1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
27 #include "proxmark3.h"
31 #include "util_posix.h"
32 #include "crapto1/crapto1.h"
34 #include "hardnested/hardnested_bruteforce.h"
35 #include "hardnested/hardnested_bitarray_core.h"
38 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
39 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
41 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
43 #define STATE_FILES_DIRECTORY "hardnested/tables/"
44 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z"
46 #define DEBUG_KEY_ELIMINATION
47 // #define DEBUG_REDUCTION
49 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
51 #define NUM_PART_SUMS 9 // number of possible partial sum property values
58 static uint32_t num_acquired_nonces
= 0;
59 static uint64_t start_time
= 0;
60 static uint16_t effective_bitflip
[2][0x400];
61 static uint16_t num_effective_bitflips
[2] = {0, 0};
62 static uint16_t all_effective_bitflip
[0x400];
63 static uint16_t num_all_effective_bitflips
= 0;
64 static uint16_t num_1st_byte_effective_bitflips
= 0;
65 #define CHECK_1ST_BYTES 0x01
66 #define CHECK_2ND_BYTES 0x02
67 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
68 static uint64_t known_target_key
;
69 static uint32_t test_state
[2] = {0,0};
70 static float brute_force_per_second
;
73 static void get_SIMD_instruction_set(char* instruction_set
) {
74 #if defined (__i386__) || defined (__x86_64__)
75 #if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8))
76 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
77 if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set
, "AVX512F");
78 else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
80 if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
82 else if (__builtin_cpu_supports("avx")) strcpy(instruction_set
, "AVX");
83 else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set
, "SSE2");
84 else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set
, "MMX");
88 strcpy(instruction_set
, "no");
92 static void print_progress_header(void) {
93 char progress_text
[80];
94 char instr_set
[12] = "";
95 get_SIMD_instruction_set(instr_set
);
96 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
98 PrintAndLog(" time | #nonces | Activity | expected to brute force");
99 PrintAndLog(" | | | #states | time ");
100 PrintAndLog("------------------------------------------------------------------------------------------------------");
101 PrintAndLog(" 0 | 0 | %-55s | |", progress_text
);
105 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
106 static uint64_t last_print_time
= 0;
107 if (msclock() - last_print_time
> min_diff_print_time
) {
108 last_print_time
= msclock();
109 uint64_t total_time
= msclock() - start_time
;
110 float brute_force_time
= brute_force
/ brute_force_per_second
;
111 char brute_force_time_string
[20];
112 if (brute_force_time
< 90) {
113 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
114 } else if (brute_force_time
< 60 * 90) {
115 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60);
116 } else if (brute_force_time
< 60 * 60 * 36) {
117 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60));
119 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24));
121 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
126 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
127 // bitarray functions
129 static inline void clear_bitarray24(uint32_t *bitarray
)
131 memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19));
135 static inline void set_bitarray24(uint32_t *bitarray
)
137 memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19));
141 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
)
143 bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f);
147 static inline void clear_bit24(uint32_t *bitarray
, uint32_t index
)
149 bitarray
[index
>>5] &= ~(0x80000000>>(index
&0x0000001f));
153 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
)
155 return bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f));
159 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
)
161 if (++state
== 1<<24) return 1<<24;
162 uint32_t index
= state
>> 5;
163 uint_fast8_t bit
= state
& 0x1f;
164 uint32_t line
= bitarray
[index
] << bit
;
165 while (bit
<= 0x1f) {
166 if (line
& 0x80000000) return state
;
172 while (bitarray
[index
] == 0x00000000 && state
< 1<<24) {
176 if (state
>= 1<<24) return 1<<24;
178 return state
+ __builtin_clz(bitarray
[index
]);
181 line
= bitarray
[index
];
182 while (bit
<= 0x1f) {
183 if (line
& 0x80000000) return state
;
193 static inline uint32_t next_not_state(uint32_t *bitarray
, uint32_t state
)
195 if (++state
== 1<<24) return 1<<24;
196 uint32_t index
= state
>> 5;
197 uint_fast8_t bit
= state
& 0x1f;
198 uint32_t line
= bitarray
[index
] << bit
;
199 while (bit
<= 0x1f) {
200 if ((line
& 0x80000000) == 0) return state
;
206 while (bitarray
[index
] == 0xffffffff && state
< 1<<24) {
210 if (state
>= 1<<24) return 1<<24;
212 return state
+ __builtin_clz(~bitarray
[index
]);
215 line
= bitarray
[index
];
216 while (bit
<= 0x1f) {
217 if ((line
& 0x80000000) == 0) return state
;
229 #define BITFLIP_2ND_BYTE 0x0200
232 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
233 // bitflip property bitarrays
235 static uint32_t *bitflip_bitarrays
[2][0x400];
236 static uint32_t count_bitflip_bitarrays
[2][0x400];
238 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
)
240 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
241 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
242 return (count1
> count2
) - (count2
> count1
);
246 static voidpf
inflate_malloc(voidpf opaque
, uInt items
, uInt size
)
248 return malloc(items
*size
);
252 static void inflate_free(voidpf opaque
, voidpf address
)
257 #define OUTPUT_BUFFER_LEN 80
258 #define INPUT_BUFFER_LEN 80
260 //----------------------------------------------------------------------------
261 // Initialize decompression of the respective (HF or LF) FPGA stream
262 //----------------------------------------------------------------------------
263 static void init_inflate(z_streamp compressed_stream
, uint8_t *input_buffer
, uint32_t insize
, uint8_t *output_buffer
, uint32_t outsize
)
266 // initialize z_stream structure for inflate:
267 compressed_stream
->next_in
= input_buffer
;
268 compressed_stream
->avail_in
= insize
;
269 compressed_stream
->next_out
= output_buffer
;
270 compressed_stream
->avail_out
= outsize
;
271 compressed_stream
->zalloc
= &inflate_malloc
;
272 compressed_stream
->zfree
= &inflate_free
;
274 inflateInit2(compressed_stream
, 0);
279 static void init_bitflip_bitarrays(void)
281 #if defined (DEBUG_REDUCTION)
286 z_stream compressed_stream
;
288 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
289 char state_file_name
[strlen(STATE_FILE_TEMPLATE
)+1];
291 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
292 num_effective_bitflips
[odd_even
] = 0;
293 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
294 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
295 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24;
296 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
297 strcpy(state_files_path
, get_my_executable_directory());
298 strcat(state_files_path
, STATE_FILES_DIRECTORY
);
299 strcat(state_files_path
, state_file_name
);
300 FILE *statesfile
= fopen(state_files_path
, "rb");
301 if (statesfile
== NULL
) {
304 fseek(statesfile
, 0, SEEK_END
);
305 uint32_t filesize
= (uint32_t)ftell(statesfile
);
307 uint8_t input_buffer
[filesize
];
308 size_t bytesread
= fread(input_buffer
, 1, filesize
, statesfile
);
309 if (bytesread
!= filesize
) {
310 printf("File read error with %s. Aborting...\n", state_file_name
);
312 inflateEnd(&compressed_stream
);
317 init_inflate(&compressed_stream
, input_buffer
, filesize
, (uint8_t *)&count
, sizeof(count
));
318 inflate(&compressed_stream
, Z_SYNC_FLUSH
);
319 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) {
320 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
