.byteCnt
== 1) && (Uart
.bitCnt
= 9)) triggered
= TRUE
;
684 if (!LogTrace(receivedCmd
, Uart
.byteCnt
, 0 - Uart
.samples
, Uart
.parityBits
, TRUE
)) break;
686 /* And ready to receive another command. */
687 Uart
.state
= STATE_UNSYNCD
;
688 /* And also reset the demod code, which might have been */
689 /* false-triggered by the commands from the reader. */
690 Demod
.state
= DEMOD_UNSYNCD
;
694 if(ManchesterDecoding(data
[0] & 0x0F)) {
697 if (!LogTrace(receivedResponse
, Demod
.len
, 0 - Demod
.samples
, Demod
.parityBits
, FALSE
)) break;
699 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
701 // And ready to receive another response.
702 memset(&Demod
, 0, sizeof(Demod
));
703 Demod
.output
= receivedResponse
;
704 Demod
.state
= DEMOD_UNSYNCD
;
709 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
714 DbpString("COMMAND FINISHED");
717 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
718 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen
, Uart
.state
, Uart
.byteCnt
);
719 Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
723 //-----------------------------------------------------------------------------
724 // Prepare tag messages
725 //-----------------------------------------------------------------------------
726 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
732 // Correction bit, might be removed when not needed
737 ToSendStuffBit(1); // 1
743 ToSend
[++ToSendMax
] = SEC_D
;
745 for(i
= 0; i
< len
; i
++) {
750 for(j
= 0; j
< 8; j
++) {
752 ToSend
[++ToSendMax
] = SEC_D
;
754 ToSend
[++ToSendMax
] = SEC_E
;
759 // Get the parity bit
760 if ((dwParity
>> i
) & 0x01) {
761 ToSend
[++ToSendMax
] = SEC_D
;
763 ToSend
[++ToSendMax
] = SEC_E
;
768 ToSend
[++ToSendMax
] = SEC_F
;
770 // Convert from last byte pos to length
774 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
775 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
778 //-----------------------------------------------------------------------------
779 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
780 //-----------------------------------------------------------------------------
781 static void CodeStrangeAnswerAsTag()
787 // Correction bit, might be removed when not needed
792 ToSendStuffBit(1); // 1
798 ToSend
[++ToSendMax
] = SEC_D
;
801 ToSend
[++ToSendMax
] = SEC_E
;
804 ToSend
[++ToSendMax
] = SEC_E
;
807 ToSend
[++ToSendMax
] = SEC_D
;
810 ToSend
[++ToSendMax
] = SEC_F
;
812 // Flush the buffer in FPGA!!
813 for(i
= 0; i
< 5; i
++) {
814 ToSend
[++ToSendMax
] = SEC_F
;
817 // Convert from last byte pos to length
821 static void Code4bitAnswerAsTag(uint8_t cmd
)
827 // Correction bit, might be removed when not needed
832 ToSendStuffBit(1); // 1
838 ToSend
[++ToSendMax
] = SEC_D
;
841 for(i
= 0; i
< 4; i
++) {
843 ToSend
[++ToSendMax
] = SEC_D
;
845 ToSend
[++ToSendMax
] = SEC_E
;
851 ToSend
[++ToSendMax
] = SEC_F
;
853 // Flush the buffer in FPGA!!
854 for(i
= 0; i
< 5; i
++) {
855 ToSend
[++ToSendMax
] = SEC_F
;
858 // Convert from last byte pos to length
862 //-----------------------------------------------------------------------------
863 // Wait for commands from reader
864 // Stop when button is pressed
865 // Or return TRUE when command is captured
866 //-----------------------------------------------------------------------------
867 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
869 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
870 // only, since we are receiving, not transmitting).
871 // Signal field is off with the appropriate LED
873 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
875 // Now run a `software UART' on the stream of incoming samples.
876 Uart
.output
= received
;
877 Uart
.byteCntMax
= maxLen
;
878 Uart
.state
= STATE_UNSYNCD
;
883 if(BUTTON_PRESS()) return FALSE
;
885 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
886 AT91C_BASE_SSC
->SSC_THR
= 0x00;
888 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
889 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
890 if(MillerDecoding((b
& 0xf0) >> 4)) {
894 if(MillerDecoding(b
& 0x0f)) {
901 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
);
903 //-----------------------------------------------------------------------------
904 // Main loop of simulated tag: receive commands from reader, decide what
905 // response to send, and send it.
