]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlf.c
CHG: this timing should be quite good. needs to be verified.
[proxmark3-svn] / client / cmdlf.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency commands
9 //-----------------------------------------------------------------------------
10 #include "cmdlf.h"
11 static int CmdHelp(const char *Cmd);
12
13 int usage_lf_cmdread(void) {
14 PrintAndLog("Usage: lf cmdread d <delay period> z <zero period> o <one period> c <cmdbytes> [H]");
15 PrintAndLog("Options:");
16 PrintAndLog(" h This help");
17 PrintAndLog(" L Low frequency (125 KHz)");
18 PrintAndLog(" H High frequency (134 KHz)");
19 PrintAndLog(" d <delay> delay OFF period, (decimal)");
20 PrintAndLog(" z <zero> time period ZERO, (decimal)");
21 PrintAndLog(" o <one> time period ONE, (decimal)");
22 PrintAndLog(" c <cmd> Command bytes (in ones and zeros)");
23 PrintAndLog(" ************* All periods in microseconds (ms)");
24 PrintAndLog("Examples:");
25 PrintAndLog(" lf cmdread d 80 z 100 o 200 c 11000");
26 PrintAndLog(" lf cmdread d 80 z 100 o 100 c 11000 H");
27 return 0;
28 }
29 int usage_lf_read(void){
30 PrintAndLog("Usage: lf read [h] [s]");
31 PrintAndLog("Options:");
32 PrintAndLog(" h This help");
33 PrintAndLog(" s silent run no printout");
34 PrintAndLog("This function takes no arguments. ");
35 PrintAndLog("Use 'lf config' to set parameters.");
36 return 0;
37 }
38 int usage_lf_snoop(void) {
39 PrintAndLog("Usage: lf snoop");
40 PrintAndLog("Options:");
41 PrintAndLog(" h This help");
42 PrintAndLog("This function takes no arguments. ");
43 PrintAndLog("Use 'lf config' to set parameters.");
44 return 0;
45 }
46 int usage_lf_config(void) {
47 PrintAndLog("Usage: lf config [h] [H|<divisor>] [b <bps>] [d <decim>] [a 0|1]");
48 PrintAndLog("Options:");
49 PrintAndLog(" h This help");
50 PrintAndLog(" L Low frequency (125 KHz)");
51 PrintAndLog(" H High frequency (134 KHz)");
52 PrintAndLog(" q <divisor> Manually set divisor. 88-> 134KHz, 95-> 125 Hz");
53 PrintAndLog(" b <bps> Sets resolution of bits per sample. Default (max): 8");
54 PrintAndLog(" d <decim> Sets decimation. A value of N saves only 1 in N samples. Default: 1");
55 PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1");
56 PrintAndLog(" t <threshold> Sets trigger threshold. 0 means no threshold (range: 0-128)");
57 PrintAndLog("Examples:");
58 PrintAndLog(" lf config b 8 L");
59 PrintAndLog(" Samples at 125KHz, 8bps.");
60 PrintAndLog(" lf config H b 4 d 3");
61 PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with ");
62 PrintAndLog(" a resolution of 4 bits per sample.");
63 PrintAndLog(" lf read");
64 PrintAndLog(" Performs a read (active field)");
65 PrintAndLog(" lf snoop");
66 PrintAndLog(" Performs a snoop (no active field)");
67 return 0;
68 }
69 int usage_lf_simfsk(void) {
70 PrintAndLog("Usage: lf simfsk [c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>]");
71 PrintAndLog("Options:");
72 PrintAndLog(" h This help");
73 PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
74 PrintAndLog(" i invert data");
75 PrintAndLog(" H <fcHigh> Manually set the larger Field Clock");
76 PrintAndLog(" L <fcLow> Manually set the smaller Field Clock");
77 //PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap");
78 PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
79 PrintAndLog("\n NOTE: if you set one clock manually set them all manually");
80 return 0;
81 }
82 int usage_lf_simask(void) {
83 PrintAndLog("Usage: lf simask [c <clock>] [i] [b|m|r] [s] [d <raw hex to sim>]");
84 PrintAndLog("Options:");
85 PrintAndLog(" h This help");
86 PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
87 PrintAndLog(" i invert data");
88 PrintAndLog(" b sim ask/biphase");
89 PrintAndLog(" m sim ask/manchester - Default");
90 PrintAndLog(" r sim ask/raw");
91 PrintAndLog(" s add t55xx Sequence Terminator gap - default: no gaps (only manchester)");