321 if (bitset
== NULL
) {
322 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
323 inflateEnd(&compressed_stream
);
326 compressed_stream
.next_out
= (uint8_t *)bitset
;
327 compressed_stream
.avail_out
= sizeof(uint32_t) * (1<<19);
328 inflate(&compressed_stream
, Z_SYNC_FLUSH
);
329 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
330 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
331 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
332 #if defined (DEBUG_REDUCTION)
333 printf("(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0);
341 inflateEnd(&compressed_stream
);
344 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
349 num_all_effective_bitflips
= 0;
350 num_1st_byte_effective_bitflips
= 0;
351 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
352 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
353 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
355 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
356 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
359 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
362 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) {
363 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
366 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
367 #if defined (DEBUG_REDUCTION)
368 printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
369 for(uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
370 printf("%03x ", all_effective_bitflip
[i
]);
373 qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
374 #if defined (DEBUG_REDUCTION)
375 printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
376 for(uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
377 printf("%03x ", all_effective_bitflip
[i
]);
380 char progress_text
[80];
381 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
382 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
386 static void free_bitflip_bitarrays(void)
388 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
389 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
391 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
392 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
397 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
398 // sum property bitarrays
400 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
401 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
402 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
404 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
407 for (uint16_t j
= 0; j
< 16; j
++) {
409 uint16_t part_sum
= 0;
410 if (odd_even
== ODD_STATE
) {
411 for (uint16_t i
= 0; i
< 5; i
++) {
412 part_sum
^= filter(st
);
413 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
415 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
417 for (uint16_t i
= 0; i
< 4; i
++) {
418 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
419 part_sum
^= filter(st
);
428 static void init_part_sum_bitarrays(void)
430 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
431 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
432 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
433 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
434 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
437 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
440 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
441 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
442 for (uint32_t state
= 0; state
< (1<<20); state
++) {
443 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
444 for (uint16_t low_bits
= 0; low_bits
< 1<<4; low_bits
++) {
445 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
);
450 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
451 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
452 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
453 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
454 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
457 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
460 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
461 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
462 for (uint32_t state
= 0; state
< (1<<20); state
++) {
463 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
464 for (uint16_t high_bits
= 0; high_bits
< 1<<4; high_bits
++) {
465 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<<20);
472 static void free_part_sum_bitarrays(void)
474 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
475 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
477 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
478 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
480 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
481 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
483 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
484 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
489 static void init_sum_bitarrays(void)
491 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
492 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
493 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
494 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
495 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
498 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
501 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
502 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
503 uint16_t sum_a0
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
;
504 uint16_t sum_a0_idx
= 0;
505 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
506 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
507 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
510 // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
511 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
512 // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
513 // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
519 static void free_sum_bitarrays(void)
521 for (int8_t sum_a0
= NUM_SUMS
-1; sum_a0
>= 0; sum_a0
--) {
522 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
523 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
528 #ifdef DEBUG_KEY_ELIMINATION
529 char failstr
[250] = "";
532 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
533 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
536 static float my_p_K
[NUM_SUMS
];
538 static const float *p_K
;
540 static uint32_t cuid
;
541 static noncelist_t nonces
[256];
542 static uint8_t best_first_bytes
[256];
543 static uint64_t maximum_states
= 0;
544 static uint8_t best_first_byte_smallest_bitarray
= 0;
545 static uint16_t first_byte_Sum
= 0;
546 static uint16_t first_byte_num
= 0;
547 static bool write_stats
= false;
548 static FILE *fstats
= NULL
;
549 static uint32_t *all_bitflips_bitarray
[2];
550 static uint32_t num_all_bitflips_bitarray
[2];
551 static bool all_bitflips_bitarray_dirty
[2];
552 static uint64_t last_sample_clock
= 0;
553 static uint64_t sample_period
= 0;
554 static uint64_t num_keys_tested
= 0;
555 static statelist_t
*candidates
= NULL
;
558 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
560 uint8_t first_byte
= nonce_enc
>> 24;
561 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
562 noncelistentry_t
*p2
= NULL
;
564 if (p1
== NULL
) { // first nonce with this 1st byte
566 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
569 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
574 if (p1
== NULL
) { // need to add at the end of the list
575 if (p2
== NULL
) { // list is empty yet. Add first entry.
576 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
577 } else { // add new entry at end of existing list.
578 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
580 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
581 if (p2
== NULL
) { // need to insert at start of list
582 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
584 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
586 } else { // we have seen this 2nd byte before. Nothing to add or insert.
