1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
27 // the block number for the ISO14443-4 PCB
28 static uint8_t iso14_pcb_blocknum
= 0;
33 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34 #define REQUEST_GUARD_TIME (7000/16 + 1)
35 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37 // bool LastCommandWasRequest = FALSE;
40 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
42 // When the PM acts as reader and is receiving tag data, it takes
43 // 3 ticks delay in the AD converter
44 // 16 ticks until the modulation detector completes and sets curbit
45 // 8 ticks until bit_to_arm is assigned from curbit
46 // 8*16 ticks for the transfer from FPGA to ARM
47 // 4*16 ticks until we measure the time
48 // - 8*16 ticks because we measure the time of the previous transfer
49 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
51 // When the PM acts as a reader and is sending, it takes
52 // 4*16 ticks until we can write data to the sending hold register
53 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
54 // 8 ticks until the first transfer starts
55 // 8 ticks later the FPGA samples the data
56 // 1 tick to assign mod_sig_coil
57 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
59 // When the PM acts as tag and is receiving it takes
60 // 2 ticks delay in the RF part (for the first falling edge),
61 // 3 ticks for the A/D conversion,
62 // 8 ticks on average until the start of the SSC transfer,
63 // 8 ticks until the SSC samples the first data
64 // 7*16 ticks to complete the transfer from FPGA to ARM
65 // 8 ticks until the next ssp_clk rising edge
66 // 4*16 ticks until we measure the time
67 // - 8*16 ticks because we measure the time of the previous transfer
68 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
70 // The FPGA will report its internal sending delay in
71 uint16_t FpgaSendQueueDelay
;
72 // the 5 first bits are the number of bits buffered in mod_sig_buf
73 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
76 // When the PM acts as tag and is sending, it takes
77 // 4*16 ticks until we can write data to the sending hold register
78 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
79 // 8 ticks until the first transfer starts
80 // 8 ticks later the FPGA samples the data
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 // + 1 tick to assign mod_sig_coil
83 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
85 // When the PM acts as sniffer and is receiving tag data, it takes
86 // 3 ticks A/D conversion
87 // 14 ticks to complete the modulation detection
88 // 8 ticks (on average) until the result is stored in to_arm
89 // + the delays in transferring data - which is the same for
90 // sniffing reader and tag data and therefore not relevant
91 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
93 // When the PM acts as sniffer and is receiving reader data, it takes
94 // 2 ticks delay in analogue RF receiver (for the falling edge of the
95 // start bit, which marks the start of the communication)
96 // 3 ticks A/D conversion
97 // 8 ticks on average until the data is stored in to_arm.
98 // + the delays in transferring data - which is the same for
99 // sniffing reader and tag data and therefore not relevant
100 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
102 //variables used for timing purposes:
103 //these are in ssp_clk cycles:
104 static uint32_t NextTransferTime
;
105 static uint32_t LastTimeProxToAirStart
;
106 static uint32_t LastProxToAirDuration
;
110 // CARD TO READER - manchester
111 // Sequence D: 11110000 modulation with subcarrier during first half
112 // Sequence E: 00001111 modulation with subcarrier during second half
113 // Sequence F: 00000000 no modulation with subcarrier
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
125 const uint8_t OddByteParity
[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145 void iso14a_set_trigger(bool enable
) {
150 void iso14a_set_timeout(uint32_t timeout
) {
151 iso14a_timeout
= timeout
;
152 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
156 void iso14a_set_ATS_timeout(uint8_t *ats
) {
162 if (ats
[0] > 1) { // there is a format byte T0
163 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
169 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
172 iso14a_set_timeout(fwt
/(8*16));
178 //-----------------------------------------------------------------------------
179 // Generate the parity value for a byte sequence
181 //-----------------------------------------------------------------------------
182 byte_t
oddparity (const byte_t bt
)
184 return OddByteParity
[bt
];
187 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
189 uint16_t paritybit_cnt
= 0;
190 uint16_t paritybyte_cnt
= 0;
191 uint8_t parityBits
= 0;
193 for (uint16_t i
= 0; i
< iLen
; i
++) {
194 // Generate the parity bits
195 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
196 if (paritybit_cnt
== 7) {
197 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
198 parityBits
= 0; // and advance to next Parity Byte
206 // save remaining parity bits
207 par
[paritybyte_cnt
] = parityBits
;
211 void AppendCrc14443a(uint8_t* data
, int len
)
213 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
216 //=============================================================================
217 // ISO 14443 Type A - Miller decoder
218 //=============================================================================
220 // This decoder is used when the PM3 acts as a tag.
221 // The reader will generate "pauses" by temporarily switching of the field.
222 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
223 // The FPGA does a comparison with a threshold and would deliver e.g.:
224 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225 // The Miller decoder needs to identify the following sequences:
226 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229 // Note 1: the bitstream may start at any time. We therefore need to sync.
230 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
231 //-----------------------------------------------------------------------------
234 // Lookup-Table to decide if 4 raw bits are a modulation.
235 // We accept two or three consecutive "0" in any position with the rest "1"
236 const bool Mod_Miller_LUT
[] = {
237 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
238 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
240 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
245 Uart
.state
= STATE_UNSYNCD
;
247 Uart
.len
= 0; // number of decoded data bytes
248 Uart
.parityLen
= 0; // number of decoded parity bytes
249 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
250 Uart
.parityBits
= 0; // holds 8 parity bits
251 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
257 void UartInit(uint8_t *data
, uint8_t *parity
)
260 Uart
.parity
= parity
;
264 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
268 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
270 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
272 if (Uart
.highCnt
< 2) { // wait for a stable unmodulated signal
273 if (Uart
.twoBits
== 0xffff) {
279 Uart
.syncBit
= 0xFFFF; // not set
280 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
281 if ((Uart
.twoBits
& 0xDF00) == 0x1F00) Uart
.syncBit
= 8; // mask is 11x11111 xxxxxxxx,
282 // check for 00x11111 xxxxxxxx
283 else if ((Uart
.twoBits
& 0xEF80) == 0x8F80) Uart
.syncBit
= 7; // both masks shifted right one bit, left padded with '1'
284 else if ((Uart
.twoBits
& 0xF7C0) == 0xC7C0) Uart
.syncBit
= 6; // ...