92 PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
93 return 0;
94 }
95 int usage_lf_simpsk(void) {
96 PrintAndLog("Usage: lf simpsk [1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>]");
97 PrintAndLog("Options:");
98 PrintAndLog(" h This help");
99 PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
100 PrintAndLog(" i invert data");
101 PrintAndLog(" 1 set PSK1 (default)");
102 PrintAndLog(" 2 set PSK2");
103 PrintAndLog(" 3 set PSK3");
104 PrintAndLog(" r <carrier> 2|4|8 are valid carriers: default = 2");
105 PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
106 return 0;
107 }
108 int usage_lf_find(void){
109 PrintAndLog("Usage: lf search [h] <0|1> [u]");
110 PrintAndLog("");
111 PrintAndLog("Options:");
112 PrintAndLog(" h This help");
113 PrintAndLog(" <0|1> Use data from Graphbuffer, if not set, try reading data from tag.");
114 PrintAndLog(" u Search for Unknown tags, if not set, reads only known tags.");
115 PrintAndLog("Examples:");
116 PrintAndLog(" lf search = try reading data from tag & search for known tags");
117 PrintAndLog(" lf search 1 = use data from GraphBuffer & search for known tags");
118 PrintAndLog(" lf search u = try reading data from tag & search for known and unknown tags");
119 PrintAndLog(" lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
120 return 0;
121 }
122
123
124 /* send a LF command before reading */
125 int CmdLFCommandRead(const char *Cmd) {
126
127 bool errors = FALSE;
128 bool useHighFreq = FALSE;
129 uint16_t one = 0, zero = 0;
130 uint8_t cmdp = 0;
131 UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K, {0,0,0}};
132
133 while(param_getchar(Cmd, cmdp) != 0x00) {
134 switch(param_getchar(Cmd, cmdp)) {
135 case 'h':
136 return usage_lf_cmdread();
137 case 'H':
138 useHighFreq = TRUE;
139 cmdp++;
140 break;
141 case 'L':
142 cmdp++;
143 break;
144 case 'c':
145 param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes);
146 cmdp+=2;
147 break;
148 case 'd':
149 c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10);
150 cmdp+=2;
151 break;
152 case 'z':
153 zero = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF;
154 cmdp+=2;
155 break;
156 case 'o':
157 one = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF;
158 cmdp+=2;
159 break;
160 default:
161 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
162 errors = 1;
163 break;
164 }
165 if(errors) break;
166 }
167 // No args
168 if (cmdp == 0) errors = TRUE;
169
170 //Validations
171 if (errors) return usage_lf_cmdread();
172
173 // zero and one lengths
174 c.arg[1] = (uint32_t)(zero << 16 | one);
175
176 // add frequency 125 or 134
177 c.arg[2] = useHighFreq;
178
179 clearCommandBuffer();
180 SendCommand(&c);
181 return 0;
182 }
183
184 int CmdFlexdemod(const char *Cmd)
185 {
186 #define LONG_WAIT 100
187 int i, j, start, bit, sum;
188 int phase = 0;
189
190 for (i = 0; i < GraphTraceLen; ++i)
191 GraphBuffer[i] = (GraphBuffer[i] < 0) ? -1 : 1;
192
193 for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
194 int first = GraphBuffer[start];
195 for (i = start; i < start + LONG_WAIT; i++) {
196 if (GraphBuffer[i] != first) {
197 break;
198 }
199 }
200 if (i == (start + LONG_WAIT))
201 break;
202 }
203
204 if (start == GraphTraceLen - LONG_WAIT) {
205 PrintAndLog("nothing to wait for");
206 return 0;
207 }
208
209 GraphBuffer[start] = 2;
210 GraphBuffer[start+1] = -2;
211 uint8_t bits[64] = {0x00};
212
213 i = start;
214 for (bit = 0; bit < 64; bit++) {
215 sum = 0;
216 for (int j = 0; j < 16; j++) {
217 sum += GraphBuffer[i++];
218 }
219 bits[bit] = (sum > 0) ? 1 : 0;
220 PrintAndLog("bit %d sum %d", bit, sum);
221 }
222
223 for (bit = 0; bit < 64; bit++) {
224 sum = 0;
225 for (j = 0; j < 16; j++)
226 sum += GraphBuffer[i++];
227
228 if (sum > 0 && bits[bit] != 1) PrintAndLog("oops1 at %d", bit);
229
230 if (sum < 0 && bits[bit] != 0) PrintAndLog("oops2 at %d", bit);
231
232 }
233
234 // HACK writing back to graphbuffer.