906 //-----------------------------------------------------------------------------
907 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
)
909 // Enable and clear the trace
911 iso14a_clear_trace();
913 // This function contains the tag emulation
916 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
917 uint8_t response1
[2];
920 case 1: { // MIFARE Classic
921 // Says: I am Mifare 1k - original line
926 case 2: { // MIFARE Ultralight
927 // Says: I am a stupid memory tag, no crypto
932 case 3: { // MIFARE DESFire
933 // Says: I am a DESFire tag, ph33r me
938 case 4: { // ISO/IEC 14443-4
939 // Says: I am a javacard (JCOP)
945 Dbprintf("Error: unkown tagtype (%d)",tagType
);
950 // The second response contains the (mandatory) first 24 bits of the UID
951 uint8_t response2
[5];
953 // Check if the uid uses the (optional) part
954 uint8_t response2a
[5];
957 num_to_bytes(uid_1st
,3,response2
+1);
958 num_to_bytes(uid_2nd
,4,response2a
);
959 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
961 // Configure the ATQA and SAK accordingly
962 response1
[0] |= 0x40;
965 num_to_bytes(uid_1st
,4,response2
);
966 // Configure the ATQA and SAK accordingly
967 response1
[0] &= 0xBF;
971 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
972 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
974 // Prepare the mandatory SAK (for 4 and 7 byte UID)
975 uint8_t response3
[3];
977 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
979 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
980 uint8_t response3a
[3];
981 response3a
[0] = sak
& 0xFB;
982 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
984 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
985 uint8_t response6
[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
986 ComputeCrc14443(CRC_14443_A
, response6
, 3, &response6
[3], &response6
[4]);
991 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
993 // 144 data bits (18 * 8)
996 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
997 // 1 just for the case
1001 // 166 bytes, since every bit that needs to be send costs us a byte
1004 // Respond with card type
1005 uint8_t *resp1
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1008 // Anticollision cascade1 - respond with uid
1009 uint8_t *resp2
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 166);
1012 // Anticollision cascade2 - respond with 2nd half of uid if asked
1013 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1014 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1017 // Acknowledge select - cascade 1
1018 uint8_t *resp3
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*2));
1021 // Acknowledge select - cascade 2
1022 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*3));
1025 // Response to a read request - not implemented atm
1026 uint8_t *resp4
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*4));
1029 // Authenticate response - nonce
1030 uint8_t *resp5
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*5));
1033 // Authenticate response - nonce
1034 uint8_t *resp6
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*6));
1037 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
1040 // To control where we are in the protocol
1044 // Just to allow some checks
1049 uint8_t* respdata
= NULL
;
1051 uint8_t nack
= 0x04;
1053 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1055 // Prepare the responses of the anticollision phase
1056 // there will be not enough time to do this at the moment the reader sends it REQA
1058 // Answer to request
1059 CodeIso14443aAsTag(response1
, sizeof(response1
));
1060 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1062 // Send our UID (cascade 1)
1063 CodeIso14443aAsTag(response2
, sizeof(response2
));
1064 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1066 // Answer to select (cascade1)
1067 CodeIso14443aAsTag(response3
, sizeof(response3
));
1068 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1070 // Send the cascade 2 2nd part of the uid
1071 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1072 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1074 // Answer to select (cascade 2)
1075 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1076 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1078 // Strange answer is an example of rare message size (3 bits)
1079 CodeStrangeAnswerAsTag();
1080 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1082 // Authentication answer (random nonce)
1083 CodeIso14443aAsTag(response5
, sizeof(response5
));
1084 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1086 // dummy ATS (pseudo-ATR), answer to RATS
1087 CodeIso14443aAsTag(response6
, sizeof(response6
));
1088 memcpy(resp6
, ToSend
, ToSendMax
); resp6Len
= ToSendMax
;
1090 // We need to listen to the high-frequency, peak-detected path.
1091 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1099 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
1100 DbpString("button press");
1103 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1104 // Okay, look at the command now.
1106 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1107 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1108 respdata
= response1
;
1109 respsize
= sizeof(response1
);
1110 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1111 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1112 respdata
= response1
;
1113 respsize
= sizeof(response1
);
1114 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1115 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1116 respdata
= response2
;
1117 respsize
= sizeof(response2
);
1118 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1119 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1120 respdata
= response2a
;
1121 respsize
= sizeof(response2a
);
1122 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1123 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1124 respdata
= response3
;
1125 respsize
= sizeof(response3
);
1126 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1127 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1128 respdata
= response3a
;
1129 respsize
= sizeof(response3a
);
1130 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1131 resp
= resp4
; respLen
= resp4Len
; order
= 4; // Do nothing
1132 Dbprintf("Read request from reader: %x %x",receivedCmd
[0],receivedCmd
[1]);
1134 respsize
= sizeof(nack
); // 4-bit answer
1135 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1136 // DbpString("Reader requested we HALT!:");
1138 resp
= resp1
; respLen
= 0; order
= 0;
1141 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1142 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1143 respdata
= response5
;
1144 respsize
= sizeof(response5
);
1145 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1146 resp
= resp6
; respLen
= resp6Len
; order
= 70;
1147 respdata
= response6
;
1148 respsize
= sizeof(response6
);
1150 if (order
== 7 && len
==8) {
1151 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1152 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1153 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1155 // Never seen this command before
1156 Dbprintf("Received unknown command (len=%d):",len
);
1157 Dbhexdump(len
,receivedCmd
,false);
1160 resp
= resp1
; respLen
= 0; order
= 0;
1165 // Count number of wakeups received after a halt
1166 if(order
== 6 && lastorder
== 5) { happened
++; }
1168 // Count number of other messages after a halt
1169 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1171 // Look at last parity bit to determine timing of answer
1172 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1173 // 1236, so correction bit needed
1177 if(cmdsRecvd
> 999) {
1178 DbpString("1000 commands later...");
1185 EmSendCmd14443aRaw(resp
, respLen
, receivedCmd
[0] == 0x52);
1189 LogTrace(receivedCmd
,len
, 0, Uart
.parityBits
, TRUE
);
1190 if (respdata
!= NULL
) {
1191 LogTrace(respdata
,respsize
, 0, SwapBits(GetParity(respdata
,respsize
),respsize
), FALSE
);
1193 if(traceLen
> TRACE_SIZE
) {
1194 DbpString("Trace full");
1199 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1202 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1206 //-----------------------------------------------------------------------------
1207 // Transmit the command (to the tag) that was placed in ToSend[].