285 else if ((Uart
.twoBits
& 0xFBE0) == 0xE3E0) Uart
.syncBit
= 5;
286 else if ((Uart
.twoBits
& 0xFDF0) == 0xF1F0) Uart
.syncBit
= 4;
287 else if ((Uart
.twoBits
& 0xFEF8) == 0xF8F8) Uart
.syncBit
= 3;
288 else if ((Uart
.twoBits
& 0xFF7C) == 0xFC7C) Uart
.syncBit
= 2;
289 else if ((Uart
.twoBits
& 0xFFBE) == 0xFE3E) Uart
.syncBit
= 1;
290 if (Uart
.syncBit
!= 0xFFFF) { // found a sync bit
291 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
292 Uart
.startTime
-= Uart
.syncBit
;
293 Uart
.endTime
= Uart
.startTime
;
294 Uart
.state
= STATE_START_OF_COMMUNICATION
;
300 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
301 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
303 } else { // Modulation in first half = Sequence Z = logic "0"
304 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
308 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
309 Uart
.state
= STATE_MILLER_Z
;
310 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
311 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
312 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
313 Uart
.parityBits
<<= 1; // make room for the parity bit
314 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
317 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
318 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
325 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
327 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
328 Uart
.state
= STATE_MILLER_X
;
329 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
330 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
331 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
332 Uart
.parityBits
<<= 1; // make room for the new parity bit
333 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
336 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
337 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 } else { // no modulation in both halves - Sequence Y
342 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
343 Uart
.state
= STATE_UNSYNCD
;
344 Uart
.bitCount
--; // last "0" was part of EOC sequence
345 Uart
.shiftReg
<<= 1; // drop it
346 if(Uart
.bitCount
> 0) { // if we decoded some bits
347 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
348 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
349 Uart
.parityBits
<<= 1; // add a (void) parity bit
350 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
351 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
353 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
354 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
355 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
358 return TRUE
; // we are finished with decoding the raw data sequence
360 UartReset(); // Nothing received - start over
364 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
367 } else { // a logic "0"
369 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
370 Uart
.state
= STATE_MILLER_Y
;
371 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
372 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
373 Uart
.parityBits
<<= 1; // make room for the parity bit
374 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
377 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
378 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
388 return FALSE
; // not finished yet, need more data
393 //=============================================================================
394 // ISO 14443 Type A - Manchester decoder
395 //=============================================================================
397 // This decoder is used when the PM3 acts as a reader.
398 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
399 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
400 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
401 // The Manchester decoder needs to identify the following sequences:
402 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
403 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
404 // 8 ticks unmodulated: Sequence F = end of communication
405 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
406 // Note 1: the bitstream may start at any time. We therefore need to sync.
407 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
410 // Lookup-Table to decide if 4 raw bits are a modulation.
411 // We accept three or four "1" in any position
412 const bool Mod_Manchester_LUT
[] = {
413 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
414 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
417 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
418 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
423 Demod
.state
= DEMOD_UNSYNCD
;
424 Demod
.len
= 0; // number of decoded data bytes
426 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
427 Demod
.parityBits
= 0; //
428 Demod
.collisionPos
= 0; // Position of collision bit
429 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
435 void DemodInit(uint8_t *data
, uint8_t *parity
)
438 Demod
.parity
= parity
;
442 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
443 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
446 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
448 if (Demod
.state
== DEMOD_UNSYNCD
) {
450 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
451 if (Demod
.twoBits
== 0x0000) {
457 Demod
.syncBit
= 0xFFFF; // not set
458 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
459 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
460 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
461 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
462 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
463 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
464 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
465 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
466 if (Demod
.syncBit
!= 0xFFFF) {
467 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
468 Demod
.startTime
-= Demod
.syncBit
;
469 Demod
.bitCount
= offset
; // number of decoded data bits
470 Demod
.state
= DEMOD_MANCHESTER_DATA
;
476 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
477 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
478 if (!Demod
.collisionPos
) {
479 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
481 } // modulation in first half only - Sequence D = 1
483 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
484 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
485 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
486 Demod
.parityBits
<<= 1; // make room for the parity bit
487 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
490 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
491 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
492 Demod
.parityBits
= 0;
495 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
496 } else { // no modulation in first half
497 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
499 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
500 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
501 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
502 Demod
.parityBits
<<= 1; // make room for the new parity bit
503 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
506 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
507 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
508 Demod
.parityBits
= 0;
511 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
512 } else { // no modulation in both halves - End of communication
513 if(Demod
.bitCount
> 0) { // there are some remaining data bits
514 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
515 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
516 Demod
.parityBits
<<= 1; // add a (void) parity bit
517 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
518 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
520 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
521 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
522 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
525 return TRUE
; // we are finished with decoding the raw data sequence
526 } else { // nothing received. Start over
534 return FALSE
; // not finished yet, need more data
537 //=============================================================================
538 // Finally, a `sniffer' for ISO 14443 Type A
539 // Both sides of communication!
540 //=============================================================================
542 //-----------------------------------------------------------------------------
543 // Record the sequence of commands sent by the reader to the tag, with
544 // triggering so that we start recording at the point that the tag is moved
546 //-----------------------------------------------------------------------------
547 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
549 // bit 0 - trigger from first card answer
550 // bit 1 - trigger from first reader 7-bit request
554 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
556 // Allocate memory from BigBuf for some buffers
557 // free all previous allocations first
560 // The command (reader -> tag) that we're receiving.
561 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
562 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
564 // The response (tag -> reader) that we're receiving.
565 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
566 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
568 // The DMA buffer, used to stream samples from the FPGA
569 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
575 uint8_t *data
= dmaBuf
;
576 uint8_t previous_data
= 0;
579 bool TagIsActive
= FALSE
;
580 bool ReaderIsActive
= FALSE
;
582 // Set up the demodulator for tag -> reader responses.
583 DemodInit(receivedResponse
, receivedResponsePar
);
585 // Set up the demodulator for the reader -> tag commands
586 UartInit(receivedCmd
, receivedCmdPar
);
588 // Setup and start DMA.
589 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
591 // We won't start recording the frames that we acquire until we trigger;
592 // a good trigger condition to get started is probably when we see a
593 // response from the tag.
594 // triggered == FALSE -- to wait first for card
595 bool triggered
= !(param
& 0x03);
597 // And now we loop, receiving samples.
598 for(uint32_t rsamples
= 0; TRUE
; ) {
601 DbpString("cancelled by button");
608 int register readBufDataP
= data
- dmaBuf
;
609 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
610 if (readBufDataP
<= dmaBufDataP
){
611 dataLen
= dmaBufDataP
- readBufDataP
;
613 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
615 // test for length of buffer
616 if(dataLen
> maxDataLen
) {
617 maxDataLen
= dataLen
;
618 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
619 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
623 if(dataLen
< 1) continue;
625 // primary buffer was stopped( <-- we lost data!