235 GraphTraceLen = 32*64;
236 i = 0;
237 for (bit = 0; bit < 64; bit++) {
238
239 phase = (bits[bit] == 0) ? 0 : 1;
240
241 for (j = 0; j < 32; j++) {
242 GraphBuffer[i++] = phase;
243 phase = !phase;
244 }
245 }
246 RepaintGraphWindow();
247 return 0;
248 }
249
250 int CmdIndalaDemod(const char *Cmd)
251 {
252 // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
253
254 int state = -1;
255 int count = 0;
256 int i, j;
257
258 // worst case with GraphTraceLen=64000 is < 4096
259 // under normal conditions it's < 2048
260 uint8_t rawbits[4096];
261
262 int rawbit = 0, worst = 0, worstPos = 0;
263 // PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32);
264
265 // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
266 for (i = 0; i < GraphTraceLen-1; i += 2) {
267 count += 1;
268 if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
269 // appears redundant - marshmellow
270 if (state == 0) {
271 for (j = 0; j < count - 8; j += 16) {
272 rawbits[rawbit++] = 0;
273 }
274 if ((abs(count - j)) > worst) {
275 worst = abs(count - j);
276 worstPos = i;
277 }
278 }
279 state = 1;
280 count = 0;
281 } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
282 //appears redundant
283 if (state == 1) {
284 for (j = 0; j < count - 8; j += 16) {
285 rawbits[rawbit++] = 1;
286 }
287 if ((abs(count - j)) > worst) {
288 worst = abs(count - j);
289 worstPos = i;
290 }
291 }
292 state = 0;
293 count = 0;
294 }
295 }
296
297 if ( rawbit>0 ){
298 PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32);
299 PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
300 } else {
301 return 0;
302 }
303
304 // Finding the start of a UID
305 int uidlen, long_wait;
306 if (strcmp(Cmd, "224") == 0) {
307 uidlen = 224;
308 long_wait = 30;
309 } else {
310 uidlen = 64;
311 long_wait = 29;
312 }
313
314 int start;
315 int first = 0;
316 for (start = 0; start <= rawbit - uidlen; start++) {
317 first = rawbits[start];
318 for (i = start; i < start + long_wait; i++) {
319 if (rawbits[i] != first) {
320 break;
321 }
322 }
323 if (i == (start + long_wait)) {
324 break;
325 }
326 }
327
328 if (start == rawbit - uidlen + 1) {
329 PrintAndLog("nothing to wait for");
330 return 0;
331 }
332
333 // Inverting signal if needed
334 if (first == 1) {
335 for (i = start; i < rawbit; i++) {
336 rawbits[i] = !rawbits[i];
337 }
338 }
339
340 // Dumping UID
341 uint8_t bits[224] = {0x00};
342 char showbits[225] = {0x00};
343 int bit;
344 i = start;
345 int times = 0;
346
347 if (uidlen > rawbit) {
348 PrintAndLog("Warning: not enough raw bits to get a full UID");
349 for (bit = 0; bit < rawbit; bit++) {
350 bits[bit] = rawbits[i++];
351 // As we cannot know the parity, let's use "." and "/"
352 showbits[bit] = '.' + bits[bit];
353 }
354 showbits[bit+1]='\0';
355 PrintAndLog("Partial UID=%s", showbits);
356 return 0;
357 } else {
358 for (bit = 0; bit < uidlen; bit++) {
359 bits[bit] = rawbits[i++];
360 showbits[bit] = '0' + bits[bit];
361 }
362 times = 1;
363 }
364
365 //convert UID to HEX
366 uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
367 int idx;
368 uid1 = uid2 = 0;
369
370 if (uidlen==64){
371 for( idx=0; idx<64; idx++) {
372 if (showbits[idx] == '0') {
373 uid1 = (uid1<<1) | (uid2>>31);
374 uid2 = (uid2<<1) | 0;
375 } else {
376 uid1 = (uid1<<1) | (uid2>>31);
377 uid2 = (uid2<<1) | 1;
378 }
379 }
380 PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2);
381 } else {
382 uid3 = uid4 = uid5 = uid6 = uid7 = 0;
383
384 for( idx=0; idx<224; idx++) {
385 uid1 = (uid1<<1) | (uid2>>31);
386 uid2 = (uid2<<1) | (uid3>>31);
387 uid3 = (uid3<<1) | (uid4>>31);
388 uid4 = (uid4<<1) | (uid5>>31);
389 uid5 = (uid5<<1) | (uid6>>31);
390 uid6 = (uid6<<1) | (uid7>>31);
391
392 if (showbits[idx] == '0')
393 uid7 = (uid7<<1) | 0;
394 else
395 uid7 = (uid7<<1) | 1;
396 }
397 PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
398 }
399
400 // Checking UID against next occurrences
401 int failed = 0;
402 for (; i + uidlen <= rawbit;) {
403 failed = 0;
404 for (bit = 0; bit < uidlen; bit++) {
405 if (bits[bit] != rawbits[i++]) {
406 failed = 1;
407 break;
408 }
409 }
410 if (failed == 1) {
411 break;
412 }
413 times += 1;
414 }
415
416 PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
417
418 // Remodulating for tag cloning
419 // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
420 // since this changes graphbuffer data.
