1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  18 #include "lfsampling.h" 
  19 #include "protocols.h" 
  20 #include "usb_cdc.h" // for usb_poll_validate_length 
  23  * Function to do a modulation and then get samples. 
  29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
) 
  32         int divisor_used 
= 95; // 125 KHz 
  33         // see if 'h' was specified 
  35         if (command
[strlen((char *) command
) - 1] == 'h') 
  36                 divisor_used 
= 88; // 134.8 KHz 
  38         sample_config sc 
= { 0,0,1, divisor_used
, 0}; 
  39         setSamplingConfig(&sc
); 
  41         BigBuf_Clear_keep_EM(); 
  43         /* Make sure the tag is reset */ 
  44         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  45         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  48         LFSetupFPGAForADC(sc
.divisor
, 1); 
  50         // And a little more time for the tag to fully power up 
  53         // now modulate the reader field 
  54         while(*command 
!= '\0' && *command 
!= ' ') { 
  55                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  57                 SpinDelayUs(delay_off
); 
  58                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  60                 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  62                 if(*(command
++) == '0') 
  63                         SpinDelayUs(period_0
); 
  65                         SpinDelayUs(period_1
); 
  67         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  69         SpinDelayUs(delay_off
); 
  70         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  72         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  75         DoAcquisition_config(false, 0); 
  78 /* blank r/w tag data stream 
  79 ...0000000000000000 01111111 
  80 1010101010101010101010101010101010101010101010101010101010101010 
  83 101010101010101[0]000... 
  85 [5555fe852c5555555555555555fe0000] 
  89         // some hardcoded initial params 
  90         // when we read a TI tag we sample the zerocross line at 2Mhz 
  91         // TI tags modulate a 1 as 16 cycles of 123.2Khz 
  92         // TI tags modulate a 0 as 16 cycles of 134.2Khz 
  93  #define FSAMPLE 2000000 
  97         signed char *dest 
= (signed char *)BigBuf_get_addr(); 
  98         uint16_t n 
= BigBuf_max_traceLen(); 
  99         // 128 bit shift register [shift3:shift2:shift1:shift0] 
 100         uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 102         int i
, cycles
=0, samples
=0; 
 103         // how many sample points fit in 16 cycles of each frequency 
 104         uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 105         // when to tell if we're close enough to one freq or another 
 106         uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 108         // TI tags charge at 134.2Khz 
 109         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 110         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 112         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 113         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 114         // whether we're modulating the antenna (high) 
 115         // or listening to the antenna (low) 
 116         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 118         // get TI tag data into the buffer 
 121         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 123         for (i
=0; i
<n
-1; i
++) { 
 124                 // count cycles by looking for lo to hi zero crossings 
 125                 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 127                         // after 16 cycles, measure the frequency 
 130                                 samples
=i
-samples
; // number of samples in these 16 cycles 
 132                                 // TI bits are coming to us lsb first so shift them 
 133                                 // right through our 128 bit right shift register 
 134                                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 135                                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 136                                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 139                                 // check if the cycles fall close to the number 
 140                                 // expected for either the low or high frequency 
 141                                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 142                                         // low frequency represents a 1 
 144                                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 145                                         // high frequency represents a 0 
 147                                         // probably detected a gay waveform or noise 
 148                                         // use this as gaydar or discard shift register and start again 
 149                                         shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 153                                 // for each bit we receive, test if we've detected a valid tag 
 155                                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 156                                 // remember the bits are backwards 
 157                                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 158                                         // if start and end bytes match, we have a tag so break out of the loop 
 159                                         if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 160                                                 cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 168         // if flag is set we have a tag 
 170                 DbpString("Info: No valid tag detected."); 
 172                 // put 64 bit data into shift1 and shift0 
 173                 shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 174                 shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 176                 // align 16 bit crc into lower half of shift2 
 177                 shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 179                 // if r/w tag, check ident match 
 180                 if (shift3 
& (1<<15) ) { 
 181                         DbpString("Info: TI tag is rewriteable"); 
 182                         // only 15 bits compare, last bit of ident is not valid 
 183                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 184                                 DbpString("Error: Ident mismatch!"); 
 186                                 DbpString("Info: TI tag ident is valid"); 
 189                         DbpString("Info: TI tag is readonly"); 
 192                 // WARNING the order of the bytes in which we calc crc below needs checking 
 193                 // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 194                 // bytes in reverse or something 
 198                 crc 
= update_crc16(crc
, (shift0
)&0xff); 
 199                 crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 200                 crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 201                 crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 202                 crc 
= update_crc16(crc
, (shift1
)&0xff); 
 203                 crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 204                 crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 205                 crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 207                 Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 208                                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 209                 if (crc 
!= (shift2
&0xffff)) { 
 210                         Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 212                         DbpString("Info: CRC is good"); 
 217 void WriteTIbyte(uint8_t b
) 
 221         // modulate 8 bits out to the antenna 
 225                         // stop modulating antenna 
 232                         // stop modulating antenna 
 242 void AcquireTiType(void) 
 245         // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 246         // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 247  #define TIBUFLEN 1250 
 250         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 251         BigBuf_Clear_ext(false); 
 253         // Set up the synchronous serial port 
 254         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 255         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 257         // steal this pin from the SSP and use it to control the modulation 
 258         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 259         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 261         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 262         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 264         // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 265         // 48/2 = 24 MHz clock must be divided by 12 
 266         AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 268         AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 269         AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 270         AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 271         AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 278         // Charge TI tag for 50ms. 