1208 //-----------------------------------------------------------------------------
1209 static void TransmitFor14443a(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1213 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1219 for(c
= 0; c
< *wait
;) {
1220 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1221 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1224 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1225 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1233 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1234 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1240 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1241 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1246 if (samples
) *samples
= (c
+ *wait
) << 3;
1249 //-----------------------------------------------------------------------------
1250 // Code a 7-bit command without parity bit
1251 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1252 //-----------------------------------------------------------------------------
1253 void ShortFrameFromReader(const uint8_t bt
)
1261 // Start of Communication (Seq. Z)
1262 ToSend
[++ToSendMax
] = SEC_Z
;
1266 for(j
= 0; j
< 7; j
++) {
1269 ToSend
[++ToSendMax
] = SEC_X
;
1274 ToSend
[++ToSendMax
] = SEC_Z
;
1278 ToSend
[++ToSendMax
] = SEC_Y
;
1285 // End of Communication
1288 ToSend
[++ToSendMax
] = SEC_Z
;
1292 ToSend
[++ToSendMax
] = SEC_Y
;
1296 ToSend
[++ToSendMax
] = SEC_Y
;
1299 ToSend
[++ToSendMax
] = SEC_Y
;
1300 ToSend
[++ToSendMax
] = SEC_Y
;
1301 ToSend
[++ToSendMax
] = SEC_Y
;
1303 // Convert from last character reference to length
1307 //-----------------------------------------------------------------------------
1308 // Prepare reader command to send to FPGA
1310 //-----------------------------------------------------------------------------
1311 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1319 // Start of Communication (Seq. Z)
1320 ToSend
[++ToSendMax
] = SEC_Z
;
1323 // Generate send structure for the data bits
1324 for (i
= 0; i
< len
; i
++) {
1325 // Get the current byte to send
1328 for (j
= 0; j
< 8; j
++) {
1331 ToSend
[++ToSendMax
] = SEC_X
;
1336 ToSend
[++ToSendMax
] = SEC_Z
;
1339 ToSend
[++ToSendMax
] = SEC_Y
;
1346 // Get the parity bit
1347 if ((dwParity
>> i
) & 0x01) {
1349 ToSend
[++ToSendMax
] = SEC_X
;
1354 ToSend
[++ToSendMax
] = SEC_Z
;
1357 ToSend
[++ToSendMax
] = SEC_Y
;
1363 // End of Communication
1366 ToSend
[++ToSendMax
] = SEC_Z
;
1369 ToSend
[++ToSendMax
] = SEC_Y
;
1373 ToSend
[++ToSendMax
] = SEC_Y
;
1376 ToSend
[++ToSendMax
] = SEC_Y
;
1377 ToSend
[++ToSendMax
] = SEC_Y
;
1378 ToSend
[++ToSendMax
] = SEC_Y
;
1380 // Convert from last character reference to length
1384 //-----------------------------------------------------------------------------
1385 // Wait for commands from reader
1386 // Stop when button is pressed (return 1) or field was gone (return 2)
1387 // Or return 0 when command is captured
1388 //-----------------------------------------------------------------------------
1389 static int EmGetCmd(uint8_t *received
, int *len
, int maxLen
)
1393 uint32_t timer
= 0, vtime
= 0;
1397 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1398 // only, since we are receiving, not transmitting).
1399 // Signal field is off with the appropriate LED
1401 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1403 // Set ADC to read field strength
1404 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1405 AT91C_BASE_ADC
->ADC_MR
=
1406 ADC_MODE_PRESCALE(32) |
1407 ADC_MODE_STARTUP_TIME(16) |
1408 ADC_MODE_SAMPLE_HOLD_TIME(8);
1409 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1411 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1413 // Now run a 'software UART' on the stream of incoming samples.
