1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
17 #include "iso14443crc.h"
19 #define RECEIVE_SAMPLES_TIMEOUT 2000
20 #define ISO14443B_DMA_BUFFER_SIZE 256
22 //=============================================================================
23 // An ISO 14443 Type B tag. We listen for commands from the reader, using
24 // a UART kind of thing that's implemented in software. When we get a
25 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
26 // If it's good, then we can do something appropriate with it, and send
28 //=============================================================================
30 //-----------------------------------------------------------------------------
31 // Code up a string of octets at layer 2 (including CRC, we don't generate
32 // that here) so that they can be transmitted to the reader. Doesn't transmit
33 // them yet, just leaves them ready to send in ToSend[].
34 //-----------------------------------------------------------------------------
35 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
41 // Transmit a burst of ones, as the initial thing that lets the
42 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
43 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
45 for(i
= 0; i
< 20; i
++) {
53 for(i
= 0; i
< 10; i
++) {
59 for(i
= 0; i
< 2; i
++) {
66 for(i
= 0; i
< len
; i
++) {
77 for(j
= 0; j
< 8; j
++) {
100 for(i
= 0; i
< 10; i
++) {
106 for(i
= 0; i
< 2; i
++) {
113 // Convert from last byte pos to length
117 //-----------------------------------------------------------------------------
118 // The software UART that receives commands from the reader, and its state
120 //-----------------------------------------------------------------------------
124 STATE_GOT_FALLING_EDGE_OF_SOF
,
125 STATE_AWAITING_START_BIT
,
136 /* Receive & handle a bit coming from the reader.
138 * This function is called 4 times per bit (every 2 subcarrier cycles).
139 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
142 * LED A -> ON once we have received the SOF and are expecting the rest.
143 * LED A -> OFF once we have received EOF or are in error state or unsynced
145 * Returns: true if we received a EOF
146 * false if we are still waiting for some more
148 static RAMFUNC
int Handle14443bUartBit(uint8_t bit
)
153 // we went low, so this could be the beginning
155 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
161 case STATE_GOT_FALLING_EDGE_OF_SOF
:
163 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
165 if(Uart
.bitCnt
> 9) {
166 // we've seen enough consecutive
167 // zeros that it's a valid SOF
170 Uart
.state
= STATE_AWAITING_START_BIT
;
171 LED_A_ON(); // Indicate we got a valid SOF
173 // didn't stay down long enough
174 // before going high, error
175 Uart
.state
= STATE_UNSYNCD
;
178 // do nothing, keep waiting
182 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
183 if(Uart
.bitCnt
> 12) {
184 // Give up if we see too many zeros without
187 Uart
.state
= STATE_UNSYNCD
;
191 case STATE_AWAITING_START_BIT
:
194 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
195 // stayed high for too long between
197 Uart
.state
= STATE_UNSYNCD
;
200 // falling edge, this starts the data byte
204 Uart
.state
= STATE_RECEIVING_DATA
;
208 case STATE_RECEIVING_DATA
:
210 if(Uart
.posCnt
== 2) {
211 // time to sample a bit
214 Uart
.shiftReg
|= 0x200;
218 if(Uart
.posCnt
>= 4) {
221 if(Uart
.bitCnt
== 10) {
222 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
224 // this is a data byte, with correct
225 // start and stop bits
226 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
229 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
230 // Buffer overflowed, give up
232 Uart
.state
= STATE_UNSYNCD
;
234 // so get the next byte now
236 Uart
.state
= STATE_AWAITING_START_BIT
;
238 } else if (Uart
.shiftReg
== 0x000) {
239 // this is an EOF byte
240 LED_A_OFF(); // Finished receiving
241 Uart
.state
= STATE_UNSYNCD
;
242 if (Uart
.byteCnt
!= 0) {
248 Uart
.state
= STATE_UNSYNCD
;
255 Uart
.state
= STATE_UNSYNCD
;
263 static void UartReset()
265 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
266 Uart
.state
= STATE_UNSYNCD
;
272 static void UartInit(uint8_t *data
)
279 //-----------------------------------------------------------------------------
280 // Receive a command (from the reader to us, where we are the simulated tag),
281 // and store it in the given buffer, up to the given maximum length. Keeps
282 // spinning, waiting for a well-framed command, until either we get one
283 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
285 // Assume that we're called with the SSC (to the FPGA) and ADC path set
287 //-----------------------------------------------------------------------------
288 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
)
290 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
291 // only, since we are receiving, not transmitting).
292 // Signal field is off with the appropriate LED
294 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
296 // Now run a `software UART' on the stream of incoming samples.