626 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
627 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
628 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
629 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
631 // secondary buffer sets as primary, secondary buffer was stopped
632 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
633 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
634 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
639 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
641 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
642 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
643 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
646 // check - if there is a short 7bit request from reader
647 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
650 if (!LogTrace(receivedCmd
,
652 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
653 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
657 /* And ready to receive another command. */
659 /* And also reset the demod code, which might have been */
660 /* false-triggered by the commands from the reader. */
664 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
667 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
668 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
669 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
672 if (!LogTrace(receivedResponse
,
674 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
675 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
679 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
681 // And ready to receive another response.
685 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
689 previous_data
= *data
;
692 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
697 DbpString("COMMAND FINISHED");
700 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
701 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
705 //-----------------------------------------------------------------------------
706 // Prepare tag messages
707 //-----------------------------------------------------------------------------
708 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
712 // Correction bit, might be removed when not needed
717 ToSendStuffBit(1); // 1
723 ToSend
[++ToSendMax
] = SEC_D
;
724 LastProxToAirDuration
= 8 * ToSendMax
- 4;
726 for(uint16_t i
= 0; i
< len
; i
++) {
730 for(uint16_t j
= 0; j
< 8; j
++) {
732 ToSend
[++ToSendMax
] = SEC_D
;
734 ToSend
[++ToSendMax
] = SEC_E
;
739 // Get the parity bit
740 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
741 ToSend
[++ToSendMax
] = SEC_D
;
742 LastProxToAirDuration
= 8 * ToSendMax
- 4;
744 ToSend
[++ToSendMax
] = SEC_E
;
745 LastProxToAirDuration
= 8 * ToSendMax
;
750 ToSend
[++ToSendMax
] = SEC_F
;
752 // Convert from last byte pos to length
756 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
758 uint8_t par
[MAX_PARITY_SIZE
];
760 GetParity(cmd
, len
, par
);
761 CodeIso14443aAsTagPar(cmd
, len
, par
);
765 static void Code4bitAnswerAsTag(uint8_t cmd
)
771 // Correction bit, might be removed when not needed
776 ToSendStuffBit(1); // 1
782 ToSend
[++ToSendMax
] = SEC_D
;
785 for(i
= 0; i
< 4; i
++) {
787 ToSend
[++ToSendMax
] = SEC_D
;
788 LastProxToAirDuration
= 8 * ToSendMax
- 4;
790 ToSend
[++ToSendMax
] = SEC_E
;
791 LastProxToAirDuration
= 8 * ToSendMax
;
797 ToSend
[++ToSendMax
] = SEC_F
;
799 // Convert from last byte pos to length
803 //-----------------------------------------------------------------------------
804 // Wait for commands from reader
805 // Stop when button is pressed
806 // Or return TRUE when command is captured
807 //-----------------------------------------------------------------------------
808 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
810 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
811 // only, since we are receiving, not transmitting).
812 // Signal field is off with the appropriate LED
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
816 // Now run a `software UART' on the stream of incoming samples.
817 UartInit(received
, parity
);
820 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
825 if(BUTTON_PRESS()) return FALSE
;
827 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
828 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
829 if(MillerDecoding(b
, 0)) {
837 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
838 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
839 int EmSend4bit(uint8_t resp
);
840 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
841 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
842 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
843 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
844 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
845 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
847 static uint8_t* free_buffer_pointer
;
854 uint32_t ProxToAirDuration
;
855 } tag_response_info_t
;
857 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
858 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
859 // This will need the following byte array for a modulation sequence
860 // 144 data bits (18 * 8)
863 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
864 // 1 just for the case
866 // 166 bytes, since every bit that needs to be send costs us a byte
870 // Prepare the tag modulation bits from the message
871 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
873 // Make sure we do not exceed the free buffer space
874 if (ToSendMax
> max_buffer_size
) {
875 Dbprintf("Out of memory, when modulating bits for tag answer:");
876 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
880 // Copy the byte array, used for this modulation to the buffer position
881 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
883 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
884 response_info
->modulation_n
= ToSendMax
;
885 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
891 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
892 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
893 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
894 // -> need 273 bytes buffer
895 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
897 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
898 // Retrieve and store the current buffer index
899 response_info
->modulation
= free_buffer_pointer
;
901 // Determine the maximum size we can use from our buffer
902 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
904 // Forward the prepare tag modulation function to the inner function
905 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
906 // Update the free buffer offset
907 free_buffer_pointer
+= ToSendMax
;
914 //-----------------------------------------------------------------------------
915 // Main loop of simulated tag: receive commands from reader, decide what
916 // response to send, and send it.
917 //-----------------------------------------------------------------------------
918 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
922 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
923 uint8_t response1
[2];
926 case 1: { // MIFARE Classic
927 // Says: I am Mifare 1k - original line
932 case 2: { // MIFARE Ultralight
933 // Says: I am a stupid memory tag, no crypto
938 case 3: { // MIFARE DESFire
939 // Says: I am a DESFire tag, ph33r me
944 case 4: { // ISO/IEC 14443-4
945 // Says: I am a javacard (JCOP)
950 case 5: { // MIFARE TNP3XXX
957 Dbprintf("Error: unkown tagtype (%d)",tagType
);
962 // The second response contains the (mandatory) first 24 bits of the UID
963 uint8_t response2
[5] = {0x00};
965 // Check if the uid uses the (optional) part
966 uint8_t response2a
[5] = {0x00};
970 num_to_bytes(uid_1st
,3,response2
+1);
971 num_to_bytes(uid_2nd
,4,response2a
);
972 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
974 // Configure the ATQA and SAK accordingly
975 response1
[0] |= 0x40;
978 num_to_bytes(uid_1st
,4,response2
);
979 // Configure the ATQA and SAK accordingly
980 response1
[0] &= 0xBF;
984 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
985 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
987 // Prepare the mandatory SAK (for 4 and 7 byte UID)
988 uint8_t response3
[3] = {0x00};
990 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
992 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
993 uint8_t response3a
[3] = {0x00};
994 response3a
[0] = sak
& 0xFB;
995 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
997 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
998 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
999 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1000 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1001 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1002 // TC(1) = 0x02: CID supported, NAD not supported
1003 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1005 #define TAG_RESPONSE_COUNT 7
1006 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1007 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1008 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1009 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1010 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1011 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1012 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1013 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1016 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1017 // Such a response is less time critical, so we can prepare them on the fly
1018 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1019 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1020 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1021 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1022 tag_response_info_t dynamic_response_info
= {
1023 .response
= dynamic_response_buffer
,
1025 .modulation
= dynamic_modulation_buffer
,
1029 // We need to listen to the high-frequency, peak-detected path.
1030 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1032 BigBuf_free_keep_EM();
1034 // allocate buffers:
1035 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1036 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1037 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1043 // Prepare the responses of the anticollision phase
1044 // there will be not enough time to do this at the moment the reader sends it REQA
1045 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1046 prepare_allocated_tag_modulation(&responses
[i
]);
1051 // To control where we are in the protocol
1055 // Just to allow some checks
1061 tag_response_info_t
* p_response
;
1065 // Clean receive command buffer
1066 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1067 DbpString("Button press");
1073 // Okay, look at the command now.