590 // add or insert new data
592 p2
->nonce_enc
= nonce_enc
;
593 p2
->par_enc
= par_enc
;
595 nonces
[first_byte
].num
++;
596 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
597 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
598 return (1); // new nonce added
602 static void init_nonce_memory(void)
604 for (uint16_t i
= 0; i
< 256; i
++) {
607 nonces
[i
].first
= NULL
;
608 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++) {
609 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
610 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
612 nonces
[i
].sum_a8_guess_dirty
= false;
613 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
614 nonces
[i
].BitFlips
[bitflip
] = 0;
616 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
617 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
618 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
621 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
622 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
623 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
624 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
625 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
628 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
629 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
630 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
631 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
638 static void free_nonce_list(noncelistentry_t
*p
)
643 free_nonce_list(p
->next
);
649 static void free_nonces_memory(void)
651 for (uint16_t i
= 0; i
< 256; i
++) {
652 free_nonce_list(nonces
[i
].first
);
654 for (int i
= 255; i
>= 0; i
--) {
655 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
656 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
661 // static double p_hypergeometric_cache[257][NUM_SUMS][257];
663 // #define CACHE_INVALID -1.0
664 // static void init_p_hypergeometric_cache(void)
666 // for (uint16_t n = 0; n <= 256; n++) {
667 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
668 // for (uint16_t k = 0; k <= 256; k++) {
669 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
676 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)
678 // for efficient computation we are using the recursive definition
680 // P(X=k) = P(X=k-1) * --------------------
683 // (N-K)*(N-K-1)*...*(N-K-n+1)
684 // P(X=0) = -----------------------------
685 // N*(N-1)*...*(N-n+1)
688 uint16_t const N
= 256;
689 uint16_t K
= sums
[i_K
];
691 // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
692 // return p_hypergeometric_cache[n][i_K][k];
695 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
697 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
698 double log_result
= 0.0;
699 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
700 log_result
+= log(i
);
702 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
703 log_result
-= log(i
);
705 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
706 return exp(log_result
);
708 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
709 double log_result
= 0.0;
710 for (int16_t i
= k
+1; i
<= n
; i
++) {
711 log_result
+= log(i
);
713 for (int16_t i
= K
+1; i
<= N
; i
++) {
714 log_result
-= log(i
);
716 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
717 return exp(log_result
);
718 } else { // recursion
719 return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
725 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
)
727 if (k
> sums
[i_K
]) return 0.0;
729 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
730 double p_S_is_K
= p_K
[i_K
];
732 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
733 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
735 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
739 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
741 static void init_allbitflips_array(void)
743 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
744 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
745 if (bitset
== NULL
) {
746 printf("Out of memory in init_allbitflips_array(). Aborting...");
749 set_bitarray24(bitset
);
750 all_bitflips_bitarray_dirty
[odd_even
] = false;
751 num_all_bitflips_bitarray
[odd_even
] = 1<<24;
756 static void update_allbitflips_array(void)
758 if (hardnested_stage
& CHECK_2ND_BYTES
) {
759 for (uint16_t i
= 0; i
< 256; i
++) {
760 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
761 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
762 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
763 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
764 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
765 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
766 all_bitflips_bitarray_dirty
[odd_even
] = true;
775 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
777 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
781 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
783 if (odd_even
== ODD_STATE
) {
784 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
785 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
786 nonces
[first_byte
].states_bitarray
[odd_even
]);
788 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
789 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
790 nonces
[first_byte
].states_bitarray
[odd_even
],
791 nonces
[first_byte
^0x80].states_bitarray
[odd_even
]);
794 // estimate reduction by all_bitflips_match()
796 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
797 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
804 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
)
806 uint64_t num_states
= 0;
807 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
808 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
809 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
810 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
811 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
812 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
813 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
814 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
825 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
)
827 uint64_t num_states
= 0;
828 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
829 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
830 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
831 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
832 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
833 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
834 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
835 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
846 static void update_p_K(void)
848 if (hardnested_stage
& CHECK_2ND_BYTES
) {
849 uint64_t total_count
= 0;
850 uint16_t sum_a0
= sums
[first_byte_Sum
];
851 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
852 uint16_t sum_a8
= sums
[sum_a8_idx
];
853 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
855 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
856 uint16_t sum_a8
= sums
[sum_a8_idx
];
857 my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
;
859 // printf("my_p_K = [");
860 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
861 // printf("%7.4f ", my_p_K[sum_a8_idx]);
868 static void update_sum_bitarrays(odd_even_t odd_even
)
870 if (all_bitflips_bitarray_dirty
[odd_even
]) {
871 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
872 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
873 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
875 for (uint16_t i
= 0; i
< 256; i
++) {
876 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
878 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
879 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
880 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
881 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
884 all_bitflips_bitarray_dirty
[odd_even
] = false;
889 static int compare_expected_num_brute_force(const void *b1
, const void *b2
)
891 uint8_t index1
= *(uint8_t *)b1
;
892 uint8_t index2
= *(uint8_t *)b2
;
893 float score1
= nonces
[index1
].expected_num_brute_force
;
894 float score2
= nonces
[index2
].expected_num_brute_force
;
895 return (score1
> score2
) - (score1
< score2
);
899 static int compare_sum_a8_guess(const void *b1
, const void *b2
)
901 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
902 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
903 return (prob1
< prob2
) - (prob1
> prob2
);
908 static float check_smallest_bitflip_bitarrays(void)
910 uint32_t num_odd
, num_even
;
911 uint64_t smallest
= 1LL << 48;
912 // initialize best_first_bytes, do a rough estimation on remaining states
913 for (uint16_t i
= 0; i
< 256; i
++) {
914 num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
915 num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
916 if ((uint64_t)num_odd
* num_even
< smallest
) {
917 smallest
= (uint64_t)num_odd
* num_even
;
918 best_first_byte_smallest_bitarray
= i
;
922 #if defined (DEBUG_REDUCTION)
923 num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
924 num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
925 printf("0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
)/log(2.0));
927 return (float)smallest
/2.0;
931 static void update_expected_brute_force(uint8_t best_byte
) {
933 float total_prob
= 0.0;
934 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
935 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
937 // linear adjust probabilities to result in total_prob = 1.0;
938 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
939 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
941 float prob_all_failed
= 1.0;
942 nonces
[best_byte
].expected_num_brute_force
= 0.0;
943 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
944 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
945 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
946 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
952 static float sort_best_first_bytes(void)
955 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
956 // and the expected number of states to brute force
957 for (uint16_t i
= 0; i
< 256; i
++) {
958 best_first_bytes
[i
] = i
;
959 float prob_all_failed
= 1.0;
960 nonces
[i
].expected_num_brute_force
= 0.0;
961 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
962 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
963 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
964 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
965 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
969 // sort based on expected number of states to brute force
970 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
972 // printf("refine estimations: ");
973 #define NUM_REFINES 1
974 // refine scores for the best:
975 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
976 // printf("%d...", i);
977 uint16_t first_byte
= best_first_bytes
[i
];
978 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
979 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
981 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
982 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
983 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
984 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
985 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
986 // printf("(0x%02x,%d)", first_byte, 0);
988 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
989 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
990 // printf("(0x%02x,%d)", first_byte, 1);
992 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
993 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
994 // printf("(0x%02x,%d)", first_byte, 2);
997 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
998 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
999 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
1002 // float fix_probs = 0.0;
1003 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
1004 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
1006 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
1007 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
1009 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
1010 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