1414 Uart
.output
= received
;
1415 Uart
.byteCntMax
= maxLen
;
1416 Uart
.state
= STATE_UNSYNCD
;
1421 if (BUTTON_PRESS()) return 1;
1423 // test if the field exists
1424 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1426 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1427 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1428 if (analogCnt
>= 32) {
1429 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1430 vtime
= GetTickCount();
1431 if (!timer
) timer
= vtime
;
1432 // 50ms no field --> card to idle state
1433 if (vtime
- timer
> 50) return 2;
1435 if (timer
) timer
= 0;
1441 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1442 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1444 // receive and test the miller decoding
1445 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1446 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1447 if(MillerDecoding((b
& 0xf0) >> 4)) {
1448 *len
= Uart
.byteCnt
;
1449 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1452 if(MillerDecoding(b
& 0x0f)) {
1453 *len
= Uart
.byteCnt
;
1454 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1461 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
)
1466 // Modulate Manchester
1467 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1468 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1471 // include correction bit
1473 if((Uart
.parityBits
& 0x01) || correctionNeeded
) {
1474 // 1236, so correction bit needed
1480 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1481 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1484 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1486 b
= 0xff; // was 0x00
1492 AT91C_BASE_SSC
->SSC_THR
= b
;
1496 if(BUTTON_PRESS()) {
1504 int EmSend4bitEx(uint8_t resp
, int correctionNeeded
){
1505 Code4bitAnswerAsTag(resp
);
1506 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1507 if (tracing
) LogTrace(&resp
, 1, GetDeltaCountUS(), GetParity(&resp
, 1), FALSE
);
1511 int EmSend4bit(uint8_t resp
){
1512 return EmSend4bitEx(resp
, 0);
1515 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
){
1516 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1517 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1518 if (tracing
) LogTrace(resp
, respLen
, GetDeltaCountUS(), par
, FALSE
);
1522 int EmSendCmdEx(uint8_t *resp
, int respLen
, int correctionNeeded
){
1523 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1526 int EmSendCmd(uint8_t *resp
, int respLen
){
1527 return EmSendCmdExPar(resp
, respLen
, 0, GetParity(resp
, respLen
));
1530 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1531 return EmSendCmdExPar(resp
, respLen
, 0, par
);
1534 //-----------------------------------------------------------------------------
1535 // Wait a certain time for tag response
1536 // If a response is captured return TRUE
1537 // If it takes to long return FALSE
1538 //-----------------------------------------------------------------------------
1539 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1541 // buffer needs to be 512 bytes
1544 // Set FPGA mode to "reader listen mode", no modulation (listen
1545 // only, since we are receiving, not transmitting).
1546 // Signal field is on with the appropriate LED
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1550 // Now get the answer from the card
1551 Demod
.output
= receivedResponse
;
1553 Demod
.state
= DEMOD_UNSYNCD
;
1556 if (elapsed
) *elapsed
= 0;
1562 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1563 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1564 if (elapsed
) (*elapsed
)++;
1566 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1567 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1568 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1569 if(ManchesterDecoding((b
>>4) & 0xf)) {
1570 *samples
= ((c
- 1) << 3) + 4;
1573 if(ManchesterDecoding(b
& 0x0f)) {
1581 void ReaderTransmitShort(const uint8_t* bt
)
1586 ShortFrameFromReader(*bt
);
1589 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1591 // Store reader command in buffer
1592 if (tracing
) LogTrace(bt
,1,0,GetParity(bt
,1),TRUE
);
1595 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
)
1600 // This is tied to other size changes
1601 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1602 CodeIso14443aAsReaderPar(frame
,len
,par
);
1605 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1609 // Store reader command in buffer
1610 if (tracing
) LogTrace(frame
,len
,0,par
,TRUE
);
1614 void ReaderTransmit(uint8_t* frame
, int len
)
1616 // Generate parity and redirect
1617 ReaderTransmitPar(frame
,len
,GetParity(frame
,len
));
1620 int ReaderReceive(uint8_t* receivedAnswer
)
1623 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1624 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1625 if(samples
== 0) return FALSE
;
1629 int ReaderReceivePar(uint8_t* receivedAnswer
, uint32_t * parptr
)
1632 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1633 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1634 *parptr
= Demod
.parityBits
;
1635 if(samples
== 0) return FALSE
;
1639 /* performs iso14443a anticolision procedure
1640 * fills the uid pointer unless NULL
1641 * fills resp_data unless NULL */
1642 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1643 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1644 uint8_t sel_all
[] = { 0x93,0x20 };