1075 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1076 p_response
= &responses
[0]; order
= 1;
1077 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1078 p_response
= &responses
[0]; order
= 6;
1079 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1080 p_response
= &responses
[1]; order
= 2;
1081 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1082 p_response
= &responses
[2]; order
= 20;
1083 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1084 p_response
= &responses
[3]; order
= 3;
1085 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1086 p_response
= &responses
[4]; order
= 30;
1087 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1088 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1089 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1090 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1092 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1095 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1098 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1099 p_response
= &responses
[5]; order
= 7;
1100 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1101 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1102 EmSend4bit(CARD_NACK_NA
);
1105 p_response
= &responses
[6]; order
= 70;
1107 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1109 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1111 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1112 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1113 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1115 // Check for ISO 14443A-4 compliant commands, look at left nibble
1116 switch (receivedCmd
[0]) {
1119 case 0x0A: { // IBlock (command)
1120 dynamic_response_info
.response
[0] = receivedCmd
[0];
1121 dynamic_response_info
.response
[1] = 0x00;
1122 dynamic_response_info
.response
[2] = 0x90;
1123 dynamic_response_info
.response
[3] = 0x00;
1124 dynamic_response_info
.response_n
= 4;
1128 case 0x1B: { // Chaining command
1129 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1130 dynamic_response_info
.response_n
= 2;
1135 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1136 dynamic_response_info
.response_n
= 2;
1140 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1141 dynamic_response_info
.response_n
= 2;
1145 case 0xC2: { // Readers sends deselect command
1146 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1147 dynamic_response_info
.response_n
= 2;
1151 // Never seen this command before
1153 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1155 Dbprintf("Received unknown command (len=%d):",len
);
1156 Dbhexdump(len
,receivedCmd
,false);
1158 dynamic_response_info
.response_n
= 0;
1162 if (dynamic_response_info
.response_n
> 0) {
1163 // Copy the CID from the reader query
1164 dynamic_response_info
.response
[1] = receivedCmd
[1];
1166 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1167 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1168 dynamic_response_info
.response_n
+= 2;
1170 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1171 Dbprintf("Error preparing tag response");
1173 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1177 p_response
= &dynamic_response_info
;
1181 // Count number of wakeups received after a halt
1182 if(order
== 6 && lastorder
== 5) { happened
++; }
1184 // Count number of other messages after a halt
1185 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1187 if(cmdsRecvd
> 999) {
1188 DbpString("1000 commands later...");
1193 if (p_response
!= NULL
) {
1194 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1195 // do the tracing for the previous reader request and this tag answer:
1196 uint8_t par
[MAX_PARITY_SIZE
];
1197 GetParity(p_response
->response
, p_response
->response_n
, par
);
1199 EmLogTrace(Uart
.output
,
1201 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1202 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1204 p_response
->response
,
1205 p_response
->response_n
,
1206 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1207 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1212 Dbprintf("Trace Full. Simulation stopped.");
1217 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1219 BigBuf_free_keep_EM();
1223 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1224 // of bits specified in the delay parameter.
1225 void PrepareDelayedTransfer(uint16_t delay
)
1227 uint8_t bitmask
= 0;
1228 uint8_t bits_to_shift
= 0;
1229 uint8_t bits_shifted
= 0;
1233 for (uint16_t i
= 0; i
< delay
; i
++) {
1234 bitmask
|= (0x01 << i
);
1236 ToSend
[ToSendMax
++] = 0x00;
1237 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1238 bits_to_shift
= ToSend
[i
] & bitmask
;
1239 ToSend
[i
] = ToSend
[i
] >> delay
;
1240 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1241 bits_shifted
= bits_to_shift
;
1247 //-------------------------------------------------------------------------------------
1248 // Transmit the command (to the tag) that was placed in ToSend[].
1249 // Parameter timing:
1250 // if NULL: transfer at next possible time, taking into account
1251 // request guard time and frame delay time
1252 // if == 0: transfer immediately and return time of transfer
1253 // if != 0: delay transfer until time specified
1254 //-------------------------------------------------------------------------------------
1255 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1258 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1260 uint32_t ThisTransferTime
= 0;
1263 if(*timing
== 0) { // Measure time
1264 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1266 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1269 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1270 LastTimeProxToAirStart
= *timing
;
1272 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1273 while(GetCountSspClk() < ThisTransferTime
);
1274 LastTimeProxToAirStart
= ThisTransferTime
;
1278 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1282 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1283 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1291 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1295 //-----------------------------------------------------------------------------
1296 // Prepare reader command (in bits, support short frames) to send to FPGA
1297 //-----------------------------------------------------------------------------
1298 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1306 // Start of Communication (Seq. Z)
1307 ToSend
[++ToSendMax
] = SEC_Z
;
1308 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1311 size_t bytecount
= nbytes(bits
);
1312 // Generate send structure for the data bits
1313 for (i
= 0; i
< bytecount
; i
++) {
1314 // Get the current byte to send
1316 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1318 for (j
= 0; j
< bitsleft
; j
++) {
1321 ToSend
[++ToSendMax
] = SEC_X
;
1322 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1327 ToSend
[++ToSendMax
] = SEC_Z
;
1328 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1331 ToSend
[++ToSendMax
] = SEC_Y
;
1338 // Only transmit parity bit if we transmitted a complete byte
1340 // Get the parity bit
1341 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1343 ToSend
[++ToSendMax
] = SEC_X
;
1344 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1349 ToSend
[++ToSendMax
] = SEC_Z
;
1350 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1353 ToSend
[++ToSendMax
] = SEC_Y
;
1360 // End of Communication: Logic 0 followed by Sequence Y
1363 ToSend
[++ToSendMax
] = SEC_Z
;
1364 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1367 ToSend
[++ToSendMax
] = SEC_Y
;
1370 ToSend
[++ToSendMax
] = SEC_Y
;
1372 // Convert to length of command:
1376 //-----------------------------------------------------------------------------
1377 // Prepare reader command to send to FPGA
1378 //-----------------------------------------------------------------------------
1379 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1381 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1385 //-----------------------------------------------------------------------------
1386 // Wait for commands from reader
1387 // Stop when button is pressed (return 1) or field was gone (return 2)
1388 // Or return 0 when command is captured
1389 //-----------------------------------------------------------------------------
1390 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1394 uint32_t timer
= 0, vtime
= 0;
1398 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1399 // only, since we are receiving, not transmitting).