 281         // stop modulating antenna and listen 
 288                 if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 289                         BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;    // store 32 bit values in buffer 
 290                         i
++; if(i 
>= TIBUFLEN
) break; 
 295         // return stolen pin to SSP 
 296         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 297         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 299         char *dest 
= (char *)BigBuf_get_addr(); 
 302         for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 303                 for (j
=0; j
<32; j
++) { 
 304                         if(BigBuf
[i
] & (1 << j
)) { 
 313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 314 // if crc provided, it will be written with the data verbatim (even if bogus) 
 315 // if not provided a valid crc will be computed from the data and written. 
 316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 318         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 320                 crc 
= update_crc16(crc
, (idlo
)&0xff); 
 321                 crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 322                 crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 323                 crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 324                 crc 
= update_crc16(crc
, (idhi
)&0xff); 
 325                 crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 326                 crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 327                 crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 329         Dbprintf("Writing to tag: %x%08x, crc=%x", 
 330                         (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 332         // TI tags charge at 134.2Khz 
 333         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 334         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 335         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 336         // whether we're modulating the antenna (high) 
 337         // or listening to the antenna (low) 
 338         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 341         // steal this pin from the SSP and use it to control the modulation 
 342         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 343         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 345         // writing algorithm: 
 346         // a high bit consists of a field off for 1ms and field on for 1ms 
 347         // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 348         // initiate a charge time of 50ms (field on) then immediately start writing bits 
 349         // start by writing 0xBB (keyword) and 0xEB (password) 
 350         // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 351         // finally end with 0x0300 (write frame) 
 352         // all data is sent lsb firts 
 353         // finish with 15ms programming time 
 357         SpinDelay(50);  // charge time 
 359         WriteTIbyte(0xbb); // keyword 
 360         WriteTIbyte(0xeb); // password 
 361         WriteTIbyte( (idlo    
)&0xff ); 
 362         WriteTIbyte( (idlo
>>8 )&0xff ); 
 363         WriteTIbyte( (idlo
>>16)&0xff ); 
 364         WriteTIbyte( (idlo
>>24)&0xff ); 
 365         WriteTIbyte( (idhi    
)&0xff ); 
 366         WriteTIbyte( (idhi
>>8 )&0xff ); 
 367         WriteTIbyte( (idhi
>>16)&0xff ); 
 368         WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 369         WriteTIbyte( (crc     
)&0xff ); // crc lo 
 370         WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 371         WriteTIbyte(0x00); // write frame lo 
 372         WriteTIbyte(0x03); // write frame hi 
 374         SpinDelay(50);  // programming time 
 378         // get TI tag data into the buffer 
 381         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 382         DbpString("Now use `lf ti read` to check"); 
 385 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 388         uint8_t *tab 
= BigBuf_get_addr(); 
 390         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 391         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 393         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 395         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 396         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 398  #define SHORT_COIL()   LOW(GPIO_SSC_DOUT) 
 399  #define OPEN_COIL()    HIGH(GPIO_SSC_DOUT) 
 403                 //wait until SSC_CLK goes HIGH 
 404                 while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 405                         if(BUTTON_PRESS() || (usb_poll_validate_length() )) { 
 406                                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 407                                 DbpString("Stopped"); 
 422                 //wait until SSC_CLK goes LOW 
 423                 while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 424                         if(BUTTON_PRESS() || (usb_poll_validate_length() )) { 
 425                                 DbpString("Stopped"); 
 426                                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 445 #define DEBUG_FRAME_CONTENTS 1 
 446 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 450 // compose fc/8 fc/10 waveform (FSK2) 
 451 static void fc(int c
, int *n
) 
 453         uint8_t *dest 
= BigBuf_get_addr(); 
 456         // for when we want an fc8 pattern every 4 logical bits 
 468         //      an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples 
 470                 for (idx
=0; idx
<6; idx
++) { 
 482         //      an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples 
 484                 for (idx
=0; idx
<5; idx
++) { 
 498 // compose fc/X fc/Y waveform (FSKx) 
 499 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)  
 501         uint8_t *dest 
= BigBuf_get_addr(); 
 502         uint8_t halfFC 
= fc
/2; 
 503         uint8_t wavesPerClock 
= clock
/fc
; 
 504         uint8_t mod 
= clock 
% fc
;    //modifier 
 505         uint8_t modAdj 
= fc
/mod
;     //how often to apply modifier 
 506         bool modAdjOk 
= !(fc 
% mod
); //if (fc % mod==0) modAdjOk=TRUE; 
 507         // loop through clock - step field clock 
 508         for (uint8_t idx
=0; idx 
< wavesPerClock
; idx
++){ 
 509                 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) 
 510                 memset(dest
+(*n
), 0, fc
-halfFC
);  //in case of odd number use extra here 
 511                 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 514         if (mod
>0) (*modCnt
)++; 
 515         if ((mod