1012 float prob_all_failed
= 1.0;
1013 nonces
[first_byte
].expected_num_brute_force
= 0.0;
1014 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
1015 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
1016 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
1017 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
1021 // copy best byte to front:
1022 float least_expected_brute_force
= (1LL << 48);
1023 uint8_t best_byte
= 0;
1024 for (uint16_t i
= 0; i
< 10; i
++) {
1025 uint16_t first_byte
= best_first_bytes
[i
];
1026 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
1027 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
1031 if (best_byte
!= 0) {
1032 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
1033 uint8_t tmp
= best_first_bytes
[0];
1034 best_first_bytes
[0] = best_first_bytes
[best_byte
];
1035 best_first_bytes
[best_byte
] = tmp
;
1038 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
1042 static float update_reduction_rate(float last
, bool init
)
1045 static float queue
[QUEUE_LEN
];
1047 for (uint16_t i
= 0; i
< QUEUE_LEN
-1; i
++) {
1049 queue
[i
] = (float)(1LL << 48);
1051 queue
[i
] = queue
[i
+1];
1055 queue
[QUEUE_LEN
-1] = (float)(1LL << 48);
1057 queue
[QUEUE_LEN
-1] = last
;
1060 // linear regression
1063 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1072 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1073 dev_xy
+= (i
- avg_x
)*(queue
[i
] - avg_y
);
1074 dev_x2
+= (i
- avg_x
)*(i
- avg_x
);
1077 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1079 #if defined (DEBUG_REDUCTION)
1080 printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1082 return reduction_rate
;
1086 static bool shrink_key_space(float *brute_forces
)
1088 #if defined(DEBUG_REDUCTION)
1089 printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1091 float brute_forces1
= check_smallest_bitflip_bitarrays();
1092 float brute_forces2
= (float)(1LL << 47);
1093 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1094 brute_forces2
= sort_best_first_bytes();
1096 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1097 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1098 return ((hardnested_stage
& CHECK_2ND_BYTES
)
1099 && reduction_rate
>= 0.0 && reduction_rate
< brute_force_per_second
* sample_period
/ 1000.0);
1103 static void estimate_sum_a8(void)
1105 if (first_byte_num
== 256) {
1106 for (uint16_t i
= 0; i
< 256; i
++) {
1107 if (nonces
[i
].sum_a8_guess_dirty
) {
1108 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++ ) {
1109 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1110 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1112 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1113 nonces
[i
].sum_a8_guess_dirty
= false;
1120 static int read_nonce_file(void)
1122 FILE *fnonces
= NULL
;
1126 uint8_t read_buf
[9];
1127 uint32_t nt_enc1
, nt_enc2
;
1130 num_acquired_nonces
= 0;
1131 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
1132 PrintAndLog("Could not open file nonces.bin");
1136 hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
1137 bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1138 if (bytes_read
!= 6) {
1139 PrintAndLog("File reading error.");
1143 cuid
= bytes_to_num(read_buf
, 4);
1144 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
1145 trgKeyType
= bytes_to_num(read_buf
+5, 1);
1147 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1148 while (bytes_read
== 9) {
1149 nt_enc1
= bytes_to_num(read_buf
, 4);
1150 nt_enc2
= bytes_to_num(read_buf
+4, 4);
1151 par_enc
= bytes_to_num(read_buf
+8, 1);
1152 add_nonce(nt_enc1
, par_enc
>> 4);
1153 add_nonce(nt_enc2
, par_enc
& 0x0f);
1154 num_acquired_nonces
+= 2;
1155 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1159 char progress_string
[80];
1160 sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);
1161 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1162 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B');
1163 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1165 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1166 if (first_byte_Sum
== sums
[i
]) {
1176 noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
)
1178 noncelistentry_t
*p
= nonces
[b1
].first
;
1180 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1189 static bool timeout(void)
1191 return (msclock() > last_sample_clock
+ sample_period
);
1195 static void *check_for_BitFlipProperties_thread(void *args
)
1197 uint8_t first_byte
= ((uint8_t *)args
)[0];
1198 uint8_t last_byte
= ((uint8_t *)args
)[1];
1199 uint8_t time_budget
= ((uint8_t *)args
)[2];
1201 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1202 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1203 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1204 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1205 if (time_budget
& timeout()) {
1206 #if defined (DEBUG_REDUCTION)
1207 printf("break at bitflip_idx %d...", bitflip_idx
);
1211 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1212 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1213 && nonces
[i
].first
!= NULL
&& nonces
[i
^(bitflip
&0xff)].first
!= NULL
) {
1214 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1215 uint8_t parity2
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1216 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1217 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1218 nonces
[i
].BitFlips
[bitflip
] = 1;
1219 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1220 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1221 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1222 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1223 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1224 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1226 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1232 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1236 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1238 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1239 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1240 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1241 if (time_budget
& timeout()) {
1242 #if defined (DEBUG_REDUCTION)
1243 printf("break at bitflip_idx %d...", bitflip_idx
);
1247 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1248 // Check for Bit Flip Property of 2nd bytes
1249 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1250 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1251 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1252 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^(bitflip
&0xff));
1253 if (byte1
!= NULL
&& byte2
!= NULL
) {
1254 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1255 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1256 if ((parity1
== parity2
&& !(bitflip
&0x100)) // bitflip
1257 || (parity1
!= parity2
&& (bitflip
&0x100))) { // not bitflip
1258 nonces
[i
].BitFlips
[bitflip
] = 1;
1259 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1260 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1261 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1262 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1263 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1264 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1273 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1274 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1283 static void check_for_BitFlipProperties(bool time_budget
)
1285 // create and run worker threads
1286 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1288 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1289 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;
1290 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1291 args
[i
][0] = i
* bytes_per_thread
;
1292 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255);
1293 args
[i
][2] = time_budget
;
1295 args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255);
1298 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1299 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1302 // wait for threads to terminate:
1303 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1304 pthread_join(thread_id
[i
], NULL
);
1307 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1308 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1309 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1310 if (args
[i
][1] != 0) {
1311 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1316 #if defined (DEBUG_REDUCTION)
1317 if (hardnested_stage
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n");
1322 static void update_nonce_data(bool time_budget
)
1324 check_for_BitFlipProperties(time_budget
);
1325 update_allbitflips_array();
1326 update_sum_bitarrays(EVEN_STATE
);
1327 update_sum_bitarrays(ODD_STATE
);
1333 static void apply_sum_a0(void)
1335 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1336 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1337 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1338 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1340 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1341 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1342 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1343 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1348 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
1350 struct Crypto1State sim_cs
= {0, 0};
1352 // init cryptostate with key:
1353 for(int8_t i
= 47; i
> 0; i
-= 2) {
1354 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1355 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1359 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1360 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1361 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
1362 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1363 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1364 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1365 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1366 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1372 static void simulate_acquire_nonces()
1374 time_t time1
= time(NULL
);
1375 last_sample_clock
= 0;
1376 sample_period
= 1000; // for simulation
1377 hardnested_stage
= CHECK_1ST_BYTES
;
1378 bool acquisition_completed
= false;
1379 uint32_t total_num_nonces
= 0;
1381 bool reported_suma8
= false;
1383 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1384 if (known_target_key
== -1) {
1385 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1388 char progress_text
[80];
1389 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1390 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
1391 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1393 num_acquired_nonces
= 0;
1396 uint32_t nt_enc
= 0;
1397 uint8_t par_enc
= 0;
1399 for (uint16_t i
= 0; i
< 113; i
++) {
1400 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1401 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1405 last_sample_clock
= msclock();
1407 if (first_byte_num
== 256 ) {
1408 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1409 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1410 if (first_byte_Sum
== sums
[i
]) {
1415 hardnested_stage
|= CHECK_2ND_BYTES
;
1418 update_nonce_data(true);
1419 acquisition_completed
= shrink_key_space(&brute_force
);
1420 if (!reported_suma8
) {
1421 char progress_string
[80];
1422 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1423 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1424 reported_suma8
= true;
1426 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1429 update_nonce_data(true);
1430 acquisition_completed
= shrink_key_space(&brute_force
);
1431 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1433 } while (!acquisition_completed
);
1435 time_t end_time
= time(NULL
);
1436 // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1437 // num_acquired_nonces,
1438 // difftime(end_time, time1),
1439 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1442 fprintf(fstats
, "%" PRId32
";%" PRId32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
));
1447 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
1449 last_sample_clock
= msclock();
1450 sample_period
= 2000; // initial rough estimate. Will be refined.