1400 // Signal field is off with the appropriate LED
1402 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1404 // Set ADC to read field strength
1405 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1406 AT91C_BASE_ADC
->ADC_MR
=
1407 ADC_MODE_PRESCALE(63) |
1408 ADC_MODE_STARTUP_TIME(1) |
1409 ADC_MODE_SAMPLE_HOLD_TIME(15);
1410 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1412 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1414 // Now run a 'software UART' on the stream of incoming samples.
1415 UartInit(received
, parity
);
1418 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1423 if (BUTTON_PRESS()) return 1;
1425 // test if the field exists
1426 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1428 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1429 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1430 if (analogCnt
>= 32) {
1431 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1432 vtime
= GetTickCount();
1433 if (!timer
) timer
= vtime
;
1434 // 50ms no field --> card to idle state
1435 if (vtime
- timer
> 50) return 2;
1437 if (timer
) timer
= 0;
1443 // receive and test the miller decoding
1444 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1445 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1446 if(MillerDecoding(b
, 0)) {
1456 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1460 uint32_t ThisTransferTime
;
1462 // Modulate Manchester
1463 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1465 // include correction bit if necessary
1466 if (Uart
.parityBits
& 0x01) {
1467 correctionNeeded
= TRUE
;
1469 if(correctionNeeded
) {
1470 // 1236, so correction bit needed
1476 // clear receiving shift register and holding register
1477 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1478 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1479 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1480 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1482 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1483 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1484 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1485 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1488 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1491 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1494 for(; i
< respLen
; ) {
1495 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1496 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1497 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1500 if(BUTTON_PRESS()) {
1505 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1506 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1507 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1508 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1509 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1510 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1515 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1520 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1521 Code4bitAnswerAsTag(resp
);
1522 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1523 // do the tracing for the previous reader request and this tag answer:
1525 GetParity(&resp
, 1, par
);
1526 EmLogTrace(Uart
.output
,
1528 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1529 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1533 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1534 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1539 int EmSend4bit(uint8_t resp
){
1540 return EmSend4bitEx(resp
, false);
1543 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1544 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1545 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1546 // do the tracing for the previous reader request and this tag answer:
1547 EmLogTrace(Uart
.output
,
1549 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1550 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1554 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1555 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1560 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1561 uint8_t par
[MAX_PARITY_SIZE
];
1562 GetParity(resp
, respLen
, par
);
1563 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1566 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1567 uint8_t par
[MAX_PARITY_SIZE
];
1568 GetParity(resp
, respLen
, par
);
1569 return EmSendCmdExPar(resp
, respLen
, false, par
);
1572 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1573 return EmSendCmdExPar(resp
, respLen
, false, par
);
1576 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1577 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1580 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1581 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1582 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1583 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1584 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1585 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1586 reader_EndTime
= tag_StartTime
- exact_fdt
;
1587 reader_StartTime
= reader_EndTime
- reader_modlen
;
1588 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1590 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1596 //-----------------------------------------------------------------------------
1597 // Wait a certain time for tag response
1598 // If a response is captured return TRUE
1599 // If it takes too long return FALSE
1600 //-----------------------------------------------------------------------------
1601 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1605 // Set FPGA mode to "reader listen mode", no modulation (listen
1606 // only, since we are receiving, not transmitting).
1607 // Signal field is on with the appropriate LED
1609 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1611 // Now get the answer from the card
1612 DemodInit(receivedResponse
, receivedResponsePar
);
1615 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1621 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1622 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1623 if(ManchesterDecoding(b
, offset
, 0)) {
1624 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1626 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1633 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1635 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1637 // Send command to tag
1638 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1642 // Log reader command in trace buffer
1644 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1648 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1650 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1653 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1655 // Generate parity and redirect
1656 uint8_t par
[MAX_PARITY_SIZE
];
1657 GetParity(frame
, len
/8, par
);
1658 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1661 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1663 // Generate parity and redirect
1664 uint8_t par
[MAX_PARITY_SIZE
];
1665 GetParity(frame
, len
, par
);
1666 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1669 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1671 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1673 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1678 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1680 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1682 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1687 /* performs iso14443a anticollision procedure
1688 * fills the uid pointer unless NULL
1689 * fills resp_data unless NULL */
1690 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1691 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1692 uint8_t sel_all
[] = { 0x93,0x20 };
1693 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1694 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1695 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1696 uint8_t resp_par
[MAX_PARITY_SIZE
];
1698 size_t uid_resp_len
;
1700 uint8_t sak
= 0x04; // cascade uid
1701 int cascade_level
= 0;
1704 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1705 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1708 if(!ReaderReceive(resp
, resp_par
)) return 0;
1711 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1712 p_hi14a_card
->uidlen
= 0;
1713 memset(p_hi14a_card
->uid
,0,10);
1718 memset(uid_ptr
,0,10);
1721 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1722 // which case we need to make a cascade 2 request and select - this is a long UID
1723 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1724 for(; sak
& 0x04; cascade_level
++) {
1725 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1726 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1729 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1730 if (!ReaderReceive(resp
, resp_par
)) return 0;
1732 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1733 memset(uid_resp
, 0, 4);
1734 uint16_t uid_resp_bits
= 0;
1735 uint16_t collision_answer_offset
= 0;
1736 // anti-collision-loop:
1737 while (Demod
.collisionPos
) {
1738 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1739 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1740 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1741 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1743 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1745 // construct anticollosion command:
1746 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1747 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1748 sel_uid
[2+i
] = uid_resp
[i
];
1750 collision_answer_offset
= uid_resp_bits
%8;
1751 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1752 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1754 // finally, add the last bits and BCC of the UID
1755 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1756 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1757 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1760 } else { // no collision, use the response to SELECT_ALL as current uid
1761 memcpy(uid_resp
, resp
, 4);
1765 // calculate crypto UID. Always use last 4 Bytes.