302 if(BUTTON_PRESS()) return FALSE
;
304 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
305 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
306 for(uint8_t mask
= 0x80; mask
!= 0x00; mask
>>= 1) {
307 if(Handle14443bUartBit(b
& mask
)) {
318 //-----------------------------------------------------------------------------
319 // Main loop of simulated tag: receive commands from reader, decide what
320 // response to send, and send it.
321 //-----------------------------------------------------------------------------
322 void SimulateIso14443bTag(void)
324 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
325 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
326 // ... and REQB, AFI=0, Normal Request, N=1:
327 static const uint8_t cmd2
[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
329 static const uint8_t cmd3
[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
331 static const uint8_t cmd4
[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
333 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
334 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
335 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
336 static const uint8_t response1
[] = {
337 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
338 0x00, 0x21, 0x85, 0x5e, 0xd7
340 // response to HLTB and ATTRIB
341 static const uint8_t response2
[] = {0x00, 0x78, 0xF0};
344 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
351 uint16_t respLen
, respCodeLen
;
353 // allocate command receive buffer
355 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
358 uint16_t cmdsRecvd
= 0;
360 // prepare the (only one) tag answer:
361 CodeIso14443bAsTag(response1
, sizeof(response1
));
362 uint8_t *resp1Code
= BigBuf_malloc(ToSendMax
);
363 memcpy(resp1Code
, ToSend
, ToSendMax
);
364 uint16_t resp1CodeLen
= ToSendMax
;
366 // prepare the (other) tag answer:
367 CodeIso14443bAsTag(response2
, sizeof(response2
));
368 uint8_t *resp2Code
= BigBuf_malloc(ToSendMax
);
369 memcpy(resp2Code
, ToSend
, ToSendMax
);
370 uint16_t resp2CodeLen
= ToSendMax
;
372 // We need to listen to the high-frequency, peak-detected path.
373 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
380 if(!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
381 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
386 uint8_t parity
[MAX_PARITY_SIZE
];
387 LogTrace(receivedCmd
, len
, 0, 0, parity
, TRUE
);
390 // Good, look at the command now.
391 if ( (len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
) == 0)
392 || (len
== sizeof(cmd2
) && memcmp(receivedCmd
, cmd2
, len
) == 0) ) {
394 respLen
= sizeof(response1
);
395 respCode
= resp1Code
;
396 respCodeLen
= resp1CodeLen
;
397 } else if ( (len
== sizeof(cmd3
) && receivedCmd
[0] == cmd3
[0])
398 || (len
== sizeof(cmd4
) && receivedCmd
[0] == cmd4
[0]) ) {
400 respLen
= sizeof(response2
);
401 respCode
= resp2Code
;
402 respCodeLen
= resp2CodeLen
;
404 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
405 // And print whether the CRC fails, just for good measure
407 if (len
>= 3){ // if crc exists
408 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
409 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
410 // Not so good, try again.
411 DbpString("+++CRC fail");
414 DbpString("CRC passes");
417 //get rid of compiler warning
421 respCode
= resp1Code
;
422 //don't crash at new command just wait and see if reader will send other new cmds.
428 if(cmdsRecvd
> 0x30) {
429 DbpString("many commands later...");
433 if(respCodeLen
<= 0) continue;
436 // Signal field is off with the appropriate LED
438 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
439 AT91C_BASE_SSC
->SSC_THR
= 0xff;
442 // Transmit the response.
445 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
446 uint8_t b
= respCode
[i
];
448 AT91C_BASE_SSC
->SSC_THR
= b
;
451 if(i
> respCodeLen
) {
455 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
456 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
461 // trace the response:
463 uint8_t parity
[MAX_PARITY_SIZE
];
464 LogTrace(resp
, respLen
, 0, 0, parity
, FALSE
);
470 //=============================================================================
471 // An ISO 14443 Type B reader. We take layer two commands, code them
472 // appropriately, and then send them to the tag. We then listen for the
473 // tag's response, which we leave in the buffer to be demodulated on the
475 //=============================================================================
480 DEMOD_PHASE_REF_TRAINING
,
481 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
482 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
483 DEMOD_AWAITING_START_BIT
,
489 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
501 * Handles reception of a bit from the tag
503 * This function is called 2 times per bit (every 4 subcarrier cycles).
504 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
507 * LED C -> ON once we have received the SOF and are expecting the rest.
508 * LED C -> OFF once we have received EOF or are unsynced
510 * Returns: true if we received a EOF
511 * false if we are still waiting for some more
514 static RAMFUNC
int Handle14443bSamplesDemod(int ci
, int cq
)
518 // The soft decision on the bit uses an estimate of just the
519 // quadrant of the reference angle, not the exact angle.