421 GraphTraceLen = 32 * uidlen;
422 i = 0;
423 int phase = 0;
424 for (bit = 0; bit < uidlen; bit++) {
425 phase = (bits[bit] == 0) ? 0 : 1;
426 int j;
427 for (j = 0; j < 32; j++) {
428 GraphBuffer[i++] = phase;
429 phase = !phase;
430 }
431 }
432
433 RepaintGraphWindow();
434 return 1;
435 }
436
437 int CmdIndalaClone(const char *Cmd){
438 UsbCommand c;
439 unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7;
440
441 uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0;
442 int n = 0, i = 0;
443
444 if (strchr(Cmd,'l') != 0) {
445 while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
446 uid1 = (uid1 << 4) | (uid2 >> 28);
447 uid2 = (uid2 << 4) | (uid3 >> 28);
448 uid3 = (uid3 << 4) | (uid4 >> 28);
449 uid4 = (uid4 << 4) | (uid5 >> 28);
450 uid5 = (uid5 << 4) | (uid6 >> 28);
451 uid6 = (uid6 << 4) | (uid7 >> 28);
452 uid7 = (uid7 << 4) | (n & 0xf);
453 }
454 PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
455 c.cmd = CMD_INDALA_CLONE_TAG_L;
456 c.d.asDwords[0] = uid1;
457 c.d.asDwords[1] = uid2;
458 c.d.asDwords[2] = uid3;
459 c.d.asDwords[3] = uid4;
460 c.d.asDwords[4] = uid5;
461 c.d.asDwords[5] = uid6;
462 c.d.asDwords[6] = uid7;
463 } else {
464 while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
465 uid1 = (uid1 << 4) | (uid2 >> 28);
466 uid2 = (uid2 << 4) | (n & 0xf);
467 }
468 PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2);
469 c.cmd = CMD_INDALA_CLONE_TAG;
470 c.arg[0] = uid1;
471 c.arg[1] = uid2;
472 }
473
474 clearCommandBuffer();
475 SendCommand(&c);
476 return 0;
477 }
478
479 int CmdLFSetConfig(const char *Cmd) {
480 uint8_t divisor = 0;//Frequency divisor
481 uint8_t bps = 0; // Bits per sample
482 uint8_t decimation = 0; //How many to keep
483 bool averaging = 1; // Defaults to true
484 bool errors = FALSE;
485 int trigger_threshold = -1;//Means no change
486 uint8_t unsigned_trigg = 0;
487
488 uint8_t cmdp = 0;
489 while(param_getchar(Cmd, cmdp) != 0x00) {
490 switch(param_getchar(Cmd, cmdp)) {
491 case 'h':
492 return usage_lf_config();
493 case 'H':
494 divisor = 88;
495 cmdp++;
496 break;
497 case 'L':
498 divisor = 95;
499 cmdp++;
500 break;
501 case 'q':
502 errors |= param_getdec(Cmd,cmdp+1,&divisor);
503 cmdp+=2;
504 break;
505 case 't':
506 errors |= param_getdec(Cmd,cmdp+1,&unsigned_trigg);
507 cmdp+=2;
508 if(!errors) trigger_threshold = unsigned_trigg;
509 break;
510 case 'b':
511 errors |= param_getdec(Cmd,cmdp+1,&bps);
512 cmdp+=2;
513 break;
514 case 'd':
515 errors |= param_getdec(Cmd,cmdp+1,&decimation);
516 cmdp+=2;
517 break;
518 case 'a':
519 averaging = param_getchar(Cmd,cmdp+1) == '1';
520 cmdp+=2;
521 break;
522 default:
523 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
524 errors = 1;
525 break;
526 }
527 if(errors) break;
528 }
529
530 // No args
531 if (cmdp == 0) errors = 1;
532
533 //Validations
534 if (errors) return usage_lf_config();
535
536 //Bps is limited to 8, so fits in lower half of arg1
537 if (bps >> 4) bps = 8;
538
539 sample_config config = { decimation, bps, averaging, divisor, trigger_threshold };
540
541 //Averaging is a flag on high-bit of arg[1]
542 UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG};
543 memcpy(c.d.asBytes,&config,sizeof(sample_config));
544 clearCommandBuffer();
545 SendCommand(&c);
546 return 0;
547 }
548
549 int CmdLFRead(const char *Cmd) {
550 bool arg1 = false;
551 uint8_t cmdp = param_getchar(Cmd, 0);
552
553 if ( cmdp == 'h' || cmdp == 'H') return usage_lf_read();
554
555 //suppress print
556 if ( cmdp == 's' || cmdp == 'S') arg1 = true;
557
558 UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {arg1,0,0}};
559 clearCommandBuffer();
560 SendCommand(&c);
561 if ( !WaitForResponseTimeout(CMD_ACK,NULL,2500) ) {
562 PrintAndLog("command execution time out");
563 return 1;
564 }
565 return 0;
566 }
567
568 int CmdLFSnoop(const char *Cmd) {
569 uint8_t cmdp = param_getchar(Cmd, 0);
570 if(cmdp == 'h' || cmdp == 'H') return usage_lf_snoop();
571
572 UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES};
573 clearCommandBuffer();
574 SendCommand(&c);
575 WaitForResponse(CMD_ACK,NULL);
576 return 0;
577 }
578
579 static void ChkBitstream(const char *str) {
580 // convert to bitstream if necessary
581 for (int i = 0; i < (int)(GraphTraceLen / 2); i++){
582 if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) {
583 CmdGetBitStream("");
584 break;
585 }
586 }
587 }
588 //Attempt to simulate any wave in buffer (one bit per output sample)
589 // converts GraphBuffer to bitstream (based on zero crossings) if needed.
590 int CmdLFSim(const char *Cmd) {
591 int i,j;
592 static int gap;
593
594 sscanf(Cmd, "%i", &gap);
595
596 // convert to bitstream if necessary
597 ChkBitstream(Cmd);
598
599 //can send only 512 bits at a time (1 byte sent per bit...)