1767 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1770 // Construct SELECT UID command
1771 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1772 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1773 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1774 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1775 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1778 if (!ReaderReceive(resp
, resp_par
)) return 0;
1781 // Test if more parts of the uid are coming
1782 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1783 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1784 // http://www.nxp.com/documents/application_note/AN10927.pdf
1785 uid_resp
[0] = uid_resp
[1];
1786 uid_resp
[1] = uid_resp
[2];
1787 uid_resp
[2] = uid_resp
[3];
1793 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1797 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1798 p_hi14a_card
->uidlen
+= uid_resp_len
;
1803 p_hi14a_card
->sak
= sak
;
1804 p_hi14a_card
->ats_len
= 0;
1807 // non iso14443a compliant tag
1808 if( (sak
& 0x20) == 0) return 2;
1810 // Request for answer to select
1811 AppendCrc14443a(rats
, 2);
1812 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1814 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1818 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1819 p_hi14a_card
->ats_len
= len
;
1822 // reset the PCB block number
1823 iso14_pcb_blocknum
= 0;
1825 // set default timeout based on ATS
1826 iso14a_set_ATS_timeout(resp
);
1831 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1832 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1833 // Set up the synchronous serial port
1835 // connect Demodulated Signal to ADC:
1836 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1838 // Signal field is on with the appropriate LED
1839 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1840 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1845 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1852 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1853 iso14a_set_timeout(1050); // 10ms default
1856 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1857 uint8_t parity
[MAX_PARITY_SIZE
];
1858 uint8_t real_cmd
[cmd_len
+4];
1859 real_cmd
[0] = 0x0a; //I-Block
1860 // put block number into the PCB
1861 real_cmd
[0] |= iso14_pcb_blocknum
;
1862 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1863 memcpy(real_cmd
+2, cmd
, cmd_len
);
1864 AppendCrc14443a(real_cmd
,cmd_len
+2);
1866 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1867 size_t len
= ReaderReceive(data
, parity
);
1868 uint8_t *data_bytes
= (uint8_t *) data
;
1870 return 0; //DATA LINK ERROR
1871 // if we received an I- or R(ACK)-Block with a block number equal to the
1872 // current block number, toggle the current block number
1873 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1874 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1875 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1876 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1878 iso14_pcb_blocknum
^= 1;
1884 //-----------------------------------------------------------------------------
1885 // Read an ISO 14443a tag. Send out commands and store answers.
1887 //-----------------------------------------------------------------------------
1888 void ReaderIso14443a(UsbCommand
*c
)
1890 iso14a_command_t param
= c
->arg
[0];
1891 uint8_t *cmd
= c
->d
.asBytes
;
1892 size_t len
= c
->arg
[1] & 0xffff;
1893 size_t lenbits
= c
->arg
[1] >> 16;
1894 uint32_t timeout
= c
->arg
[2];
1896 byte_t buf
[USB_CMD_DATA_SIZE
];
1897 uint8_t par
[MAX_PARITY_SIZE
];
1899 if(param
& ISO14A_CONNECT
) {
1905 if(param
& ISO14A_REQUEST_TRIGGER
) {
1906 iso14a_set_trigger(TRUE
);
1909 if(param
& ISO14A_CONNECT
) {
1910 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1911 if(!(param
& ISO14A_NO_SELECT
)) {
1912 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1913 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1914 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1918 if(param
& ISO14A_SET_TIMEOUT
) {
1919 iso14a_set_timeout(timeout
);
1922 if(param
& ISO14A_APDU
) {
1923 arg0
= iso14_apdu(cmd
, len
, buf
);
1924 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1927 if(param
& ISO14A_RAW
) {
1928 if(param
& ISO14A_APPEND_CRC
) {
1929 AppendCrc14443a(cmd
,len
);
1931 if (lenbits
) lenbits
+= 16;
1934 GetParity(cmd
, lenbits
/8, par
);
1935 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
);
1937 ReaderTransmit(cmd
,len
, NULL
);
1939 arg0
= ReaderReceive(buf
, par
);
1940 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1943 if(param
& ISO14A_REQUEST_TRIGGER
) {
1944 iso14a_set_trigger(FALSE
);
1947 if(param
& ISO14A_NO_DISCONNECT
) {
1951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1956 // Determine the distance between two nonces.
1957 // Assume that the difference is small, but we don't know which is first.
1958 // Therefore try in alternating directions.
1959 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1962 uint32_t nttmp1
, nttmp2
;
1964 if (nt1
== nt2
) return 0;
1969 for (i
= 1; i
< 32768; i
++) {
1970 nttmp1
= prng_successor(nttmp1
, 1);
1971 if (nttmp1
== nt2
) return i
;
1972 nttmp2
= prng_successor(nttmp2
, 1);
1973 if (nttmp2
== nt1
) return -i
;
1976 return(-99999); // either nt1 or nt2 are invalid nonces
1980 //-----------------------------------------------------------------------------
1981 // Recover several bits of the cypher stream. This implements (first stages of)
1982 // the algorithm described in "The Dark Side of Security by Obscurity and
1983 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1984 // (article by Nicolas T. Courtois, 2009)
1985 //-----------------------------------------------------------------------------
1986 void ReaderMifare(bool first_try
)
1989 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1990 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1991 static uint8_t mf_nr_ar3
;
1993 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
1994 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
1997 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2000 // free eventually allocated BigBuf memory. We want all for tracing.
2007 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2008 static byte_t par_low
= 0;
2010 uint8_t uid
[10] ={0};
2014 uint32_t previous_nt
= 0;
2015 static uint32_t nt_attacked
= 0;
2016 byte_t par_list
[8] = {0x00};
2017 byte_t ks_list
[8] = {0x00};
2019 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2020 static uint32_t sync_time
;
2021 static uint32_t sync_cycles
;
2022 int catch_up_cycles
= 0;
2023 int last_catch_up
= 0;
2024 uint16_t consecutive_resyncs
= 0;
2029 sync_time
= GetCountSspClk() & 0xfffffff8;
2030 sync_cycles
= PRNG_SEQUENCE_LENGTH
; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2036 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2038 mf_nr_ar
[3] = mf_nr_ar3
;
2047 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2048 #define MAX_SYNC_TRIES 16
2049 uint16_t unexpected_random
= 0;
2050 uint16_t sync_tries
= 0;
2051 int16_t debug_info_nr
= -1;
2052 uint32_t debug_info
[MAX_SYNC_TRIES
];
2054 for(uint16_t i
= 0; TRUE
; i
++) {
2059 // Test if the action was cancelled
2060 if(BUTTON_PRESS()) {
2065 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2066 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2070 if (debug_info_nr
== -1) {
2071 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2072 catch_up_cycles
= 0;
2074 // if we missed the sync time already, advance to the next nonce repeat
2075 while(GetCountSspClk() > sync_time
) {
2076 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2079 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2080 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2082 ReaderTransmit(mf_auth
, sizeof(mf_auth
), NULL
);
2085 // Receive the (4 Byte) "random" nonce
2086 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2087 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2092 nt
= bytes_to_num(receivedAnswer
, 4);
2094 // Transmit reader nonce with fake par
2095 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2097 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2098 int nt_distance
= dist_nt(previous_nt
, nt
);
2099 if (nt_distance
== 0) {
2102 if (nt_distance
== -99999) { // invalid nonce received
2103 unexpected_random
++;
2104 if (!nt_attacked
&& unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2105 isOK
= -3; // Card has an unpredictable PRNG. Give up
2108 continue; // continue trying...