1645 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1646 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1647 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1649 size_t uid_resp_len
;
1651 uint8_t sak
= 0x04; // cascade uid
1652 int cascade_level
= 0;
1655 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1656 ReaderTransmitShort(wupa
);
1658 if(!ReaderReceive(resp
)) return 0;
1659 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1662 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1663 p_hi14a_card
->uidlen
= 0;
1664 memset(p_hi14a_card
->uid
,0,10);
1669 memset(uid_ptr
,0,10);
1672 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1673 // which case we need to make a cascade 2 request and select - this is a long UID
1674 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1675 for(; sak
& 0x04; cascade_level
++)
1677 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1678 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1681 ReaderTransmit(sel_all
,sizeof(sel_all
));
1682 if (!ReaderReceive(resp
)) return 0;
1684 // First backup the current uid
1685 memcpy(uid_resp
,resp
,4);
1687 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1689 // calculate crypto UID
1691 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1694 // Construct SELECT UID command
1695 memcpy(sel_uid
+2,resp
,5);
1696 AppendCrc14443a(sel_uid
,7);
1697 ReaderTransmit(sel_uid
,sizeof(sel_uid
));
1700 if (!ReaderReceive(resp
)) return 0;
1703 // Test if more parts of the uid are comming
1704 if ((sak
& 0x04) && uid_resp
[0] == 0x88) {
1705 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1706 // http://www.nxp.com/documents/application_note/AN10927.pdf
1707 memcpy(uid_ptr
, uid_ptr
+ 1, 3);
1712 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1716 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1717 p_hi14a_card
->uidlen
+= uid_resp_len
;
1722 p_hi14a_card
->sak
= sak
;
1723 p_hi14a_card
->ats_len
= 0;
1726 if( (sak
& 0x20) == 0) {
1727 return 2; // non iso14443a compliant tag
1730 // Request for answer to select
1731 if(p_hi14a_card
) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1732 AppendCrc14443a(rats
, 2);
1733 ReaderTransmit(rats
, sizeof(rats
));
1735 if (!(len
= ReaderReceive(resp
))) return 0;
1737 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1738 p_hi14a_card
->ats_len
= len
;
1741 // reset the PCB block number
1742 iso14_pcb_blocknum
= 0;
1746 void iso14443a_setup() {
1747 // Set up the synchronous serial port
1749 // Start from off (no field generated)
1750 // Signal field is off with the appropriate LED
1752 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1755 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1757 // Now give it time to spin up.
1758 // Signal field is on with the appropriate LED
1760 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1763 iso14a_timeout
= 2048; //default
1766 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1767 uint8_t real_cmd
[cmd_len
+4];
1768 real_cmd
[0] = 0x0a; //I-Block
1769 // put block number into the PCB
1770 real_cmd
[0] |= iso14_pcb_blocknum
;
1771 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1772 memcpy(real_cmd
+2, cmd
, cmd_len
);
1773 AppendCrc14443a(real_cmd
,cmd_len
+2);
1775 ReaderTransmit(real_cmd
, cmd_len
+4);
1776 size_t len
= ReaderReceive(data
);
1777 uint8_t * data_bytes
= (uint8_t *) data
;
1779 return 0; //DATA LINK ERROR
1780 // if we received an I- or R(ACK)-Block with a block number equal to the
1781 // current block number, toggle the current block number
1782 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1783 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1784 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1785 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1787 iso14_pcb_blocknum
^= 1;
1793 //-----------------------------------------------------------------------------
1794 // Read an ISO 14443a tag. Send out commands and store answers.
1796 //-----------------------------------------------------------------------------
1797 void ReaderIso14443a(UsbCommand
* c
)
1799 iso14a_command_t param
= c
->arg
[0];
1800 uint8_t * cmd
= c
->d
.asBytes
;
1801 size_t len
= c
->arg
[1];
1803 byte_t buf
[USB_CMD_DATA_SIZE
];
1805 iso14a_clear_trace();
1806 iso14a_set_tracing(true);
1808 if(param
& ISO14A_REQUEST_TRIGGER
) {
1809 iso14a_set_trigger(1);
1812 if(param
& ISO14A_CONNECT
) {
1814 arg0
= iso14443a_select_card(NULL
,(iso14a_card_select_t
*)buf
,NULL
);
1815 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(iso14a_card_select_t
));
1816 // UsbSendPacket((void *)ack, sizeof(UsbCommand));
1819 if(param
& ISO14A_SET_TIMEOUT
) {
1820 iso14a_timeout
= c
->arg
[2];
1823 if(param
& ISO14A_SET_TIMEOUT
) {
1824 iso14a_timeout
= c
->arg
[2];
1827 if(param
& ISO14A_APDU
) {
1828 arg0
= iso14_apdu(cmd
, len
, buf
);
1829 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1830 // UsbSendPacket((void *)ack, sizeof(UsbCommand));
1833 if(param
& ISO14A_RAW
) {
1834 if(param
& ISO14A_APPEND_CRC
) {
1835 AppendCrc14443a(cmd
,len
);
1838 ReaderTransmit(cmd
,len
);
1839 arg0
= ReaderReceive(buf
);
1840 // UsbSendPacket((void *)ack, sizeof(UsbCommand));
1841 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1844 if(param
& ISO14A_REQUEST_TRIGGER
) {
1845 iso14a_set_trigger(0);
1848 if(param
& ISO14A_NO_DISCONNECT
) {
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1856 //-----------------------------------------------------------------------------
1857 // Read an ISO 14443a tag. Send out commands and store answers.