600 printf("Sending [%d bytes]", GraphTraceLen);
601 for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) {
602 UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}};
603
604 for (j = 0; j < USB_CMD_DATA_SIZE; j++) {
605 c.d.asBytes[j] = GraphBuffer[i+j];
606 }
607 clearCommandBuffer();
608 SendCommand(&c);
609 WaitForResponse(CMD_ACK,NULL);
610 printf(".");
611 }
612
613 PrintAndLog("\nStarting to simulate");
614 UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
615 clearCommandBuffer();
616 SendCommand(&c);
617 return 0;
618 }
619
620 // by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert
621 // - allow pull data from DemodBuffer
622 int CmdLFfskSim(const char *Cmd)
623 {
624 //might be able to autodetect FCs and clock from Graphbuffer if using demod buffer
625 // otherwise will need FChigh, FClow, Clock, and bitstream
626 uint8_t fcHigh = 0, fcLow = 0, clk = 0;
627 uint8_t invert = 0;
628 bool errors = FALSE;
629 char hexData[32] = {0x00}; // store entered hex data
630 uint8_t data[255] = {0x00};
631 int dataLen = 0;
632 uint8_t cmdp = 0;
633
634 while(param_getchar(Cmd, cmdp) != 0x00) {
635 switch(param_getchar(Cmd, cmdp)){
636 case 'h':
637 return usage_lf_simfsk();
638 case 'i':
639 invert = 1;
640 cmdp++;
641 break;
642 case 'c':
643 errors |= param_getdec(Cmd, cmdp+1, &clk);
644 cmdp += 2;
645 break;
646 case 'H':
647 errors |= param_getdec(Cmd, cmdp+1, &fcHigh);
648 cmdp += 2;
649 break;
650 case 'L':
651 errors |= param_getdec(Cmd, cmdp+1, &fcLow);
652 cmdp += 2;
653 break;
654 //case 's':
655 // separator = 1;
656 // cmdp++;
657 // break;
658 case 'd':
659 dataLen = param_getstr(Cmd, cmdp+1, hexData);
660 if (dataLen == 0)
661 errors = TRUE;
662 else
663 dataLen = hextobinarray((char *)data, hexData);
664
665 if (dataLen == 0) errors = TRUE;
666 if (errors) PrintAndLog ("Error getting hex data");
667 cmdp+=2;
668 break;
669 default:
670 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
671 errors = TRUE;
672 break;
673 }
674 if(errors) break;
675 }
676
677 // No args
678 if(cmdp == 0 && DemodBufferLen == 0)
679 errors = TRUE;
680
681 //Validations
682 if(errors) return usage_lf_simfsk();
683
684 if (dataLen == 0){ //using DemodBuffer
685 if (clk == 0 || fcHigh == 0 || fcLow == 0){ //manual settings must set them all
686 uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, 0);
687 if (ans==0){
688 if (!fcHigh) fcHigh = 10;
689 if (!fcLow) fcLow = 8;
690 if (!clk) clk = 50;
691 }
692 }
693 } else {
694 setDemodBuf(data, dataLen, 0);
695 }
696
697 //default if not found
698 if (clk == 0) clk = 50;
699 if (fcHigh == 0) fcHigh = 10;
700 if (fcLow == 0) fcLow = 8;
701
702 uint16_t arg1, arg2;
703 arg1 = fcHigh << 8 | fcLow;
704 arg2 = invert << 8 | clk;
705 size_t size = DemodBufferLen;
706 if (size > USB_CMD_DATA_SIZE) {
707 PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
708 size = USB_CMD_DATA_SIZE;
709 }
710 UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}};
711
712 memcpy(c.d.asBytes, DemodBuffer, size);
713 clearCommandBuffer();
714 SendCommand(&c);
715 return 0;
716 }
717
718 // by marshmellow - sim ask data given clock, invert, manchester or raw, separator
719 // - allow pull data from DemodBuffer
720 int CmdLFaskSim(const char *Cmd)
721 {
722 // autodetect clock from Graphbuffer if using demod buffer
723 // needs clock, invert, manchester/raw as m or r, separator as s, and bitstream
724 uint8_t encoding = 1, separator = 0, clk = 0, invert = 0;
725 bool errors = FALSE;
726 char hexData[32] = {0x00};
727 uint8_t data[255]= {0x00}; // store entered hex data
728 int dataLen = 0;
729 uint8_t cmdp = 0;
730
731 while(param_getchar(Cmd, cmdp) != 0x00) {
732 switch(param_getchar(Cmd, cmdp)) {
733 case 'h': return usage_lf_simask();
734 case 'i':
735 invert = 1;
736 cmdp++;
737 break;
738 case 'c':
739 errors |= param_getdec(Cmd, cmdp+1, &clk);
740 cmdp += 2;
741 break;
742 case 'b':
743 encoding = 2; //biphase
744 cmdp++;
745 break;
746 case 'm':
747 encoding = 1; //manchester
748 cmdp++;
749 break;
750 case 'r':
751 encoding = 0; //raw
752 cmdp++;
753 break;
754 case 's':
755 separator = 1;
756 cmdp++;
757 break;
758 case 'd':
759 dataLen = param_getstr(Cmd, cmdp+1, hexData);