520 #define MAKE_SOFT_DECISION() { \
521 if(Demod.sumI > 0) { \
526 if(Demod.sumQ > 0) { \
533 #define SUBCARRIER_DETECT_THRESHOLD 8
535 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
536 /* #define CHECK_FOR_SUBCARRIER() { \
546 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
547 #define CHECK_FOR_SUBCARRIER() { \
549 if(cq < 0) { /* ci < 0, cq < 0 */ \
551 v = -cq - (ci >> 1); \
553 v = -ci - (cq >> 1); \
555 } else { /* ci < 0, cq >= 0 */ \
557 v = -ci + (cq >> 1); \
559 v = cq - (ci >> 1); \
563 if(cq < 0) { /* ci >= 0, cq < 0 */ \
565 v = ci - (cq >> 1); \
567 v = -cq + (ci >> 1); \
569 } else { /* ci >= 0, cq >= 0 */ \
571 v = ci + (cq >> 1); \
573 v = cq + (ci >> 1); \
579 switch(Demod
.state
) {
581 CHECK_FOR_SUBCARRIER();
582 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
583 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
590 case DEMOD_PHASE_REF_TRAINING
:
591 if(Demod
.posCount
< 8) {
592 CHECK_FOR_SUBCARRIER();
593 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
594 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
595 // note: synchronization time > 80 1/fs
599 } else { // subcarrier lost
600 Demod
.state
= DEMOD_UNSYNCD
;
603 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
607 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
608 MAKE_SOFT_DECISION();
609 if(v
< 0) { // logic '0' detected
610 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
611 Demod
.posCount
= 0; // start of SOF sequence
613 if(Demod
.posCount
> 200/4) { // maximum length of TR1 = 200 1/fs
614 Demod
.state
= DEMOD_UNSYNCD
;
620 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
622 MAKE_SOFT_DECISION();
624 if(Demod
.posCount
< 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
625 Demod
.state
= DEMOD_UNSYNCD
;
627 LED_C_ON(); // Got SOF
628 Demod
.state
= DEMOD_AWAITING_START_BIT
;
631 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
637 if(Demod
.posCount
> 12*2) { // low phase of SOF too long (> 12 etu)
638 Demod
.state
= DEMOD_UNSYNCD
;
644 case DEMOD_AWAITING_START_BIT
:
646 MAKE_SOFT_DECISION();
648 if(Demod
.posCount
> 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
649 Demod
.state
= DEMOD_UNSYNCD
;
652 } else { // start bit detected
654 Demod
.posCount
= 1; // this was the first half
657 Demod
.state
= DEMOD_RECEIVING_DATA
;
661 case DEMOD_RECEIVING_DATA
:
662 MAKE_SOFT_DECISION();
663 if(Demod
.posCount
== 0) { // first half of bit
666 } else { // second half of bit
669 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
670 if(Demod.thisBit > 0) {
671 Demod.metric += Demod.thisBit;
673 Demod.metric -= Demod.thisBit;
678 Demod
.shiftReg
>>= 1;
679 if(Demod
.thisBit
> 0) { // logic '1'
680 Demod
.shiftReg
|= 0x200;
684 if(Demod
.bitCount
== 10) {
685 uint16_t s
= Demod
.shiftReg
;
686 if((s
& 0x200) && !(s
& 0x001)) { // stop bit == '1', start bit == '0'
687 uint8_t b
= (s
>> 1);
688 Demod
.output
[Demod
.len
] = b
;
690 Demod
.state
= DEMOD_AWAITING_START_BIT
;
692 Demod
.state
= DEMOD_UNSYNCD
;
695 // This is EOF (start, stop and all data bits == '0'
705 Demod
.state
= DEMOD_UNSYNCD
;
714 static void DemodReset()
716 // Clear out the state of the "UART" that receives from the tag.
718 Demod
.state
= DEMOD_UNSYNCD
;
720 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
724 static void DemodInit(uint8_t *data
)
732 * Demodulate the samples we received from the tag, also log to tracebuffer
733 * quiet: set to 'TRUE' to disable debug output
735 static void GetSamplesFor14443bDemod(int n
, bool quiet
)
738 bool gotFrame
= FALSE
;
739 int lastRxCounter
, ci
, cq
, samples
= 0;
741 // Allocate memory from BigBuf for some buffers
742 // free all previous allocations first
745 // The response (tag -> reader) that we're receiving.