1859 //-----------------------------------------------------------------------------
1860 void ReaderMifare(uint32_t parameter
)
1863 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1864 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1866 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1879 //byte_t par_mask = 0xff;
1886 byte_t nt
[4] = {0,0,0,0};
1887 byte_t nt_attacked
[4], nt_noattack
[4];
1888 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1889 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1890 num_to_bytes(parameter
, 4, nt_noattack
);
1891 int isOK
= 0, isNULL
= 0;
1896 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1898 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1902 // Test if the action was cancelled
1903 if(BUTTON_PRESS()) {
1907 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) continue;
1909 // Transmit MIFARE_CLASSIC_AUTH
1910 ReaderTransmit(mf_auth
, sizeof(mf_auth
));
1912 // Receive the (16 bit) "random" nonce
1913 if (!ReaderReceive(receivedAnswer
)) continue;
1914 memcpy(nt
, receivedAnswer
, 4);
1916 // Transmit reader nonce and reader answer
1917 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
),par
);
1919 // Receive 4 bit answer
1920 if (ReaderReceive(receivedAnswer
))
1922 if ( (parameter
!= 0) && (memcmp(nt
, nt_noattack
, 4) == 0) ) continue;
1924 isNULL
= !(nt_attacked
[0] == 0) && (nt_attacked
[1] == 0) && (nt_attacked
[2] == 0) && (nt_attacked
[3] == 0);
1925 if ( (isNULL
!= 0 ) && (memcmp(nt
, nt_attacked
, 4) != 0) ) continue;
1930 memcpy(nt_attacked
, nt
, 4);
1932 par_low
= par
& 0x07;
1936 if(led_on
) LED_B_ON(); else LED_B_OFF();
1937 par_list
[nt_diff
] = par
;
1938 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
1940 // Test if the information is complete
1941 if (nt_diff
== 0x07) {
1946 nt_diff
= (nt_diff
+ 1) & 0x07;
1947 mf_nr_ar
[3] = nt_diff
<< 5;
1954 par
= (((par
>> 3) + 1) << 3) | par_low
;
1959 LogTrace(nt
, 4, 0, GetParity(nt
, 4), TRUE
);
1960 LogTrace(par_list
, 8, 0, GetParity(par_list
, 8), TRUE
);
1961 LogTrace(ks_list
, 8, 0, GetParity(ks_list
, 8), TRUE
);
1964 // UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1965 memcpy(buf
+ 0, uid
, 4);
1966 memcpy(buf
+ 4, nt
, 4);
1967 memcpy(buf
+ 8, par_list
, 8);
1968 memcpy(buf
+ 16, ks_list
, 8);
1971 cmd_send(CMD_ACK
,isOK
,0,0,buf
,48);
1972 // UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1980 if (MF_DBGLEVEL
>= 1) DbpString("COMMAND mifare FINISHED");
1984 //-----------------------------------------------------------------------------
1985 // MIFARE 1K simulate.
1987 //-----------------------------------------------------------------------------
1988 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1990 int cardSTATE
= MFEMUL_NOFIELD
;
1992 int vHf
= 0; // in mV
1993 //int nextCycleTimeout = 0;
1995 // uint32_t timer = 0;
1996 uint32_t selTimer
= 0;
1997 uint32_t authTimer
= 0;
2000 uint8_t cardWRBL
= 0;
2001 uint8_t cardAUTHSC
= 0;
2002 uint8_t cardAUTHKEY
= 0xff; // no authentication
2003 //uint32_t cardRn = 0;
2004 uint32_t cardRr
= 0;
2006 //uint32_t rn_enc = 0;
2008 uint32_t cardINTREG
= 0;
2009 uint8_t cardINTBLOCK
= 0;
2010 struct Crypto1State mpcs
= {0, 0};
2011 struct Crypto1State
*pcs
;
2014 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2015 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2017 static uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2019 static uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2020 static uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2022 static uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2023 static uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2025 static uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2026 // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
2027 static uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2033 // Authenticate response - nonce
2034 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2036 // get UID from emul memory
2037 emlGetMemBt(receivedCmd
, 7, 1);
2038 _7BUID
= !(receivedCmd
[0] == 0x00);
2039 if (!_7BUID
) { // ---------- 4BUID
2042 emlGetMemBt(rUIDBCC1
, 0, 4);
2043 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2044 } else { // ---------- 7BUID
2048 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2049 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2050 emlGetMemBt(rUIDBCC2
, 3, 4);
2051 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2054 // -------------------------------------- test area
2056 // -------------------------------------- END test area
2057 // start mkseconds counter
2060 // We need to listen to the high-frequency, peak-detected path.