760 if (dataLen == 0)
761 errors = TRUE;
762 else
763 dataLen = hextobinarray((char *)data, hexData);
764
765 if (dataLen == 0) errors = TRUE;
766 if (errors) PrintAndLog ("Error getting hex data, datalen: %d", dataLen);
767 cmdp += 2;
768 break;
769 default:
770 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
771 errors = TRUE;
772 break;
773 }
774 if(errors) break;
775 }
776
777 // No args
778 if(cmdp == 0 && DemodBufferLen == 0)
779 errors = TRUE;
780
781 //Validations
782 if(errors) return usage_lf_simask();
783
784 if (dataLen == 0){ //using DemodBuffer
785 if (clk == 0)
786 clk = GetAskClock("0", false, false);
787 } else {
788 setDemodBuf(data, dataLen, 0);
789 }
790 if (clk == 0) clk = 64;
791 if (encoding == 0) clk = clk/2; //askraw needs to double the clock speed
792
793 size_t size = DemodBufferLen;
794
795 if (size > USB_CMD_DATA_SIZE) {
796 PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
797 size = USB_CMD_DATA_SIZE;
798 }
799
800 PrintAndLog("preparing to sim ask data: %d bits", size);
801
802 uint16_t arg1, arg2;
803 arg1 = clk << 8 | encoding;
804 arg2 = invert << 8 | separator;
805
806 UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}};
807 memcpy(c.d.asBytes, DemodBuffer, size);
808 clearCommandBuffer();
809 SendCommand(&c);
810 return 0;
811 }
812
813 // by marshmellow - sim psk data given carrier, clock, invert
814 // - allow pull data from DemodBuffer or parameters
815 int CmdLFpskSim(const char *Cmd) {
816 //might be able to autodetect FC and clock from Graphbuffer if using demod buffer
817 //will need carrier, Clock, and bitstream
818 uint8_t carrier=0, clk=0;
819 uint8_t invert=0;
820 bool errors = FALSE;
821 char hexData[32] = {0x00}; // store entered hex data
822 uint8_t data[255] = {0x00};
823 int dataLen = 0;
824 uint8_t cmdp = 0;
825 uint8_t pskType = 1;
826
827 while(param_getchar(Cmd, cmdp) != 0x00) {
828 switch(param_getchar(Cmd, cmdp)) {
829 case 'h':
830 return usage_lf_simpsk();
831 case 'i':
832 invert = 1;
833 cmdp++;
834 break;
835 case 'c':
836 errors |= param_getdec(Cmd,cmdp+1,&clk);
837 cmdp +=2;
838 break;
839 case 'r':
840 errors |= param_getdec(Cmd,cmdp+1,&carrier);
841 cmdp += 2;
842 break;
843 case '1':
844 pskType = 1;
845 cmdp++;
846 break;
847 case '2':
848 pskType = 2;
849 cmdp++;
850 break;
851 case '3':
852 pskType = 3;
853 cmdp++;
854 break;
855 case 'd':
856 dataLen = param_getstr(Cmd, cmdp+1, hexData);
857 if (dataLen == 0)
858 errors = TRUE;
859 else
860 dataLen = hextobinarray((char *)data, hexData);
861
862 if (dataLen == 0) errors = TRUE;
863 if (errors) PrintAndLog ("Error getting hex data");
864 cmdp+=2;
865 break;
866 default:
867 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
868 errors = TRUE;
869 break;
870 }
871 if (errors) break;
872 }
873 // No args
874 if (cmdp == 0 && DemodBufferLen == 0)
875 errors = TRUE;
876
877 //Validations
878 if (errors) return usage_lf_simpsk();
879
880 if (dataLen == 0){ //using DemodBuffer
881 PrintAndLog("Getting Clocks");
882
883 if (clk==0) clk = GetPskClock("", FALSE, FALSE);
884 PrintAndLog("clk: %d",clk);
885
886 if (!carrier) carrier = GetPskCarrier("", FALSE, FALSE);
887 PrintAndLog("carrier: %d", carrier);
888
889 } else {
890 setDemodBuf(data, dataLen, 0);
891 }
892
893 if (clk <= 0) clk = 32;
894
895 if (carrier == 0) carrier = 2;
896
897 if (pskType != 1){
898 if (pskType == 2){
899 //need to convert psk2 to psk1 data before sim
900 psk2TOpsk1(DemodBuffer, DemodBufferLen);
901 } else {
902 PrintAndLog("Sorry, PSK3 not yet available");
903 }
904 }
905 uint16_t arg1, arg2;
906 arg1 = clk << 8 | carrier;
907 arg2 = invert;
908 size_t size = DemodBufferLen;
909 if (size > USB_CMD_DATA_SIZE) {
910 PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
911 size = USB_CMD_DATA_SIZE;
912 }
913 UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
914 PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", size);
915 memcpy(c.d.asBytes, DemodBuffer, size);
916 clearCommandBuffer();
917 SendCommand(&c);
918 return 0;
919 }
920
921 int CmdLFSimBidir(const char *Cmd) {
922 // Set ADC to twice the carrier for a slight supersampling
923 // HACK: not implemented in ARMSRC.