1451 bool initialize
= true;
1452 bool field_off
= false;
1453 hardnested_stage
= CHECK_1ST_BYTES
;
1454 bool acquisition_completed
= false;
1456 uint8_t write_buf
[9];
1457 uint32_t total_num_nonces
= 0;
1459 bool reported_suma8
= false;
1460 FILE *fnonces
= NULL
;
1463 num_acquired_nonces
= 0;
1465 clearCommandBuffer();
1469 flags
|= initialize
? 0x0001 : 0;
1470 flags
|= slow
? 0x0002 : 0;
1471 flags
|= field_off
? 0x0004 : 0;
1472 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
1473 memcpy(c
.d
.asBytes
, key
, 6);
1477 if (field_off
) break;
1480 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
1482 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
1485 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
1486 if (nonce_file_write
&& fnonces
== NULL
) {
1487 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
1488 PrintAndLog("Could not create file nonces.bin");
1491 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
1492 num_to_bytes(cuid
, 4, write_buf
);
1493 fwrite(write_buf
, 1, 4, fnonces
);
1494 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1495 fwrite(&trgKeyType
, 1, 1, fnonces
);
1500 uint32_t nt_enc1
, nt_enc2
;
1502 uint16_t num_sampled_nonces
= resp
.arg
[2];
1503 uint8_t *bufp
= resp
.d
.asBytes
;
1504 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+=2) {
1505 nt_enc1
= bytes_to_num(bufp
, 4);
1506 nt_enc2
= bytes_to_num(bufp
+4, 4);
1507 par_enc
= bytes_to_num(bufp
+8, 1);
1509 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1510 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1511 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1512 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1514 if (nonce_file_write
) {
1515 fwrite(bufp
, 1, 9, fnonces
);
1519 total_num_nonces
+= num_sampled_nonces
;
1521 if (first_byte_num
== 256 ) {
1522 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1523 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1524 if (first_byte_Sum
== sums
[i
]) {
1529 hardnested_stage
|= CHECK_2ND_BYTES
;
1532 update_nonce_data(true);
1533 acquisition_completed
= shrink_key_space(&brute_force
);
1534 if (!reported_suma8
) {
1535 char progress_string
[80];
1536 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1537 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1538 reported_suma8
= true;
1540 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1543 update_nonce_data(true);
1544 acquisition_completed
= shrink_key_space(&brute_force
);
1545 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1549 if (acquisition_completed
) {
1550 field_off
= true; // switch off field with next SendCommand and then finish
1554 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1555 if (nonce_file_write
) {
1561 if (nonce_file_write
) {
1564 return resp
.arg
[0]; // error during nested_hard
1570 if (msclock() - last_sample_clock
< sample_period
) {
1571 sample_period
= msclock() - last_sample_clock
;
1573 last_sample_clock
= msclock();
1575 } while (!acquisition_completed
|| field_off
);
1577 if (nonce_file_write
) {
1581 // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",
1582 // total_num_nonces,
1583 // time(NULL)-time1,
1584 // (float)total_num_nonces*60.0/(time(NULL)-time1));
1590 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1592 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1593 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1594 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1595 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1596 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1597 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1602 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1604 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1605 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1606 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1607 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1608 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1613 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1617 switch (num_common_bits
) {
1618 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1619 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1620 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1621 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1622 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1623 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1624 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1625 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1629 switch (num_common_bits
) {
1630 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1631 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1632 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1633 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1634 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1635 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1636 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1640 return true; // valid state
1644 static pthread_mutex_t statelist_cache_mutex
;
1645 static pthread_mutex_t book_of_work_mutex
;
1654 static struct sl_cache_entry
{
1657 work_status_t cache_status
;
1658 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1661 static void init_statelist_cache(void)
1663 pthread_mutex_lock(&statelist_cache_mutex
);
1664 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1665 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1666 for (uint16_t k
= 0; k
< 2; k
++) {
1667 sl_cache
[i
][j
][k
].sl
= NULL
;
1668 sl_cache
[i
][j
][k
].len
= 0;
1669 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1673 pthread_mutex_unlock(&statelist_cache_mutex
);
1677 static void free_statelist_cache(void)
1679 pthread_mutex_lock(&statelist_cache_mutex
);
1680 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1681 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1682 for (uint16_t k
= 0; k
< 2; k
++) {
1683 free(sl_cache
[i
][j
][k
].sl
);
1687 pthread_mutex_unlock(&statelist_cache_mutex
);
1691 #ifdef DEBUG_KEY_ELIMINATION
1692 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1694 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1697 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1698 bool possible
= test_bit24(bitset
, state
);
1700 #ifdef DEBUG_KEY_ELIMINATION
1701 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1702 printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd");
1703 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd");
1713 static uint_fast8_t reverse(uint_fast8_t byte
)
1715 uint_fast8_t rev_byte
= 0;
1717 for (uint8_t i
= 0; i
< 8; i
++) {
1719 rev_byte
|= (byte
>> i
) & 0x01;
1726 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1728 uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1729 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
1731 for (uint16_t i
= 1; i
< 256; i
++) {
1732 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1733 uint_fast8_t byte2
= byte
^ bytes_diff
;
1734 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1735 uint32_t mask
= masks
[odd_even
][num_common
];
1736 bool found_match
= false;
1737 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1738 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1739 #ifdef DEBUG_KEY_ELIMINATION
1740 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true)) {
1742 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
)) {
1750 #ifdef DEBUG_KEY_ELIMINATION
1751 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1752 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1753 odd_even
==ODD_STATE
?"odd":"even",
1754 test_state
[odd_even
],
1755 byte
, byte2
, num_common
);
1756 if (failstr
[0] == '\0') {
1757 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even");
1769 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
)
1771 uint32_t *p
= state_list
;
1772 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1<<24); state
= next_state(bitarray
, state
)) {
1773 if (all_bitflips_match(byte
, state
, odd_even
)) {
1777 // add End Of List marker
1779 *len
= p
- state_list
;
1783 static void add_cached_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1785 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
;
1786 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
;
1791 static void add_matching_states(statelist_t
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
)
1793 uint32_t worstcase_size
= 1<<20;
1794 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1795 if (candidates
->states
[odd_even
] == NULL
) {
1796 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
1799 uint32_t *candidates_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
1800 if (candidates_bitarray
== NULL
) {
1801 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
1802 free(candidates
->states
[odd_even
]);
1806 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2];
1807 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2];
1808 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1810 // for (uint32_t i = 0; i < (1<<19); i++) {
1811 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
1813 bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1815 bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1816 if (candidates
->len
[odd_even
] == 0) {
1817 free(candidates
->states
[odd_even
]);
1818 candidates
->states
[odd_even
] = NULL
;
1819 } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1820 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1822 free_bitarray(candidates_bitarray
);
1825 pthread_mutex_lock(&statelist_cache_mutex
);
1826 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
= candidates
->states
[odd_even
];
1827 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
= candidates
->len
[odd_even
];
1828 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status
= COMPLETED
;
1829 pthread_mutex_unlock(&statelist_cache_mutex