2111 if (++sync_tries
> MAX_SYNC_TRIES
) {
2112 if (sync_tries
> 2 * MAX_SYNC_TRIES
) {
2113 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2115 } else { // continue for a while, just to collect some debug info
2116 debug_info
[++debug_info_nr
] = nt_distance
;
2120 sync_cycles
= (sync_cycles
- nt_distance
);
2121 if (sync_cycles
<= 0) {
2122 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2124 if (MF_DBGLEVEL
>= 3) {
2125 Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2131 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2132 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2133 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2134 catch_up_cycles
= 0;
2137 if (catch_up_cycles
== last_catch_up
) {
2138 consecutive_resyncs
++;
2141 last_catch_up
= catch_up_cycles
;
2142 consecutive_resyncs
= 0;
2144 if (consecutive_resyncs
< 3) {
2145 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2148 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2149 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2154 consecutive_resyncs
= 0;
2156 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2157 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2159 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2163 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2167 if(led_on
) LED_B_ON(); else LED_B_OFF();
2169 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2170 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2172 // Test if the information is complete
2173 if (nt_diff
== 0x07) {
2178 nt_diff
= (nt_diff
+ 1) & 0x07;
2179 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2182 if (nt_diff
== 0 && first_try
)
2185 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2190 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2196 mf_nr_ar
[3] &= 0x1F;
2199 if (MF_DBGLEVEL
>= 3) {
2200 for(uint16_t i
= 0; i
< MAX_SYNC_TRIES
; i
++) {
2201 Dbprintf("collected debug info[%d] = %d\n", i
, debug_info
[i
]);
2207 memcpy(buf
+ 0, uid
, 4);
2208 num_to_bytes(nt
, 4, buf
+ 4);
2209 memcpy(buf
+ 8, par_list
, 8);
2210 memcpy(buf
+ 16, ks_list
, 8);
2211 memcpy(buf
+ 24, mf_nr_ar
, 4);
2213 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, 28);
2216 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2223 *MIFARE 1K simulate.
2226 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2227 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2228 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2229 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2230 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2232 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2234 int cardSTATE
= MFEMUL_NOFIELD
;
2236 int vHf
= 0; // in mV
2238 uint32_t selTimer
= 0;
2239 uint32_t authTimer
= 0;
2241 uint8_t cardWRBL
= 0;
2242 uint8_t cardAUTHSC
= 0;
2243 uint8_t cardAUTHKEY
= 0xff; // no authentication
2244 uint32_t cardRr
= 0;
2246 //uint32_t rn_enc = 0;
2248 uint32_t cardINTREG
= 0;
2249 uint8_t cardINTBLOCK
= 0;
2250 struct Crypto1State mpcs
= {0, 0};
2251 struct Crypto1State
*pcs
;
2253 uint32_t numReads
= 0;//Counts numer of times reader read a block
2254 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2255 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2256 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2257 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2259 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2260 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2261 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2262 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2263 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2265 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2266 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2268 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2269 // This can be used in a reader-only attack.
2270 // (it can also be retrieved via 'hf 14a list', but hey...
2271 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2272 uint8_t ar_nr_collected
= 0;
2274 // Authenticate response - nonce
2275 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2277 //-- Determine the UID
2278 // Can be set from emulator memory, incoming data
2279 // and can be 7 or 4 bytes long
2280 if (flags
& FLAG_4B_UID_IN_DATA
)
2282 // 4B uid comes from data-portion of packet
2283 memcpy(rUIDBCC1
,datain
,4);
2284 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2286 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2287 // 7B uid comes from data-portion of packet
2288 memcpy(&rUIDBCC1
[1],datain
,3);
2289 memcpy(rUIDBCC2
, datain
+3, 4);
2292 // get UID from emul memory
2293 emlGetMemBt(receivedCmd
, 7, 1);
2294 _7BUID
= !(receivedCmd
[0] == 0x00);
2295 if (!_7BUID
) { // ---------- 4BUID
2296 emlGetMemBt(rUIDBCC1
, 0, 4);
2297 } else { // ---------- 7BUID
2298 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2299 emlGetMemBt(rUIDBCC2
, 3, 4);
2304 * Regardless of what method was used to set the UID, set fifth byte and modify
2305 * the ATQA for 4 or 7-byte UID
2307 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2311 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2312 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2315 if (MF_DBGLEVEL
>= 1) {
2317 Dbprintf("4B UID: %02x%02x%02x%02x",
2318 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2320 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2321 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2322 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2326 // We need to listen to the high-frequency, peak-detected path.
2327 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2329 // free eventually allocated BigBuf memory but keep Emulator Memory
2330 BigBuf_free_keep_EM();
2337 bool finished
= FALSE
;
2338 while (!BUTTON_PRESS() && !finished
) {
2341 // find reader field
2342 if (cardSTATE
== MFEMUL_NOFIELD
) {
2343 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2344 if (vHf
> MF_MINFIELDV
) {
2345 cardSTATE_TO_IDLE();
2349 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2353 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2354 if (res
== 2) { //Field is off!
2355 cardSTATE
= MFEMUL_NOFIELD
;
2358 } else if (res
== 1) {
2359 break; //return value 1 means button press
2362 // REQ or WUP request in ANY state and WUP in HALTED state
2363 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2364 selTimer
= GetTickCount();
2365 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2366 cardSTATE
= MFEMUL_SELECT1
;
2368 // init crypto block
2371 crypto1_destroy(pcs
);
2376 switch (cardSTATE
) {
2377 case MFEMUL_NOFIELD
:
2380 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2383 case MFEMUL_SELECT1
:{
2385 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2386 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2387 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2391 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2393 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2397 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2398 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2399 cuid
= bytes_to_num(rUIDBCC1
, 4);
2401 cardSTATE
= MFEMUL_WORK
;
2403 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2406 cardSTATE
= MFEMUL_SELECT2
;
2414 cardSTATE_TO_IDLE();
2415 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2419 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2420 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2423 if(ar_nr_collected
< 2){
2424 if(ar_nr_responses
[2] != ar
)
2425 {// Avoid duplicates... probably not necessary, ar should vary.
2426 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2427 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2428 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2429 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2435 crypto1_word(pcs
, ar
, 1);
2436 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2439 if (cardRr
!= prng_successor(nonce
, 64)){
2440 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2441 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2442 cardRr
, prng_successor(nonce
, 64));
2443 // Shouldn't we respond anything here?
2444 // Right now, we don't nack or anything, which causes the
2445 // reader to do a WUPA after a while. /Martin
2446 // -- which is the correct response. /piwi
2447 cardSTATE_TO_IDLE();
2448 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2452 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2454 num_to_bytes(ans
, 4, rAUTH_AT
);
2456 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2458 cardSTATE
= MFEMUL_WORK
;
2459 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2460 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2461 GetTickCount() - authTimer
);
2464 case MFEMUL_SELECT2
:{
2466 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2469 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2470 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2476 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2477 EmSendCmd(rSAK
, sizeof(rSAK
));
2478 cuid
= bytes_to_num(rUIDBCC2
, 4);
2479 cardSTATE
= MFEMUL_WORK
;
2481 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2485 // i guess there is a command). go into the work state.