>0) && modAdjOk
){  //fsk2  
 516                 if ((*modCnt 
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave 
 517                         memset(dest
+(*n
), 0, fc
-halfFC
); 
 518                         memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 522         if (mod
>0 && !modAdjOk
){  //fsk1 
 523                 memset(dest
+(*n
), 0, mod
-(mod
/2)); 
 524                 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2); 
 529 // prepare a waveform pattern in the buffer based on the ID given then 
 530 // simulate a HID tag until the button is pressed 
 531 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 535          HID tag bitstream format 
 536          The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 537          A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 538          A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 539          A fc8 is inserted before every 4 bits 
 540          A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 541          nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 545                 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); 
 549         // special start of frame marker containing invalid bit sequences 
 550         fc(8,  &n
);     fc(8,  &n
); // invalid 
 551         fc(8,  &n
);     fc(10, &n
); // logical 0 
 552         fc(10, &n
);     fc(10, &n
); // invalid 
 553         fc(8,  &n
);     fc(10, &n
); // logical 0 
 556         // manchester encode bits 43 to 32 
 557         for (i
=11; i
>=0; i
--) { 
 558                 if ((i%4
)==3) fc(0,&n
); 
 560                         fc(10, &n
); fc(8,  &n
);         // low-high transition 
 562                         fc(8,  &n
); fc(10, &n
);         // high-low transition 
 567         // manchester encode bits 31 to 0 
 568         for (i
=31; i
>=0; i
--) { 
 569                 if ((i%4
)==3) fc(0,&n
); 
 571                         fc(10, &n
); fc(8,  &n
);         // low-high transition 
 573                         fc(8,  &n
); fc(10, &n
);         // high-low transition 
 579         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 585 // prepare a waveform pattern in the buffer based on the ID given then 
 586 // simulate a FSK tag until the button is pressed 
 587 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock 
 588 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 592         uint8_t fcHigh 
= arg1 
>> 8; 
 593         uint8_t fcLow 
= arg1 
& 0xFF; 
 595         uint8_t clk 
= arg2 
& 0xFF; 
 596         uint8_t invert 
= (arg2 
>> 8) & 1; 
 598         for (i
=0; i
<size
; i
++){ 
 599                 if (BitStream
[i
] == invert
){ 
 600                         fcAll(fcLow
, &n
, clk
, &modCnt
); 
 602                         fcAll(fcHigh
, &n
, clk
, &modCnt
); 
 605         Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
); 
 606         /*Dbprintf("DEBUG: First 32:"); 
 607         uint8_t *dest = BigBuf_get_addr(); 
 609         Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 611         Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 616         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 622 // compose ask waveform for one bit(ASK) 
 623 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
) 
 625         uint8_t *dest 
= BigBuf_get_addr(); 
 626         uint8_t halfClk 
= clock
/2; 
 627         // c = current bit 1 or 0 
 629                 memset(dest
+(*n
), c
, halfClk
); 
 630                 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
); 
 632                 memset(dest
+(*n
), c
, clock
); 
 637 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
) 
 639         uint8_t *dest 
= BigBuf_get_addr(); 
 640         uint8_t halfClk 
= clock
/2; 
 642                 memset(dest
+(*n
), c 
^ 1 ^ *phase
, halfClk
); 
 643                 memset(dest
+(*n
) + halfClk
, c 
^ *phase
, halfClk
); 
 645                 memset(dest
+(*n
), c 
^ *phase
, clock
); 
 651 static void stAskSimBit(int *n
, uint8_t clock
) { 
 652         uint8_t *dest 
= BigBuf_get_addr(); 
 653         uint8_t halfClk 
= clock
/2; 
 654         //ST = .5 high .5 low 1.5 high .5 low 1 high     
 655         memset(dest
+(*n
), 1, halfClk
); 
 656         memset(dest
+(*n
) + halfClk
, 0, halfClk
); 
 657         memset(dest
+(*n
) + clock
, 1, clock 
+ halfClk
); 
 658         memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
); 
 659         memset(dest
+(*n
) + clock
*3, 1, clock
); 
 663 // args clock, ask/man or askraw, invert, transmission separator 
 664 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 668         uint8_t clk 
= (arg1 
>> 8) & 0xFF; 
 669         uint8_t encoding 
= arg1 
& 0xFF; 
 670         uint8_t separator 
= arg2 
& 1; 
 671         uint8_t invert 
= (arg2 
>> 8) & 1; 
 673         if (encoding
==2){  //biphase 
 675                 for (i
=0; i
<size
; i
++){ 
 676                         biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 678                 if (phase
==1) { //run a second set inverted to keep phase in check 
 679                         for (i
=0; i
<size
; i
++){ 
 680                                 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 683         } else {  // ask/manchester || ask/raw 
 684                 for (i
=0; i
<size
; i
++){ 
 685                         askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
); 
 687                 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for ask/raw || biphase phase) 
 688                         for (i
=0; i
<size
; i
++){ 
 689                                 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
); 
 693         if (separator
==1 && encoding 
== 1) 
 694                 stAskSimBit(&n
, clk
); 
 695         else if (separator
==1) 
 696                 Dbprintf("sorry but separator option not yet available"); 
 698         Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
); 
 700         //Dbprintf("First 32:"); 
 701         //uint8_t *dest = BigBuf_get_addr(); 
 703         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 705         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 707         if (ledcontrol
) LED_A_ON(); 
 708         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 709         if (ledcontrol
) LED_A_OFF(); 
 712 //carrier can be 2,4 or 8 
 713 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
) 
 715         uint8_t *dest 
= BigBuf_get_addr(); 
 716         uint8_t halfWave 
= waveLen
/2; 
 720                 // write phase change 
 721                 memset(dest
+(*n
), *curPhase
^1, halfWave
); 