746 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
748 // The DMA buffer, used to stream samples from the FPGA
749 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
751 // Set up the demodulator for tag -> reader responses.
752 DemodInit(receivedResponse
);
754 // Setup and start DMA.
755 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
757 int8_t *upTo
= dmaBuf
;
758 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
760 // Signal field is ON with the appropriate LED:
762 // And put the FPGA in the appropriate mode
763 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
766 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
767 if(behindBy
> max
) max
= behindBy
;
769 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1)) > 2) {
773 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
775 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
776 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
779 if(lastRxCounter
<= 0) {
780 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
785 if(Handle14443bSamplesDemod(ci
, cq
)) {
791 if(samples
> n
|| gotFrame
) {
796 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
798 if (!quiet
) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max
, samples
, gotFrame
, Demod
.len
, Demod
.sumI
, Demod
.sumQ
);
800 if (tracing
&& Demod
.len
> 0) {
801 uint8_t parity
[MAX_PARITY_SIZE
];
802 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
807 //-----------------------------------------------------------------------------
808 // Transmit the command (to the tag) that was placed in ToSend[].
809 //-----------------------------------------------------------------------------
810 static void TransmitFor14443b(void)
816 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
817 AT91C_BASE_SSC
->SSC_THR
= 0xff;
820 // Signal field is ON with the appropriate Red LED
822 // Signal we are transmitting with the Green LED
824 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
826 for(c
= 0; c
< 10;) {
827 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
828 AT91C_BASE_SSC
->SSC_THR
= 0xff;
831 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
832 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
840 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
841 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
847 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
848 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
853 LED_B_OFF(); // Finished sending
857 //-----------------------------------------------------------------------------
858 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
859 // so that it is ready to transmit to the tag using TransmitFor14443b().
860 //-----------------------------------------------------------------------------
861 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
868 // Establish initial reference level
869 for(i
= 0; i
< 40; i
++) {
873 for(i
= 0; i
< 10; i
++) {
877 for(i
= 0; i
< len
; i
++) {
885 for(j
= 0; j
< 8; j
++) {
896 for(i
= 0; i
< 10; i
++) {
899 for(i
= 0; i
< 8; i
++) {
903 // And then a little more, to make sure that the last character makes
904 // it out before we switch to rx mode.
905 for(i
= 0; i
< 24; i
++) {
909 // Convert from last character reference to length
915 Convenience function to encode, transmit and trace iso 14443b comms
917 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
)
919 CodeIso14443bAsReader(cmd
, len
);
922 uint8_t parity
[MAX_PARITY_SIZE
];
923 LogTrace(cmd
,len
, 0, 0, parity
, TRUE
);
928 //-----------------------------------------------------------------------------
929 // Read a SRI512 ISO 14443B tag.
931 // SRI512 tags are just simple memory tags, here we're looking at making a dump
932 // of the contents of the memory. No anticollision algorithm is done, we assume
933 // we have a single tag in the field.
935 // I tried to be systematic and check every answer of the tag, every CRC, etc...
936 //-----------------------------------------------------------------------------
937 void ReadSTMemoryIso14443b(uint32_t dwLast
)
941 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
942 // Make sure that we start from off, since the tags are stateful;
943 // confusing things will happen if we don't reset them between reads.
945 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
948 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
951 // Now give it time to spin up.
952 // Signal field is on with the appropriate LED
954 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
960 // First command: wake up the tag using the INITIATE command
961 uint8_t cmd1
[] = {0x06, 0x00, 0x97, 0x5b};
962 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
963 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
965 if (Demod
.len
== 0) {
966 DbpString("No response from tag");
969 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
970 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
973 // There is a response, SELECT the uid
974 DbpString("Now SELECT tag:");
975 cmd1
[0] = 0x0E; // 0x0E is SELECT
976 cmd1
[1] = Demod
.output
[0];
977 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
978 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
979 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
980 if (Demod
.len
!= 3) {
981 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
984 // Check the CRC of the answer:
985 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
986 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
987 DbpString("CRC Error reading select response.");
990 // Check response from the tag: should be the same UID as the command we just sent:
991 if (cmd1
[1] != Demod
.output
[0]) {
992 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
996 // Tag is now selected,
997 // First get the tag's UID:
999 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1000 CodeAndTransmit14443bAsReader(cmd1
, 3); // Only first three bytes for this one
1001 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1002 if (Demod
.len
!= 10) {
1003 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1006 // The check the CRC of the answer (use cmd1 as temporary variable):
1007 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1008 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1009 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1010 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1011 // Do not return;, let's go on... (we should retry, maybe ?)