924 PrintAndLog("Not implemented yet.");
925 UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
926 SendCommand(&c);
927 return 0;
928 }
929
930 int CmdVchDemod(const char *Cmd) {
931 // Is this the entire sync pattern, or does this also include some
932 // data bits that happen to be the same everywhere? That would be
933 // lovely to know.
934 static const int SyncPattern[] = {
935 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
936 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
937 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
938 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
939 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
940 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
941 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
942 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
943 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
944 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
945 };
946
947 // So first, we correlate for the sync pattern, and mark that.
948 int bestCorrel = 0, bestPos = 0;
949 int i, j, sum = 0;
950
951 // It does us no good to find the sync pattern, with fewer than 2048 samples after it.
952
953 for (i = 0; i < (GraphTraceLen - 2048); i++) {
954 for (j = 0; j < ARRAYLEN(SyncPattern); j++) {
955 sum += GraphBuffer[i+j] * SyncPattern[j];
956 }
957 if (sum > bestCorrel) {
958 bestCorrel = sum;
959 bestPos = i;
960 }
961 }
962 PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel);
963
964 char bits[257];
965 bits[256] = '\0';
966
967 int worst = INT_MAX, worstPos = 0;
968
969 for (i = 0; i < 2048; i += 8) {
970 sum = 0;
971 for (j = 0; j < 8; j++)
972 sum += GraphBuffer[bestPos+i+j];
973
974 if (sum < 0)
975 bits[i/8] = '.';
976 else
977 bits[i/8] = '1';
978
979 if(abs(sum) < worst) {
980 worst = abs(sum);
981 worstPos = i;
982 }
983 }
984 PrintAndLog("bits:");
985 PrintAndLog("%s", bits);
986 PrintAndLog("worst metric: %d at pos %d", worst, worstPos);
987
988 // clone
989 if (strcmp(Cmd, "clone")==0) {
990 GraphTraceLen = 0;
991 char *s;
992 for(s = bits; *s; s++) {
993 for(j = 0; j < 16; j++) {
994 GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
995 }
996 }
997 RepaintGraphWindow();
998 }
999 return 0;
1000 }
1001
1002 //by marshmellow
1003 int CmdLFfind(const char *Cmd) {
1004 int ans = 0;
1005 char cmdp = param_getchar(Cmd, 0);
1006 char testRaw = param_getchar(Cmd, 1);
1007 if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') return usage_lf_find();
1008
1009 if (!offline && (cmdp != '1')){
1010 CmdLFRead("s");
1011 getSamples("30000",false);
1012 } else if (GraphTraceLen < 1000) {
1013 PrintAndLog("Data in Graphbuffer was too small.");
1014 return 0;
1015 }
1016 if (cmdp == 'u' || cmdp == 'U') testRaw = 'u';
1017
1018 PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
1019 PrintAndLog("False Positives ARE possible\n");
1020 PrintAndLog("\nChecking for known tags:\n");
1021
1022 ans=CmdFSKdemodIO("");
1023 if (ans>0) {
1024 PrintAndLog("\nValid IO Prox ID Found!");
1025 return 1;
1026 }
1027 ans=CmdFSKdemodPyramid("");
1028 if (ans>0) {
1029 PrintAndLog("\nValid Pyramid ID Found!");
1030 return 1;
1031 }
1032 ans=CmdFSKdemodParadox("");
1033 if (ans>0) {
1034 PrintAndLog("\nValid Paradox ID Found!");
1035 return 1;
1036 }
1037 ans=CmdFSKdemodAWID("");
1038 if (ans>0) {
1039 PrintAndLog("\nValid AWID ID Found!");
1040 return 1;
1041 }
1042 ans=CmdFSKdemodHID("");
1043 if (ans>0) {
1044 PrintAndLog("\nValid HID Prox ID Found!");
1045 return 1;
1046 }
1047 ans=CmdAskEM410xDemod("");
1048 if (ans>0) {
1049 PrintAndLog("\nValid EM410x ID Found!");
1050 return 1;
1051 }
1052 ans=CmdG_Prox_II_Demod("");
1053 if (ans>0) {
1054 PrintAndLog("\nValid Guardall G-Prox II ID Found!");
1055 return 1;
1056 }
1057 ans=CmdFDXBdemodBI("");
1058 if (ans>0) {
1059 PrintAndLog("\nValid FDX-B ID Found!");
1060 return 1;
1061 }
1062 ans=EM4x50Read("", false);
1063 if (ans>0) {
1064 PrintAndLog("\nValid EM4x50 ID Found!");
1065 return 1;
1066 }
1067 ans=CmdVikingDemod("");
1068 if (ans>0) {
1069 PrintAndLog("\nValid Viking ID Found!");
1070 return 1;
1071 }
1072 ans=CmdIndalaDecode("");
1073 if (ans>0) {
1074 PrintAndLog("\nValid Indala ID Found!");
1075 return 1;
1076 }
1077 ans=CmdPSKNexWatch("");
1078 if (ans>0) {
1079 PrintAndLog("\nValid NexWatch ID Found!");
1080 return 1;
1081 }
1082 ans=CmdJablotronDemod("");
1083 if (ans>0) {
1084 PrintAndLog("\nValid Jablotron ID Found!");
1085 return 1;
1086 }
1087 ans=CmdLFNedapDemod("");
1088 if (ans>0) {
1089 PrintAndLog("\nValid NEDAP ID Found!");
1090 return 1;
1091 }
1092 // TIdemod?