 722                 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
); 
 727         //write each normal clock wave for the clock duration 
 728         for (; i 
< clk
; i
+=waveLen
){ 
 729                 memset(dest
+(*n
), *curPhase
, halfWave
); 
 730                 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
); 
 735 // args clock, carrier, invert, 
 736 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 740         uint8_t clk 
= arg1 
>> 8; 
 741         uint8_t carrier 
= arg1 
& 0xFF; 
 742         uint8_t invert 
= arg2 
& 0xFF; 
 743         uint8_t curPhase 
= 0; 
 744         for (i
=0; i
<size
; i
++){ 
 745                 if (BitStream
[i
] == curPhase
){ 
 746                         pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
); 
 748                         pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
); 
 751         Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
); 
 752         //Dbprintf("DEBUG: First 32:"); 
 753         //uint8_t *dest = BigBuf_get_addr(); 
 755         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 757         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 759         if (ledcontrol
) LED_A_ON(); 
 760         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 761         if (ledcontrol
) LED_A_OFF(); 
 764 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 765 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 767         uint8_t *dest 
= BigBuf_get_addr(); 
 768         //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); 
 770         uint32_t hi2
=0, hi
=0, lo
=0; 
 773         // Configure to go in 125Khz listen mode 
 774         LFSetupFPGAForADC(95, true); 
 777         BigBuf_Clear_keep_EM(); 
 779         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 782                 if (ledcontrol
) LED_A_ON(); 
 784                 DoAcquisition_default(-1,true); 
 786                 //size = sizeOfBigBuff;  //variable size will change after demod so re initialize it before use 
 787                 size 
= 50*128*2; //big enough to catch 2 sequences of largest format 
 788                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
, &dummyIdx
); 
 790                 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){ 
 791                         // go over previously decoded manchester data and decode into usable tag ID 
 792                         if (hi2 
!= 0){ //extra large HID tags  88/192 bits 
 793                                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 794                                   (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 795                         }else {  //standard HID tags 44/96 bits 
 796                                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 799                                 uint32_t cardnum 
= 0; 
 800                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 802                                         lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 804                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 812                                                 cardnum 
= (lo
>>1)&0xFFFF; 
 816                                                 cardnum 
= (lo
>>1)&0x7FFFF; 
 817                                                 fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 820                                                 cardnum 
= (lo
>>1)&0xFFFF; 
 821                                                 fc
= ((hi
&1)<<15)|(lo
>>17); 
 824                                                 cardnum 
= (lo
>>1)&0xFFFFF; 
 825                                                 fc 
= ((hi
&1)<<11)|(lo
>>21); 
 828                                 else { //if bit 38 is not set then 37 bit format is used 
 833                                                 cardnum 
= (lo
>>1)&0x7FFFF; 
 834                                                 fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 837                                 //Dbprintf("TAG ID: %x%08x (%d)", 
 838                                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 839                                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 840                                                  (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 841                                                  (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 844                                 if (ledcontrol
) LED_A_OFF(); 
 851                 hi2 
= hi 
= lo 
= idx 
= 0; 
 855         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 856         DbpString("Stopped"); 
 857         if (ledcontrol
) LED_A_OFF(); 
 860 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 861 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 863         uint8_t *dest 
= BigBuf_get_addr(); 
 865         int idx
=0, dummyIdx
=0; 
 867         BigBuf_Clear_keep_EM(); 
 868         // Configure to go in 125Khz listen mode 
 869         LFSetupFPGAForADC(95, true); 
 871         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 874                 if (ledcontrol
) LED_A_ON(); 
 876                 DoAcquisition_default(-1,true); 
 878                 size 
= 50*128*2; //big enough to catch 2 sequences of largest format 
 879                 idx 
= AWIDdemodFSK(dest
, &size
, &dummyIdx
); 
 881                 if (idx
<=0 || size
!=96) continue; 
 883                 // 0            10            20            30              40            50              60 
 885                 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 
 886                 // ----------------------------------------------------------------------------- 
 887                 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 
 888                 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 
 889                 //          |---26 bit---|    |-----117----||-------------142-------------| 
 890                 // b = format bit len, o = odd parity of last 3 bits 
 891                 // f = facility code, c = card number 
 892                 // w = wiegand parity 
 893                 // (26 bit format shown) 
 895                 //get raw ID before removing parities 
 896                 uint32_t rawLo 
= bytebits_to_byte(dest
+idx
+64,32); 
 897                 uint32_t rawHi 
= bytebits_to_byte(dest
+idx
+32,32); 
 898                 uint32_t rawHi2 
= bytebits_to_byte(dest
+idx
,32); 
 900                 size 
= removeParity(dest
, idx
+8, 4, 1, 88); 
 901                 if (size 
!= 66) continue; 
 902                 // ok valid card found! 