2061 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2064 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2067 if (MF_DBGLEVEL
>= 1) Dbprintf("Started. 7buid=%d", _7BUID
);
2068 // calibrate mkseconds counter
2073 if(BUTTON_PRESS()) {
2077 // find reader field
2078 // Vref = 3300mV, and an 10:1 voltage divider on the input
2079 // can measure voltages up to 33000 mV
2080 if (cardSTATE
== MFEMUL_NOFIELD
) {
2081 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2082 if (vHf
> MF_MINFIELDV
) {
2083 cardSTATE_TO_IDLE();
2088 if (cardSTATE
!= MFEMUL_NOFIELD
) {
2089 res
= EmGetCmd(receivedCmd
, &len
, RECV_CMD_SIZE
); // (+ nextCycleTimeout)
2091 cardSTATE
= MFEMUL_NOFIELD
;
2098 //nextCycleTimeout = 0;
2100 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2102 if (len
!= 4 && cardSTATE
!= MFEMUL_NOFIELD
) { // len != 4 <---- speed up the code 4 authentication
2103 // REQ or WUP request in ANY state and WUP in HALTED state
2104 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2105 selTimer
= GetTickCount();
2106 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2107 cardSTATE
= MFEMUL_SELECT1
;
2109 // init crypto block
2112 crypto1_destroy(pcs
);
2117 switch (cardSTATE
) {
2118 case MFEMUL_NOFIELD
:{
2121 case MFEMUL_HALTED
:{
2127 case MFEMUL_SELECT1
:{
2129 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2130 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2136 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2138 EmSendCmd(rSAK
, sizeof(rSAK
));
2140 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2142 cuid
= bytes_to_num(rUIDBCC1
, 4);
2144 cardSTATE
= MFEMUL_WORK
;
2146 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2149 cardSTATE
= MFEMUL_SELECT2
;
2156 case MFEMUL_SELECT2
:{
2159 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2160 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2166 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2167 EmSendCmd(rSAK
, sizeof(rSAK
));
2169 cuid
= bytes_to_num(rUIDBCC2
, 4);
2170 cardSTATE
= MFEMUL_WORK
;
2172 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2176 // i guess there is a command). go into the work state.
2177 if (len
!= 4) break;
2178 cardSTATE
= MFEMUL_WORK
;
2184 //rn_enc = bytes_to_num(receivedCmd, 4);
2185 //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
2186 cardRr
= bytes_to_num(&receivedCmd
[4], 4) ^ crypto1_word(pcs
, 0, 0);
2188 if (cardRr
!= prng_successor(nonce
, 64)){
2189 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr
, prng_successor(nonce
, 64));
2190 cardSTATE_TO_IDLE();
2193 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2194 num_to_bytes(ans
, 4, rAUTH_AT
);
2196 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2197 cardSTATE
= MFEMUL_AUTH2
;
2199 cardSTATE_TO_IDLE();
2201 if (cardSTATE
!= MFEMUL_AUTH2
) break;
2205 cardSTATE
= MFEMUL_WORK
;
2206 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2210 lbWORK
: if (len
== 0) break;
2212 if (cardAUTHKEY
== 0xff) {
2213 // first authentication
2214 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2215 authTimer
= GetTickCount();
2217 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2218 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2221 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2222 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2223 num_to_bytes(nonce
, 4, rAUTH_AT
);
2224 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2227 // last working revision
2228 // EmSendCmd14443aRaw(resp1, resp1Len, 0);
2229 // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
2231 cardSTATE
= MFEMUL_AUTH1
;
2232 //nextCycleTimeout = 10;
2237 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2239 // nested authentication
2240 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2241 authTimer
= GetTickCount();
2243 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2244 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2247 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2248 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2249 num_to_bytes(ans
, 4, rAUTH_AT
);
2250 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2253 cardSTATE
= MFEMUL_AUTH1
;
2254 //nextCycleTimeout = 10;
2259 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2260 // BUT... ACK --> NACK
2261 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2262 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2266 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2267 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2268 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2273 if (len
== 4 && receivedCmd
[0] == 0x30) {
2274 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2275 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2278 emlGetMem(response
, receivedCmd
[1], 1);
2279 AppendCrc14443a(response
, 16);
2280 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2281 EmSendCmdPar(response
, 18, par
);
2286 if (len
== 4 && receivedCmd
[0] == 0xA0) {
2287 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2288 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2291 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2292 //nextCycleTimeout = 50;
2293 cardSTATE
= MFEMUL_WRITEBL2
;
2294 cardWRBL
= receivedCmd
[1];
2298 // works with cardINTREG
2300 // increment, decrement, restore
2301 if (len
== 4 && (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2)) {
2302 if (receivedCmd
[1] >= 16 * 4 ||
2303 receivedCmd
[1] / 4 != cardAUTHSC
||
2304 emlCheckValBl(receivedCmd
[1])) {
2305 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2308 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2309 if (receivedCmd
[0] == 0xC1)
2310 cardSTATE
= MFEMUL_INTREG_INC
;
2311 if (receivedCmd
[0] == 0xC0)
2312 cardSTATE
= MFEMUL_INTREG_DEC
;
2313 if (receivedCmd
[0] == 0xC2)
2314 cardSTATE
= MFEMUL_INTREG_REST
;
2315 cardWRBL
= receivedCmd
[1];
2322 if (len