1093
1094
1095 PrintAndLog("\nNo Known Tags Found!\n");
1096 if (testRaw=='u' || testRaw=='U'){
1097 //test unknown tag formats (raw mode)
1098 PrintAndLog("\nChecking for Unknown tags:\n");
1099 ans=AutoCorrelate(4000, FALSE, FALSE);
1100
1101 if (ans > 0) {
1102
1103 PrintAndLog("Possible Auto Correlation of %d repeating samples",ans);
1104
1105 if ( ans % 8 == 0) {
1106 int bytes = (ans / 8);
1107 PrintAndLog("Possible %d bytes", bytes);
1108 int blocks = 0;
1109 if ( bytes % 2 == 0) {
1110 blocks = (bytes / 2);
1111 PrintAndLog("Possible 2 blocks, width %d", blocks);
1112 }
1113 if ( bytes % 4 == 0) {
1114 blocks = (bytes / 4);
1115 PrintAndLog("Possible 4 blocks, width %d", blocks);
1116 }
1117 if ( bytes % 8 == 0) {
1118 blocks = (bytes / 8);
1119 PrintAndLog("Possible 8 blocks, width %d", blocks);
1120 }
1121 if ( bytes % 16 == 0) {
1122 blocks = (bytes / 16);
1123 PrintAndLog("Possible 16 blocks, width %d", blocks);
1124 }
1125 }
1126 }
1127
1128 ans=GetFskClock("",FALSE,FALSE);
1129 if (ans != 0){ //fsk
1130 ans=FSKrawDemod("",TRUE);
1131 if (ans>0) {
1132 PrintAndLog("\nUnknown FSK Modulated Tag Found!");
1133 return 1;
1134 }
1135 }
1136 bool st = TRUE;
1137 ans=ASKDemod_ext("0 0 0",TRUE,FALSE,1,&st);
1138 if (ans>0) {
1139 PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!");
1140 PrintAndLog("\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'");
1141 return 1;
1142 }
1143
1144 ans=CmdPSK1rawDemod("");
1145 if (ans>0) {
1146 PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'");
1147 PrintAndLog("\nCould also be PSK3 - [currently not supported]");
1148 PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod");
1149 return 1;
1150 }
1151 PrintAndLog("\nNo Data Found!\n");
1152 }
1153 return 0;
1154 }
1155
1156 static command_t CommandTable[] =
1157 {
1158 {"help", CmdHelp, 1, "This help"},
1159 {"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"},
1160 {"em4x", CmdLFEM4X, 1, "{ EM4X RFIDs... }"},
1161 {"guard", CmdLFGuard, 1, "{ Guardall RFIDs... }"},
1162 {"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
1163 {"hitag", CmdLFHitag, 1, "{ HITAG RFIDs... }"},
1164 {"io", CmdLFIO, 1, "{ IOPROX RFIDs... }"},
1165 {"jablotron", CmdLFJablotron, 1, "{ JABLOTRON RFIDs... }"},
1166 {"nedap", CmdLFNedap, 1, "{ NEDAP RFIDs... }"},
1167 {"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 RFIDs... }"},
1168 {"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"},
1169 {"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"},
1170 {"ti", CmdLFTI, 1, "{ TI RFIDs... }"},
1171 {"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"},
1172 {"viking", CmdLFViking, 1, "{ Viking RFIDs... }"},
1173 {"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"},
1174 {"cmdread", CmdLFCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"},
1175 {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
1176 {"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
1177 {"indalaclone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"},
1178 {"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
1179 {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"},
1180 {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
1181 {"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d <hexdata>] \n\t\t-- Simulate LF ASK tag from demodbuffer or input"},
1182 {"simfsk", CmdLFfskSim, 0, "[c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>] \n\t\t-- Simulate LF FSK tag from demodbuffer or input"},
1183 {"simpsk", CmdLFpskSim, 0, "[1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>] \n\t\t-- Simulate LF PSK tag from demodbuffer or input"},
1184 {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
1185 {"snoop", CmdLFSnoop, 0, "['l'|'h'|<divisor>] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"},
1186 {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
1187 {NULL, NULL, 0, NULL}
1188 };
1189
1190 int CmdLF(const char *Cmd) {
1191 clearCommandBuffer();
1192 CmdsParse(CommandTable, Cmd);
1193 return 0;
1194 }
1195
1196 int CmdHelp(const char *Cmd) {
1197 CmdsHelp(CommandTable);
1198 return 0;
1199 }
Impressum, Datenschutz