 905                 // 0           10         20        30          40        50        60 
 907                 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 
 908                 // ----------------------------------------------------------------------------- 
 909                 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 
 910                 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 911                 // |26 bit|   |-117--| |-----142------| 
 912                 // b = format bit len, o = odd parity of last 3 bits 
 913                 // f = facility code, c = card number 
 914                 // w = wiegand parity 
 915                 // (26 bit format shown) 
 918                 uint32_t cardnum 
= 0; 
 921                 uint8_t fmtLen 
= bytebits_to_byte(dest
,8); 
 923                         fc 
= bytebits_to_byte(dest
+9, 8); 
 924                         cardnum 
= bytebits_to_byte(dest
+17, 16); 
 925                         code1 
= bytebits_to_byte(dest
+8,fmtLen
); 
 926                         Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
); 
 928                         cardnum 
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16); 
 930                                 code1 
= bytebits_to_byte(dest
+8,fmtLen
-32); 
 931                                 code2 
= bytebits_to_byte(dest
+8+(fmtLen
-32),32); 
 932                                 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
); 
 934                                 code1 
= bytebits_to_byte(dest
+8,fmtLen
); 
 935                                 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
); 
 939                         if (ledcontrol
) LED_A_OFF(); 
 946         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 947         DbpString("Stopped"); 
 948         if (ledcontrol
) LED_A_OFF(); 
 951 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 953         uint8_t *dest 
= BigBuf_get_addr(); 
 955         size_t size
=0, idx
=0; 
 956         int clk
=0, invert
=0, errCnt
=0, maxErr
=20; 
 960         BigBuf_Clear_keep_EM(); 
 961         // Configure to go in 125Khz listen mode 
 962         LFSetupFPGAForADC(95, true); 
 964         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 967                 if (ledcontrol
) LED_A_ON(); 
 969                 DoAcquisition_default(-1,true); 
 970                 size  
= BigBuf_max_traceLen(); 
 971                 //askdemod and manchester decode 
 972                 if (size 
> 16385) size 
= 16385; //big enough to catch 2 sequences of largest format 
 973                 errCnt 
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1); 
 976                 if (errCnt
<0) continue; 
 978                 errCnt 
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
); 
 981                                 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", 
 985                                   (uint32_t)(lo
&0xFFFF), 
 986                                   (uint32_t)((lo
>>16LL) & 0xFF), 
 987                                   (uint32_t)(lo 
& 0xFFFFFF)); 
 989                                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 992                                   (uint32_t)(lo
&0xFFFF), 
 993                                   (uint32_t)((lo
>>16LL) & 0xFF), 
 994                                   (uint32_t)(lo 
& 0xFFFFFF)); 
 998                                 if (ledcontrol
) LED_A_OFF(); 
1000                                 *low
=lo 
& 0xFFFFFFFF; 
1005                 hi 
= lo 
= size 
= idx 
= 0; 
1006                 clk 
= invert 
= errCnt 
= 0; 
1008         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1009         DbpString("Stopped"); 
1010         if (ledcontrol
) LED_A_OFF(); 
1013 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
1015         uint8_t *dest 
= BigBuf_get_addr(); 
1017         uint32_t code
=0, code2
=0; 
1019         uint8_t facilitycode
=0; 
1023         BigBuf_Clear_keep_EM(); 
1024         // Configure to go in 125Khz listen mode 
1025         LFSetupFPGAForADC(95, true); 
1027         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
1029                 if (ledcontrol
) LED_A_ON(); 
1030                 DoAcquisition_default(-1,true); 
1031                 //fskdemod and get start index 
1033                 idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen(), &dummyIdx
); 
1034                 if (idx
<0) continue; 
1038                 //0           10          20          30          40          50          60 
1040                 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
1041                 //----------------------------------------------------------------------------- 
1042                 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
1044                 //XSF(version)facility:codeone+codetwo 
1046                 if(findone
){ //only print binary if we are doing one 
1047                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
1048                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
1049                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
1050                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
1051                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
1052                         Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
1053                         Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
1055                 code 
= bytebits_to_byte(dest
+idx
,32); 
1056                 code2 
= bytebits_to_byte(dest
+idx
+32,32); 
1057                 version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
1058                 facilitycode 
= bytebits_to_byte(dest
+idx
+18,8); 
1059                 number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
1061                 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
); 
1062                 // if we're only looking for one tag 
1064                         if (ledcontrol
) LED_A_OFF(); 
1071                 version
=facilitycode
=0; 
1077         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1078         DbpString("Stopped"); 
1079         if (ledcontrol
) LED_A_OFF(); 
1082 /*------------------------------ 
1083  * T5555/T5557/T5567/T5577 routines 
1084  *------------------------------ 
1085  * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h 
1087  * Relevant communication times in microsecond 
1088  * To compensate antenna falling times shorten the write times 
1089  * and enlarge the gap ones. 
1090  * Q5 tags seems to have issues when these values changes.  
1092 #define START_GAP 31*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (or 15fc) 
1093 #define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (or 10fc) 
1094 #define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) 
1095 #define WRITE_1   50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc)  432 for T55x7; 448 for E5550 
1096 #define READ_GAP  15*8  
1098 void TurnReadLFOn(int delay
) { 
1099         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1100         // Give it a bit of time for the resonant antenna to settle. 
1101         WaitUS(delay
); //155*8 //50*8 
1104 // Write one bit to card 
1105 void T55xxWriteBit(int bit
) { 
1107                 TurnReadLFOn(WRITE_0
); 
1109                 TurnReadLFOn(WRITE_1
); 
1110         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1114 // Send T5577 reset command then read stream (see if we can identify the start of the stream) 
1115 void T55xxResetRead(void) { 
1117         //clear buffer now so it does not interfere with timing later 
1118         BigBuf_Clear_keep_EM(); 
1120         // Set up FPGA, 125kHz 
1121         LFSetupFPGAForADC(95, true); 
1123         // make sure tag is fully powered up... 
1126         // Trigger T55x7 in mode. 
1127         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1130         // reset tag - op code 00 
1134         TurnReadLFOn(READ_GAP
); 
1137         DoPartialAcquisition(0, true, BigBuf_max_traceLen()); 
1139         // Turn the field off 
1140         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1141         cmd_send(CMD_ACK
,0,0,0,0,0);     
1145 // Write one card block in page 0, no lock 
1146 void T55xxWriteBlockExt(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) { 
1148         bool PwdMode 
= arg 
& 0x1; 
1149         uint8_t Page 
= (arg 
& 0x2)>>1; 
1150         bool testMode 
= arg 
& 0x4; 
1153         // Set up FPGA, 125kHz 
1154         LFSetupFPGAForADC(95, true); 
1156         // make sure tag is fully powered up... 
1158         // Trigger T55x7 in mode. 