1013 Dbprintf("Tag UID (64 bits): %08x %08x",
1014 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1015 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1017 // Now loop to read all 16 blocks, address from 0 to last block
1018 Dbprintf("Tag memory dump, block 0 to %d", dwLast
);
1024 DbpString("System area block (0xff):");
1028 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1029 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1030 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1031 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
1032 DbpString("Expected 6 bytes from tag, got less...");
1035 // The check the CRC of the answer (use cmd1 as temporary variable):
1036 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1037 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1038 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1039 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1040 // Do not return;, let's go on... (we should retry, maybe ?)
1042 // Now print out the memory location:
1043 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1044 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1045 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1054 //=============================================================================
1055 // Finally, the `sniffer' combines elements from both the reader and
1056 // simulated tag, to show both sides of the conversation.
1057 //=============================================================================
1059 //-----------------------------------------------------------------------------
1060 // Record the sequence of commands sent by the reader to the tag, with
1061 // triggering so that we start recording at the point that the tag is moved
1063 //-----------------------------------------------------------------------------
1065 * Memory usage for this function, (within BigBuf)
1066 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1067 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1068 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1069 * Demodulated samples received - all the rest
1071 void RAMFUNC
SnoopIso14443b(void)
1073 // We won't start recording the frames that we acquire until we trigger;
1074 // a good trigger condition to get started is probably when we see a
1075 // response from the tag.
1076 int triggered
= TRUE
; // TODO: set and evaluate trigger condition
1078 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1084 // The DMA buffer, used to stream samples from the FPGA
1085 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
1089 int maxBehindBy
= 0;
1091 // Count of samples received so far, so that we can include timing
1092 // information in the trace buffer.
1095 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1096 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1098 // Print some debug information about the buffer sizes
1099 Dbprintf("Snooping buffers initialized:");
1100 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1101 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1102 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1103 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1105 // Signal field is off, no reader signal, no tag signal
1108 // And put the FPGA in the appropriate mode
1109 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
1110 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1112 // Setup for the DMA.
1115 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1116 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
1117 uint8_t parity
[MAX_PARITY_SIZE
];
1119 bool TagIsActive
= FALSE
;
1120 bool ReaderIsActive
= FALSE
;
1122 // And now we loop, receiving samples.
1124 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1125 (ISO14443B_DMA_BUFFER_SIZE
-1);
1126 if(behindBy
> maxBehindBy
) {
1127 maxBehindBy
= behindBy
;
1130 if(behindBy
< 2) continue;
1136 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
1138 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1139 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
1140 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
1142 if(behindBy
> (9*ISO14443B_DMA_BUFFER_SIZE
/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1143 Dbprintf("blew circular buffer! behindBy=%d", behindBy
);
1147 DbpString("Reached trace limit");
1150 if(BUTTON_PRESS()) {
1151 DbpString("cancelled");
1158 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1159 if(Handle14443bUartBit(ci
& 0x01)) {
1160 if(triggered
&& tracing
) {
1161 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1163 /* And ready to receive another command. */
1165 /* And also reset the demod code, which might have been */
1166 /* false-triggered by the commands from the reader. */
1169 if(Handle14443bUartBit(cq
& 0x01)) {
1170 if(triggered
&& tracing
) {
1171 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1173 /* And ready to receive another command. */
1175 /* And also reset the demod code, which might have been */
1176 /* false-triggered by the commands from the reader. */
1179 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1182 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1183 if(Handle14443bSamplesDemod(ci
| 0x01, cq
| 0x01)) {
1185 //Use samples as a time measurement
1188 uint8_t parity
[MAX_PARITY_SIZE
];
1189 LogTrace(Demod
.output
, Demod
.len
, samples
, samples
, parity
, FALSE
);
1193 // And ready to receive another response.
1196 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1201 FpgaDisableSscDma();
1203 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1204 DbpString("Snoop statistics:");
1205 Dbprintf(" Max behind by: %i", maxBehindBy
);
1206 Dbprintf(" Uart State: %x", Uart
.state
);
1207 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1208 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1209 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1214 * Send raw command to tag ISO14443B
1216 * datalen len of buffer data
1217 * recv bool when true wait for data from tag and send to client
1218 * powerfield bool leave the field on when true
1219 * data buffer with byte to send
1225 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
, uint8_t powerfield
, uint8_t data
[])
1227 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1228 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1234 CodeAndTransmit14443bAsReader(data
, datalen
);
1237 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1238 uint16_t iLen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1239 cmd_send(CMD_ACK
, iLen
, 0, 0, Demod
.output
, iLen
);
1244 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);