);
1835 static statelist_t
*add_more_candidates(void)
1837 statelist_t
*new_candidates
= candidates
;
1838 if (candidates
== NULL
) {
1839 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1840 new_candidates
= candidates
;
1842 new_candidates
= candidates
;
1843 while (new_candidates
->next
!= NULL
) {
1844 new_candidates
= new_candidates
->next
;
1846 new_candidates
= new_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1848 new_candidates
->next
= NULL
;
1849 new_candidates
->len
[ODD_STATE
] = 0;
1850 new_candidates
->len
[EVEN_STATE
] = 0;
1851 new_candidates
->states
[ODD_STATE
] = NULL
;
1852 new_candidates
->states
[EVEN_STATE
] = NULL
;
1853 return new_candidates
;
1857 static void add_bitflip_candidates(uint8_t byte
)
1859 statelist_t
*candidates
= add_more_candidates();
1861 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1862 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1863 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1864 if (candidates
->states
[odd_even
] == NULL
) {
1865 PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
1869 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1871 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1872 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1879 static bool TestIfKeyExists(uint64_t key
)
1881 struct Crypto1State
*pcs
;
1882 pcs
= crypto1_create(key
);
1883 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1885 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1886 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1889 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1890 bool found_odd
= false;
1891 bool found_even
= false;
1892 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1893 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1894 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1895 while (*p_odd
!= 0xffffffff) {
1896 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1902 while (*p_even
!= 0xffffffff) {
1903 if ((*p_even
& 0x00ffffff) == state_even
) {
1908 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1910 if (found_odd
&& found_even
) {
1911 num_keys_tested
+= count
;
1912 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1913 crypto1_destroy(pcs
);
1918 num_keys_tested
+= count
;
1919 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1921 crypto1_destroy(pcs
);
1926 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1929 static void init_book_of_work(void)
1931 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1932 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1933 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1934 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1935 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1943 static void *generate_candidates_worker_thread(void *args
)
1945 uint16_t *sum_args
= (uint16_t *)args
;
1946 uint16_t sum_a0
= sums
[sum_args
[0]];
1947 uint16_t sum_a8
= sums
[sum_args
[1]];
1948 // uint16_t my_thread_number = sums[2];
1950 bool there_might_be_more_work
= true;
1952 there_might_be_more_work
= false;
1953 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1954 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1955 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
1956 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1957 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1958 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1959 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1960 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
1961 pthread_mutex_lock(&book_of_work_mutex
);
1962 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1963 pthread_mutex_unlock(&book_of_work_mutex
);
1967 pthread_mutex_lock(&statelist_cache_mutex
);
1968 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1969 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1970 pthread_mutex_unlock(&statelist_cache_mutex
);
1971 pthread_mutex_unlock(&book_of_work_mutex
);
1972 there_might_be_more_work
= true;
1976 // we finally can do some work.
1977 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1978 statelist_t
*current_candidates
= add_more_candidates();
1980 // Check for cached results and add them first
1981 bool odd_completed
= false;
1982 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1983 add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1984 odd_completed
= true;
1986 bool even_completed
= false;
1987 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1988 add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1989 even_completed
= true;
1992 bool work_required
= true;
1994 // if there had been two cached results, there is no more work to do
1995 if (even_completed
&& odd_completed
) {
1996 work_required
= false;
1999 // if there had been one cached empty result, there is no need to calculate the other part:
2000 if (work_required
) {
2001 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
2002 current_candidates
->len
[ODD_STATE
] = 0;
2003 current_candidates
->states
[ODD_STATE
] = NULL
;
2004 work_required
= false;
2006 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
2007 current_candidates
->len
[EVEN_STATE
] = 0;
2008 current_candidates
->states
[EVEN_STATE
] = NULL
;
2009 work_required
= false;
2013 if (!work_required
) {
2014 pthread_mutex_unlock(&statelist_cache_mutex
);
2015 pthread_mutex_unlock(&book_of_work_mutex
);
2017 // we really need to calculate something
2018 if (even_completed
) { // we had one cache hit with non-zero even states
2019 // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
2020 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
2021 pthread_mutex_unlock(&statelist_cache_mutex
);
2022 pthread_mutex_unlock(&book_of_work_mutex
);
2023 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
2024 work_required
= false;
2025 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
2026 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
2027 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
2028 pthread_mutex_unlock(&statelist_cache_mutex
);
2029 pthread_mutex_unlock(&book_of_work_mutex
);
2030 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
2031 work_required
= false;
2035 if (work_required
) { // we had no cached result. Need to calculate both odd and even
2036 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
2037 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
2038 pthread_mutex_unlock(&statelist_cache_mutex
);
2039 pthread_mutex_unlock(&book_of_work_mutex
);
2041 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
2042 if(current_candidates
->len
[ODD_STATE
]) {
2043 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
2044 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
2045 } else { // no need to calculate even states yet
2046 pthread_mutex_lock(&statelist_cache_mutex
);
2047 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
2048 pthread_mutex_unlock(&statelist_cache_mutex
);
2049 current_candidates
->len
[EVEN_STATE
] = 0;
2050 current_candidates
->states
[EVEN_STATE
] = NULL
;
2054 // update book of work
2055 pthread_mutex_lock(&book_of_work_mutex
);
2056 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2057 pthread_mutex_unlock(&book_of_work_mutex
);
2059 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2060 // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2061 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2062 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2063 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2064 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2065 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2066 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2067 // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2068 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2069 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");
2079 } while (there_might_be_more_work
);
2085 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
)
2087 // printf("Generating crypto1 state candidates... \n");
2089 // estimate maximum candidate states
2090 // maximum_states = 0;
2091 // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
2092 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
2093 // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
2094 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])
2095 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
2099 // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
2101 init_statelist_cache();
2102 init_book_of_work();
2104 // create mutexes for accessing the statelist cache and our "book of work"
2105 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2106 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2108 // create and run worker threads
2109 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2111 uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3];
2112 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2113 sums
[i
][0] = sum_a0_idx
;
2114 sums
[i
][1] = sum_a8_idx
;
2116 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]);
2119 // wait for threads to terminate:
2120 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2121 pthread_join(thread_id
[i
], NULL
);
2125 pthread_mutex_destroy(&statelist_cache_mutex
);
2128 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2129 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2132 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2133 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2134 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2138 update_expected_brute_force(best_first_bytes
[0]);
2140 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2144 static void free_candidates_memory(statelist_t
*sl
)
2149 free_candidates_memory(sl
->next
);
2155 static void pre_XOR_nonces(void)
2157 // prepare acquired nonces for faster brute forcing.