1159         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1162         if (testMode
) Dbprintf("TestMODE"); 
1164         T55xxWriteBit(testMode 
? 0 : 1); 
1165         T55xxWriteBit(testMode 
? 1 : Page
); //Page 0 
1169                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1170                         T55xxWriteBit(Pwd 
& i
); 
1176         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1177                 T55xxWriteBit(Data 
& i
); 
1179         // Send Block number 
1180         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1181                 T55xxWriteBit(Block 
& i
); 
1183         // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1184         // so wait a little more) 
1186         // "there is a clock delay before programming"  
1187         //  - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567 
1188         //  so we should wait 1 clock + 5.6ms then read response?  
1189         //  but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow... 
1191                 //TESTMODE TIMING TESTS:  
1192                 // <566us does nothing  
1193                 // 566-568 switches between wiping to 0s and doing nothing 
1194                 // 5184 wipes and allows 1 block to be programmed. 
1195                 // indefinite power on wipes and then programs all blocks with bitshifted data sent. 
1199                 TurnReadLFOn(20 * 1000); 
1200                 //could attempt to do a read to confirm write took 
1201                 // as the tag should repeat back the new block  
1202                 // until it is reset, but to confirm it we would  
1203                 // need to know the current block 0 config mode for 
1204                 // modulation clock an other details to demod the response... 
1205                 // response should be (for t55x7) a 0 bit then (ST if on)  
1206                 // block data written in on repeat until reset.  
1208                 //DoPartialAcquisition(20, true, 12000); 
1212         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1216 // Write one card block in page 0, no lock 
1217 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) { 
1218         T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
); 
1219         cmd_send(CMD_ACK
,0,0,0,0,0); 
1222 // Read one card block in page [page] 
1223 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) { 
1225         bool PwdMode 
= arg0 
& 0x1; 
1226         uint8_t Page 
= (arg0 
& 0x2) >> 1; 
1228         bool RegReadMode 
= (Block 
== 0xFF);//regular read mode 
1230         //clear buffer now so it does not interfere with timing later 
1231         BigBuf_Clear_ext(false); 
1233         //make sure block is at max 7 
1236         // Set up FPGA, 125kHz to power up the tag 
1237         LFSetupFPGAForADC(95, true); 
1239         // make sure tag is fully powered up... 
1241         // Trigger T55x7 Direct Access Mode with start gap 
1242         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1247         T55xxWriteBit(Page
); //Page 0 
1251                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1252                         T55xxWriteBit(Pwd 
& i
); 
1254         // Send a zero bit separation 
1257         // Send Block number (if direct access mode) 
1259                 for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1260                         T55xxWriteBit(Block 
& i
);                
1262         // Turn field on to read the response 
1263         // 137*8 seems to get to the start of data pretty well...  
1264         //  but we want to go past the start and let the repeating data settle in... 
1265         TurnReadLFOn(210*8);  
1268         // Now do the acquisition 
1269         DoPartialAcquisition(0, true, 12000); 
1271         // Turn the field off 
1272         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1273         cmd_send(CMD_ACK
,0,0,0,0,0);     
1277 void T55xxWakeUp(uint32_t Pwd
){ 
1281         // Set up FPGA, 125kHz 
1282         LFSetupFPGAForADC(95, true); 
1284         // make sure tag is fully powered up... 
1287         // Trigger T55x7 Direct Access Mode 
1288         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1293         T55xxWriteBit(0); //Page 0 
1296         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1297                 T55xxWriteBit(Pwd 
& i
); 
1299         // Turn and leave field on to let the begin repeating transmission 
1300         TurnReadLFOn(20*1000); 
1303 /*-------------- Cloning routines -----------*/ 
1305 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) { 
1306         // write last block first and config block last (if included) 
1307         for (uint8_t i 
= numblocks
+startblock
; i 
> startblock
; i
--) { 
1308                 T55xxWriteBlockExt(blockdata
[i
-1],i
-1,0,0); 
1312 // Copy HID id to card and setup block 0 config 
1313 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) { 
1314         uint32_t data
[] = {0,0,0,0,0,0,0}; 
1315         uint8_t last_block 
= 0; 
1318                 // Ensure no more than 84 bits supplied 
1320                         DbpString("Tags can only have 84 bits."); 
1323                 // Build the 6 data blocks for supplied 84bit ID 
1325                 // load preamble (1D) & long format identifier (9E manchester encoded) 
1326                 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 
>> 16) & 0xF) & 0xFF); 
1327                 // load raw id from hi2, hi, lo to data blocks (manchester encoded) 
1328                 data
[2] = manchesterEncode2Bytes(hi2 
& 0xFFFF); 
1329                 data
[3] = manchesterEncode2Bytes(hi 
>> 16); 
1330                 data
[4] = manchesterEncode2Bytes(hi 
& 0xFFFF); 
1331                 data
[5] = manchesterEncode2Bytes(lo 
>> 16); 
1332                 data
[6] = manchesterEncode2Bytes(lo 
& 0xFFFF); 
1334                 // Ensure no more than 44 bits supplied 
1336                         DbpString("Tags can only have 44 bits."); 
1339                 // Build the 3 data blocks for supplied 44bit ID 
1342                 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF); 
1343                 data
[2] = manchesterEncode2Bytes(lo 
>> 16); 
1344                 data
[3] = manchesterEncode2Bytes(lo 
& 0xFFFF); 
1346         // load chip config block 
1347         data
[0] = T55x7_BITRATE_RF_50 
| T55x7_MODULATION_FSK2a 
| last_block 
<< T55x7_MAXBLOCK_SHIFT
; 
1349         //TODO add selection of chip for Q5 or T55x7 
1350         // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; 
1353         // Program the data blocks for supplied ID 