== 4 && receivedCmd
[0] == 0xB0) {
2323 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2324 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2328 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2329 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2331 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2337 if (len
== 4 && (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00)) {
2340 cardSTATE
= MFEMUL_HALTED
;
2341 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2345 // command not allowed
2347 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2354 case MFEMUL_WRITEBL2
:{
2356 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2357 emlSetMem(receivedCmd
, cardWRBL
, 1);
2358 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2359 cardSTATE
= MFEMUL_WORK
;
2362 cardSTATE_TO_IDLE();
2368 case MFEMUL_INTREG_INC
:{
2369 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2370 memcpy(&ans
, receivedCmd
, 4);
2371 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2372 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2373 cardSTATE_TO_IDLE();
2376 cardINTREG
= cardINTREG
+ ans
;
2377 cardSTATE
= MFEMUL_WORK
;
2380 case MFEMUL_INTREG_DEC
:{
2381 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2382 memcpy(&ans
, receivedCmd
, 4);
2383 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2384 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2385 cardSTATE_TO_IDLE();
2388 cardINTREG
= cardINTREG
- ans
;
2389 cardSTATE
= MFEMUL_WORK
;
2392 case MFEMUL_INTREG_REST
:{
2393 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2394 memcpy(&ans
, receivedCmd
, 4);
2395 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2396 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2397 cardSTATE_TO_IDLE();
2400 cardSTATE
= MFEMUL_WORK
;
2406 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2409 // add trace trailer
2410 memset(rAUTH_NT
, 0x44, 4);
2411 LogTrace(rAUTH_NT
, 4, 0, 0, TRUE
);
2413 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2416 //-----------------------------------------------------------------------------
2419 //-----------------------------------------------------------------------------
2420 void RAMFUNC
SniffMifare(uint8_t param
) {
2422 // bit 0 - trigger from first card answer
2423 // bit 1 - trigger from first reader 7-bit request
2425 // C(red) A(yellow) B(green)
2427 // init trace buffer
2428 iso14a_clear_trace();
2430 // The command (reader -> tag) that we're receiving.
2431 // The length of a received command will in most cases be no more than 18 bytes.
2432 // So 32 should be enough!
2433 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2434 // The response (tag -> reader) that we're receiving.
2435 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2437 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2438 // into trace, along with its length and other annotations.
2439 //uint8_t *trace = (uint8_t *)BigBuf;
2441 // The DMA buffer, used to stream samples from the FPGA
2442 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2443 int8_t *data
= dmaBuf
;
2447 // Set up the demodulator for tag -> reader responses.
2448 Demod
.output
= receivedResponse
;
2450 Demod
.state
= DEMOD_UNSYNCD
;
2452 // Set up the demodulator for the reader -> tag commands
2453 memset(&Uart
, 0, sizeof(Uart
));
2454 Uart
.output
= receivedCmd
;
2455 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
2456 Uart
.state
= STATE_UNSYNCD
;
2458 // Setup for the DMA.
2460 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
2462 // And put the FPGA in the appropriate mode
2463 // Signal field is off with the appropriate LED
2465 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
2466 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2470 int sniffCounter
= 0;
2472 // And now we loop, receiving samples.
2474 if(BUTTON_PRESS()) {
2475 DbpString("cancelled by button");
2482 if (++sniffCounter
> 65) {
2483 if (MfSniffSend(2000)) {
2489 int register readBufDataP
= data
- dmaBuf
;
2490 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
2491 if (readBufDataP
<= dmaBufDataP
){
2492 dataLen
= dmaBufDataP
- readBufDataP
;
2494 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
+ 1;
2496 // test for length of buffer
2497 if(dataLen
> maxDataLen
) {
2498 maxDataLen
= dataLen
;
2500 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2504 if(dataLen
< 1) continue;
2506 // primary buffer was stopped( <-- we lost data!
2507 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2508 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2509 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2510 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2512 // secondary buffer sets as primary, secondary buffer was stopped
2513 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2514 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2515 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2520 if(MillerDecoding((data
[0] & 0xF0) >> 4)) {
2522 // check - if there is a short 7bit request from reader
2523 if (MfSniffLogic(receivedCmd
, Uart
.byteCnt
, Uart
.parityBits
, Uart
.bitCnt
, TRUE
)) break;
2525 /* And ready to receive another command. */
2526 Uart
.state
= STATE_UNSYNCD
;
2528 /* And also reset the demod code */
2529 Demod
.state
= DEMOD_UNSYNCD
;
2532 if(ManchesterDecoding(data
[0] & 0x0F)) {
2535 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2537 // And ready to receive another response.
2538 memset(&Demod
, 0, sizeof(Demod
));
2539 Demod
.output
= receivedResponse
;
2540 Demod
.state
= DEMOD_UNSYNCD
;
2542 /* And also reset the uart code */
2543 Uart
.state
= STATE_UNSYNCD
;
2547 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
2552 DbpString("COMMAND FINISHED");
2555 FpgaDisableSscDma();
2558 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen
, Uart
.state
, Uart
.byteCnt
, Uart
.byteCntMax
);