2159 // XOR the cryptoUID and its parity
2160 for (uint16_t i
= 0; i
< 256; i
++) {
2161 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2162 while (test_nonce
!= NULL
) {
2163 test_nonce
->nonce_enc
^= cuid
;
2164 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2165 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2166 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2167 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2168 test_nonce
= test_nonce
->next
;
2174 static bool brute_force(void)
2176 if (known_target_key
!= -1) {
2177 TestIfKeyExists(known_target_key
);
2179 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
);
2183 static uint16_t SumProperty(struct Crypto1State
*s
)
2185 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2186 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2187 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
2194 /* #define NUM_STATISTICS 100000
2195 uint32_t statistics_odd[17];
2196 uint64_t statistics[257];
2197 uint32_t statistics_even[17];
2198 struct Crypto1State cs;
2199 uint64_t time1 = msclock();
2201 for (uint16_t i = 0; i < 257; i++) {
2204 for (uint16_t i = 0; i < 17; i++) {
2205 statistics_odd[i] = 0;
2206 statistics_even[i] = 0;
2209 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2210 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2211 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2212 uint16_t sum_property = SumProperty(&cs);
2213 statistics[sum_property] += 1;
2214 sum_property = PartialSumProperty(cs.even, EVEN_STATE);
2215 statistics_even[sum_property]++;
2216 sum_property = PartialSumProperty(cs.odd, ODD_STATE);
2217 statistics_odd[sum_property]++;
2218 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2221 printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2222 for (uint16_t i = 0; i < 257; i++) {
2223 if (statistics[i] != 0) {
2224 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
2227 for (uint16_t i = 0; i <= 16; i++) {
2228 if (statistics_odd[i] != 0) {
2229 printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
2232 for (uint16_t i = 0; i <= 16; i++) {
2233 if (statistics_odd[i] != 0) {
2234 printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
2239 /* #define NUM_STATISTICS 100000000LL
2240 uint64_t statistics_a0[257];
2241 uint64_t statistics_a8[257][257];
2242 struct Crypto1State cs;
2243 uint64_t time1 = msclock();
2245 for (uint16_t i = 0; i < 257; i++) {
2246 statistics_a0[i] = 0;
2247 for (uint16_t j = 0; j < 257; j++) {
2248 statistics_a8[i][j] = 0;
2252 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2253 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2254 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2255 uint16_t sum_property_a0 = SumProperty(&cs);
2256 statistics_a0[sum_property_a0]++;
2257 uint8_t first_byte = rand() & 0xff;
2258 crypto1_byte(&cs, first_byte, true);
2259 uint16_t sum_property_a8 = SumProperty(&cs);
2260 statistics_a8[sum_property_a0][sum_property_a8] += 1;
2261 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2264 printf("\nTests: Probability Distribution of a8 depending on a0:\n");
2266 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2267 printf("%7d ", sums[i]);
2269 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2271 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2272 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
2275 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2276 printf("%3d ", sums[i]);
2277 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2278 printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
2282 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2285 /* #define NUM_STATISTICS 100000LL
2286 uint64_t statistics_a8[257];
2287 struct Crypto1State cs;
2288 uint64_t time1 = msclock();
2290 printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
2292 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2293 printf("%7d ", sums[i]);
2295 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2296 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
2297 for (uint16_t i = 0; i < 257; i++) {
2298 statistics_a8[i] = 0;
2300 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2301 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2302 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2303 crypto1_byte(&cs, first_byte, true);
2304 uint16_t sum_property_a8 = SumProperty(&cs);
2305 statistics_a8[sum_property_a8] += 1;
2307 printf("%03x ", first_byte);
2308 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2309 printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
2313 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2316 /* printf("Tests: Sum Probabilities based on Partial Sums\n");
2317 for (uint16_t i = 0; i < 257; i++) {
2320 uint64_t num_states = 0;
2321 for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
2322 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
2323 uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
2324 statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2325 num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2328 printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
2329 for (uint16_t i = 0; i < 257; i++) {
2330 if (statistics[i] != 0) {
2331 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
2336 /* struct Crypto1State *pcs;
2337 pcs = crypto1_create(0xffffffffffff);
2338 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2339 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2340 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2341 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2342 best_first_bytes[0],
2344 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2345 //test_state_odd = pcs->odd & 0x00ffffff;
2346 //test_state_even = pcs->even & 0x00ffffff;
2347 crypto1_destroy(pcs);
2348 pcs = crypto1_create(0xa0a1a2a3a4a5);
2349 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2350 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2351 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2352 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2353 best_first_bytes[0],
2355 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2356 //test_state_odd = pcs->odd & 0x00ffffff;
2357 //test_state_even = pcs->even & 0x00ffffff;
2358 crypto1_destroy(pcs);
2359 pcs = crypto1_create(0xa6b9aa97b955);
2360 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2361 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2362 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2363 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2364 best_first_bytes[0],
2366 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2367 test_state_odd = pcs->odd & 0x00ffffff;
2368 test_state_even = pcs->even & 0x00ffffff;
2369 crypto1_destroy(pcs);
2372 // printf("\nTests: Sorted First Bytes:\n");
2373 // for (uint16_t i = 0; i < 20; i++) {
2374 // uint8_t best_byte = best_first_bytes[i];
2375 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",
2376 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
2377 // for (uint16_t j = 0; j < 3; j++) {
2378 // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
2380 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",
2381 // nonces[best_byte].sum_a8_guess[0].num_states,
2382 // nonces[best_byte].sum_a8_guess[1].num_states,
2383 // nonces[best_byte].sum_a8_guess[2].num_states,
2384 // nonces[best_byte].expected_num_brute_force);
2387 // printf("\nTests: Actual BitFlipProperties of best byte:\n");
2388 // printf("[%02x]:", best_first_bytes[0]);
2389 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2390 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2391 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
2392 // printf(" %03" PRIx16 , bitflip_prop);
2397 // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
2398 // printf("[%02x]:", best_first_byte_smallest_bitarray);
2399 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2400 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2401 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
2402 // printf(" %03" PRIx16 , bitflip_prop);
2407 if (known_target_key
!= -1) {
2408 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2409 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2410 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2411 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2412 odd_even
==EVEN_STATE
?"even":"odd ",
2413 best_first_bytes
[0]);
2418 if (known_target_key
!= -1) {
2419 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2420 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2421 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2422 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2423 odd_even
==EVEN_STATE
?"even":"odd ");
2428 // if (known_target_key != -1) {
2429 // int16_t p = -1, q = -1, r = -1, s = -1;
2431 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
2432 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2433 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2434 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2435 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
2436 // if (test_bit24(bitset, test_state[odd_even])) {
2437 // printf("%d ", i);
2438 // if (odd_even == ODD_STATE) {
2448 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
2449 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2450 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2451 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2452 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