1354         // and the block 0 for HID format 
1355         WriteT55xx(data
, 0, last_block
+1); 
1362 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) { 
1363         uint32_t data
[] = {T55x7_BITRATE_RF_64 
| T55x7_MODULATION_FSK2a 
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
}; 
1364         //TODO add selection of chip for Q5 or T55x7 
1365         // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; 
1368         // Program the data blocks for supplied ID 
1369         // and the block 0 config 
1370         WriteT55xx(data
, 0, 3); 
1377 // Clone Indala 64-bit tag by UID to T55x7 
1378 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) { 
1379         //Program the 2 data blocks for supplied 64bit UID 
1380         // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) 
1381         uint32_t data
[] = { T55x7_BITRATE_RF_32 
| T55x7_MODULATION_PSK1 
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
}; 
1382         //TODO add selection of chip for Q5 or T55x7 
1383         // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; 
1385         WriteT55xx(data
, 0, 3); 
1386         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1387         //      T5567WriteBlock(0x603E1042,0); 
1390 // Clone Indala 224-bit tag by UID to T55x7 
1391 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) { 
1392         //Program the 7 data blocks for supplied 224bit UID 
1393         uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
}; 
1394         // and the block 0 for Indala224 format  
1395         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1396         data
[0] = T55x7_BITRATE_RF_32 
| T55x7_MODULATION_PSK1 
| (7 << T55x7_MAXBLOCK_SHIFT
); 
1397         //TODO add selection of chip for Q5 or T55x7 
1398         // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; 
1399         WriteT55xx(data
, 0, 8); 
1400         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1401         //      T5567WriteBlock(0x603E10E2,0); 
1404 // clone viking tag to T55xx 
1405 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) { 
1406         uint32_t data
[] = {T55x7_BITRATE_RF_32 
| T55x7_MODULATION_MANCHESTER 
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
}; 
1407         if (Q5
) data
[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER 
| 2 << T5555_MAXBLOCK_SHIFT
; 
1408         // Program the data blocks for supplied ID and the block 0 config 
1409         WriteT55xx(data
, 0, 3); 
1411         cmd_send(CMD_ACK
,0,0,0,0,0); 
1414 // Define 9bit header for EM410x tags 
1415 #define EM410X_HEADER             0x1FF 
1416 #define EM410X_ID_LENGTH        40 
1418 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) { 
1420         uint64_t id 
= EM410X_HEADER
; 
1421         uint64_t rev_id 
= 0;    // reversed ID 
1422         int c_parity
[4];        // column parity 
1423         int r_parity 
= 0;       // row parity 
1426         // Reverse ID bits given as parameter (for simpler operations) 
1427         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1429                         rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1432                         rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1437         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1438                 id_bit 
= rev_id 
& 1; 
1441                         // Don't write row parity bit at start of parsing 
1443                                 id 
= (id 
<< 1) | r_parity
; 
1444                         // Start counting parity for new row 
1451                 // First elements in column? 
1453                         // Fill out first elements 
1454                         c_parity
[i
] = id_bit
; 
1456                         // Count column parity 
1457                         c_parity
[i 
% 4] ^= id_bit
; 
1460                 id 
= (id 
<< 1) | id_bit
; 
1464         // Insert parity bit of last row 
1465         id 
= (id 
<< 1) | r_parity
; 
1467         // Fill out column parity at the end of tag 
1468         for (i 
= 0; i 
< 4; ++i
) 
1469                 id 
= (id 
<< 1) | c_parity
[i
]; 
1474         Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1478         uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id 
& 0xFFFFFFFF)}; 
1480         clock 
= (card 
& 0xFF00) >> 8; 
1481         clock 
= (clock 
== 0) ? 64 : clock
; 
1482         Dbprintf("Clock rate: %d", clock
); 
1483         if (card 
& 0xFF) { //t55x7 
1484                 clock 
= GetT55xxClockBit(clock
);                         
1486                         Dbprintf("Invalid clock rate: %d", clock
); 
1489                 data
[0] = clock 
| T55x7_MODULATION_MANCHESTER 
| (2 << T55x7_MAXBLOCK_SHIFT
); 
1490         } else { //t5555 (Q5) 
1491                 data
[0] = T5555_SET_BITRATE(clock
) | T5555_MODULATION_MANCHESTER 
| (2 << T5555_MAXBLOCK_SHIFT
); 
1494         WriteT55xx(data
, 0, 3); 
1497         Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1498                          (uint32_t)(id 
>> 32), (uint32_t)id
); 
1501 //----------------------------------- 
1502 // EM4469 / EM4305 routines 
1503 //----------------------------------- 
1504 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1505 #define FWD_CMD_WRITE 0xA 
1506 #define FWD_CMD_READ 0x9 
1507 #define FWD_CMD_DISABLE 0x5 
1509 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1510 uint8_t * forward_ptr
; //ptr for forward message preparation 
1511 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1512 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1514 //==================================================================== 
1515 // prepares command bits 
1517 //==================================================================== 
1518 //-------------------------------------------------------------------- 
1519 //  VALUES TAKEN FROM EM4x function: SendForward 
1520 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
1521 //  WRITE_GAP = 128;       (16*8) 
1522 //  WRITE_1   = 256 32*8;  (32*8)  
1524 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
1525 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
1527 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1529         *forward_ptr
++ = 0; //start bit 
1530         *forward_ptr
++ = 0; //second pause for 4050 code 
1532         *forward_ptr
++ = cmd
; 
1534         *forward_ptr
++ = cmd
; 
1536         *forward_ptr
++ = cmd
; 
1538         *forward_ptr
++ = cmd
; 
1540         return 6; //return number of emited bits 
1543 //==================================================================== 
1544 // prepares address bits 