2453 // if (test_bit24(bitset, test_state[odd_even])) {
2454 // printf("%d ", i);
2455 // if (odd_even == ODD_STATE) {
2465 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
2466 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
2469 /* printf("\nTests: parity performance\n");
2470 uint64_t time1p = msclock();
2471 uint32_t par_sum = 0;
2472 for (uint32_t i = 0; i < 100000000; i++) {
2473 par_sum += parity(i);
2475 printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2479 for (uint32_t i = 0; i < 100000000; i++) {
2480 par_sum += evenparity32(i);
2482 printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2488 static void Tests2(void)
2490 if (known_target_key
!= -1) {
2491 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2492 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2493 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2494 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2495 odd_even
==EVEN_STATE
?"even":"odd ",
2496 best_first_byte_smallest_bitarray
);
2501 if (known_target_key
!= -1) {
2502 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2503 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2504 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2505 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2506 odd_even
==EVEN_STATE
?"even":"odd ");
2514 static uint16_t real_sum_a8
= 0;
2516 static void set_test_state(uint8_t byte
)
2518 struct Crypto1State
*pcs
;
2519 pcs
= crypto1_create(known_target_key
);
2520 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2521 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2522 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2523 real_sum_a8
= SumProperty(pcs
);
2524 crypto1_destroy(pcs
);
2528 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
2530 char progress_text
[80];
2532 srand((unsigned) time(NULL
));
2533 brute_force_per_second
= brute_force_benchmark();
2534 write_stats
= false;
2537 // set the correct locale for the stats printing
2539 setlocale(LC_NUMERIC
, "");
2540 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
2541 PrintAndLog("Could not create/open file hardnested_stats.txt");
2544 for (uint32_t i
= 0; i
< tests
; i
++) {
2545 start_time
= msclock();
2546 print_progress_header();
2547 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2548 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2549 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+1);
2550 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2551 if (trgkey
!= NULL
) {
2552 known_target_key
= bytes_to_num(trgkey
, 6);
2554 known_target_key
= -1;
2557 init_bitflip_bitarrays();
2558 init_part_sum_bitarrays();
2559 init_sum_bitarrays();
2560 init_allbitflips_array();
2561 init_nonce_memory();
2562 update_reduction_rate(0.0, true);
2564 simulate_acquire_nonces();
2566 set_test_state(best_first_bytes
[0]);
2569 free_bitflip_bitarrays();
2571 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0));
2572 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0));
2573 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2575 #ifdef DEBUG_KEY_ELIMINATION
2578 bool key_found
= false;
2579 num_keys_tested
= 0;
2580 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2581 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2582 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2583 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2584 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0));
2585 if (expected_brute_force1
< expected_brute_force2
) {
2586 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2587 set_test_state(best_first_byte_smallest_bitarray
);
2588 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2591 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2592 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2594 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2595 // fprintf("fstats, "%" PRIu64 ";", maximum_states);
2596 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2598 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2599 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0);
2600 key_found
= brute_force();
2601 free(candidates
->states
[ODD_STATE
]);
2602 free(candidates
->states
[EVEN_STATE
]);
2603 free_candidates_memory(candidates
);
2607 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2608 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2609 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2610 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2611 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2612 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2613 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2614 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2616 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2617 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2618 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2619 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0);
2620 key_found
= brute_force();
2621 free_statelist_cache();
2622 free_candidates_memory(candidates
);
2625 // update the statistics
2626 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2627 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2628 // and calculate new expected number of brute forces
2629 update_expected_brute_force(best_first_bytes
[0]);
2633 #ifdef DEBUG_KEY_ELIMINATION
2634 fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
);
2636 fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
);
2639 free_nonces_memory();
2640 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2641 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2642 free_sum_bitarrays();
2643 free_part_sum_bitarrays();
2647 start_time
= msclock();
2648 print_progress_header();
2649 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2650 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2651 init_bitflip_bitarrays();
2652 init_part_sum_bitarrays();
2653 init_sum_bitarrays();
2654 init_allbitflips_array();
2655 init_nonce_memory();
2656 update_reduction_rate(0.0, true);
2658 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2659 if (read_nonce_file() != 0) {
2660 free_bitflip_bitarrays();
2661 free_nonces_memory();
2662 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2663 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2664 free_sum_bitarrays();
2665 free_part_sum_bitarrays();
2668 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2669 update_nonce_data(false);
2671 shrink_key_space(&brute_force
);
2672 } else { // acquire nonces.
2673 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
2675 free_bitflip_bitarrays();
2676 free_nonces_memory();
2677 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2678 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2679 free_sum_bitarrays();
2680 free_part_sum_bitarrays();
2685 if (trgkey
!= NULL
) {
2686 known_target_key
= bytes_to_num(trgkey
, 6);
2687 set_test_state(best_first_bytes
[0]);
2689 known_target_key
= -1;
2694 free_bitflip_bitarrays();
2695 bool key_found
= false;
2696 num_keys_tested
= 0;
2697 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2698 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2699 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2700 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2701 if (expected_brute_force1
< expected_brute_force2
) {
2702 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2703 set_test_state(best_first_byte_smallest_bitarray
);
2704 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2707 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2708 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2710 // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2711 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2713 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2714 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0);
2715 key_found
= brute_force();
2716 free(candidates
->states
[ODD_STATE
]);
2717 free(candidates
->states
[EVEN_STATE
]);
2718 free_candidates_memory(candidates
);
2722 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2723 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2724 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2725 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2726 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2727 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2728 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2729 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2731 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2732 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2733 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2734 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0);
2735 key_found
= brute_force();
2736 free_statelist_cache();
2737 free_candidates_memory(candidates
);
2740 // update the statistics
2741 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2742 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2743 // and calculate new expected number of brute forces
2744 update_expected_brute_force(best_first_bytes
[0]);
2750 free_nonces_memory();
2751 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2752 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2753 free_sum_bitarrays();
2754 free_part_sum_bitarrays();