1546 //==================================================================== 
1547 uint8_t Prepare_Addr( uint8_t addr 
) { 
1549         register uint8_t line_parity
; 
1554                 *forward_ptr
++ = addr
; 
1555                 line_parity 
^= addr
; 
1559         *forward_ptr
++ = (line_parity 
& 1); 
1561         return 7; //return number of emited bits 
1564 //==================================================================== 
1565 // prepares data bits intreleaved with parity bits 
1567 //==================================================================== 
1568 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1570         register uint8_t line_parity
; 
1571         register uint8_t column_parity
; 
1572         register uint8_t i
, j
; 
1573         register uint16_t data
; 
1578         for(i
=0; i
<4; i
++) { 
1580                 for(j
=0; j
<8; j
++) { 
1581                         line_parity 
^= data
; 
1582                         column_parity 
^= (data 
& 1) << j
; 
1583                         *forward_ptr
++ = data
; 
1586                 *forward_ptr
++ = line_parity
; 
1591         for(j
=0; j
<8; j
++) { 
1592                 *forward_ptr
++ = column_parity
; 
1593                 column_parity 
>>= 1; 
1597         return 45; //return number of emited bits 
1600 //==================================================================== 
1601 // Forward Link send function 
1602 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1603 // fwd_bit_count set with number of bits to be sent 
1604 //==================================================================== 
1605 void SendForward(uint8_t fwd_bit_count
) { 
1607         fwd_write_ptr 
= forwardLink_data
; 
1608         fwd_bit_sz 
= fwd_bit_count
; 
1610         // Set up FPGA, 125kHz or 95 divisor 
1611         LFSetupFPGAForADC(95, true); 
1613         // force 1st mod pulse (start gap must be longer for 4305) 
1614         fwd_bit_sz
--; //prepare next bit modulation 
1616         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1617         WaitUS(55*8); //55 cycles off (8us each)for 4305  //another reader has 37 here... 
1618         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1619         WaitUS(18*8); //18 cycles on (8us each) 
1621         // now start writting 
1622         while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1623                 if(((*fwd_write_ptr
++) & 1) == 1) 
1624                         WaitUS(32*8); //32 cycles at 125Khz (8us each) 
1626                         //These timings work for 4469/4269/4305 (with the 55*8 above) 
1627                         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1628                         WaitUS(23*8); //23 cycles off (8us each) 
1629                         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1630                         WaitUS(18*8); //18 cycles on (8us each) 
1635 void EM4xLogin(uint32_t Password
) { 
1637         uint8_t fwd_bit_count
; 
1639         forward_ptr 
= forwardLink_data
; 
1640         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1641         fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1643         SendForward(fwd_bit_count
); 
1645         //Wait for command to complete 
1649 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1651         uint8_t fwd_bit_count
; 
1653         // Clear destination buffer before sending the command 
1654         BigBuf_Clear_ext(false); 
1658         //If password mode do login 
1659         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1661         forward_ptr 
= forwardLink_data
; 
1662         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1663         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1665         SendForward(fwd_bit_count
); 
1667         // Now do the acquisition 
1668         DoPartialAcquisition(20, true, 6000); 
1670         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1672         cmd_send(CMD_ACK
,0,0,0,0,0); 
1675 void EM4xWriteWord(uint32_t flag
, uint32_t Data
, uint32_t Pwd
) { 
1677         bool PwdMode 
= (flag 
& 0xF); 
1678         uint8_t Address 
= (flag 
>> 8) & 0xFF; 
1679         uint8_t fwd_bit_count
; 
1681         //clear buffer now so it does not interfere with timing later 
1682         BigBuf_Clear_ext(false); 
1686         //If password mode do login 
1687         if (PwdMode
) EM4xLogin(Pwd
); 
1689         forward_ptr 
= forwardLink_data
; 
1690         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1691         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1692         fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1694         SendForward(fwd_bit_count
); 
1696         //Wait for write to complete 
1700         //Capture response if one exists 
1701         DoPartialAcquisition(20, true, 6000); 
1703         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1705         cmd_send(CMD_ACK
,0,0,0,0,0); 
1710 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate. 
1711 because of this, we can "sample" the data signal but we interpreate it to Manchester direct. 
1713 READER START SEQUENCE: 
1714 burst 800 us,    gap   2.2 msecs 
1715 burst 3.6 msecs  gap   2.2 msecs 
1716 burst 800 us     gap   2.2 msecs 
1719 This triggers a COTAG tag to response 
1721 void Cotag(uint32_t arg0
) { 
1723 #define OFF     { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); } 
1724 #define ON(x)   { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); } 
1726         uint8_t rawsignal 
= arg0 
& 0xF; 
1730         // Switching to LF image on FPGA. This might empty BigBuff 
1731         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1733         //clear buffer now so it does not interfere with timing later 
1734         BigBuf_Clear_ext(false); 
1736         // Set up FPGA, 132kHz to power up the tag 
1737         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 89); 
1738         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1740         // Connect the A/D to the peak-detected low-frequency path. 
1741         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1743         // Now set up the SSC to get the ADC samples that are now streaming at us. 
1746         // start clock - 1.5ticks is 1us 
1749         //send COTAG start pulse 
1756                 case 0: doCotagAcquisition(50000); break; 
1757                 case 1: doCotagAcquisitionManchester(); break; 
1758                 case 2: DoAcquisition_config(true, 0); break; 
1761         // Turn the field off 
1762         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1763         cmd_send(CMD_ACK
,0,0,0,0,0);