2487 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2490 cardSTATE
= MFEMUL_WORK
;
2492 //intentional fall-through to the next case-stmt
2497 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2501 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2503 if(encrypted_data
) {
2505 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2508 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2509 authTimer
= GetTickCount();
2510 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2511 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2512 crypto1_destroy(pcs
);//Added by martin
2513 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2515 if (!encrypted_data
) { // first authentication
2516 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2518 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2519 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2520 } else { // nested authentication
2521 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2522 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2523 num_to_bytes(ans
, 4, rAUTH_AT
);
2526 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2527 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2528 cardSTATE
= MFEMUL_AUTH1
;
2532 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2533 // BUT... ACK --> NACK
2534 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2535 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2539 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2540 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2541 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2546 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2550 if(receivedCmd
[0] == 0x30 // read block
2551 || receivedCmd
[0] == 0xA0 // write block
2552 || receivedCmd
[0] == 0xC0 // inc
2553 || receivedCmd
[0] == 0xC1 // dec
2554 || receivedCmd
[0] == 0xC2 // restore
2555 || receivedCmd
[0] == 0xB0) { // transfer
2556 if (receivedCmd
[1] >= 16 * 4) {
2557 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2558 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2562 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2563 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2564 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2569 if (receivedCmd
[0] == 0x30) {
2570 if (MF_DBGLEVEL
>= 4) {
2571 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2573 emlGetMem(response
, receivedCmd
[1], 1);
2574 AppendCrc14443a(response
, 16);
2575 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2576 EmSendCmdPar(response
, 18, response_par
);
2578 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2579 Dbprintf("%d reads done, exiting", numReads
);
2585 if (receivedCmd
[0] == 0xA0) {
2586 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2587 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2588 cardSTATE
= MFEMUL_WRITEBL2
;
2589 cardWRBL
= receivedCmd
[1];
2592 // increment, decrement, restore
2593 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2594 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2595 if (emlCheckValBl(receivedCmd
[1])) {
2596 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2597 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2600 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2601 if (receivedCmd
[0] == 0xC1)
2602 cardSTATE
= MFEMUL_INTREG_INC
;
2603 if (receivedCmd
[0] == 0xC0)
2604 cardSTATE
= MFEMUL_INTREG_DEC
;
2605 if (receivedCmd
[0] == 0xC2)
2606 cardSTATE
= MFEMUL_INTREG_REST
;
2607 cardWRBL
= receivedCmd
[1];
2611 if (receivedCmd
[0] == 0xB0) {
2612 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2613 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2614 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2616 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2620 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2623 cardSTATE
= MFEMUL_HALTED
;
2624 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2625 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2629 if (receivedCmd
[0] == 0xe0) {//RATS
2630 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2633 // command not allowed
2634 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2635 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2638 case MFEMUL_WRITEBL2
:{
2640 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2641 emlSetMem(receivedCmd
, cardWRBL
, 1);
2642 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2643 cardSTATE
= MFEMUL_WORK
;
2645 cardSTATE_TO_IDLE();
2646 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2651 case MFEMUL_INTREG_INC
:{
2652 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2653 memcpy(&ans
, receivedCmd
, 4);
2654 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2655 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2656 cardSTATE_TO_IDLE();
2659 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2660 cardINTREG
= cardINTREG
+ ans
;
2661 cardSTATE
= MFEMUL_WORK
;
2664 case MFEMUL_INTREG_DEC
:{
2665 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2666 memcpy(&ans
, receivedCmd
, 4);
2667 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2668 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2669 cardSTATE_TO_IDLE();
2672 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2673 cardINTREG
= cardINTREG
- ans
;
2674 cardSTATE
= MFEMUL_WORK
;
2677 case MFEMUL_INTREG_REST
:{
2678 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2679 memcpy(&ans
, receivedCmd
, 4);
2680 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2681 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2682 cardSTATE_TO_IDLE();
2685 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2686 cardSTATE
= MFEMUL_WORK
;
2692 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2695 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2697 //May just aswell send the collected ar_nr in the response aswell
2698 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2701 if(flags
& FLAG_NR_AR_ATTACK
)
2703 if(ar_nr_collected
> 1) {
2704 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2705 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2706 ar_nr_responses
[0], // UID
2707 ar_nr_responses
[1], //NT
2708 ar_nr_responses
[2], //AR1
2709 ar_nr_responses
[3], //NR1
2710 ar_nr_responses
[6], //AR2
2711 ar_nr_responses
[7] //NR2
2714 Dbprintf("Failed to obtain two AR/NR pairs!");
2715 if(ar_nr_collected
>0) {
2716 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2717 ar_nr_responses
[0], // UID
2718 ar_nr_responses
[1], //NT
2719 ar_nr_responses
[2], //AR1
2720 ar_nr_responses
[3] //NR1
2725 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2731 //-----------------------------------------------------------------------------
2734 //-----------------------------------------------------------------------------
2735 void RAMFUNC
SniffMifare(uint8_t param
) {
2737 // bit 0 - trigger from first card answer
2738 // bit 1 - trigger from first reader 7-bit request
2740 // C(red) A(yellow) B(green)
2742 // init trace buffer
2746 // The command (reader -> tag) that we're receiving.
2747 // The length of a received command will in most cases be no more than 18 bytes.
2748 // So 32 should be enough!
2749 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2750 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2751 // The response (tag -> reader) that we're receiving.
2752 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2753 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2755 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2757 // free eventually allocated BigBuf memory
2759 // allocate the DMA buffer, used to stream samples from the FPGA
2760 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2761 uint8_t *data
= dmaBuf
;
2762 uint8_t previous_data
= 0;
2765 bool ReaderIsActive
= FALSE
;
2766 bool TagIsActive
= FALSE
;
2768 // Set up the demodulator for tag -> reader responses.
2769 DemodInit(receivedResponse
, receivedResponsePar
);
2771 // Set up the demodulator for the reader -> tag commands
2772 UartInit(receivedCmd
, receivedCmdPar
);
2774 // Setup for the DMA.
2775 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2782 // And now we loop, receiving samples.
2783 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2785 if(BUTTON_PRESS()) {
2786 DbpString("cancelled by button");
2793 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2794 // check if a transaction is completed (timeout after 2000ms).
2795 // if yes, stop the DMA transfer and send what we have so far to the client
2796 if (MfSniffSend(2000)) {
2797 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2801 ReaderIsActive
= FALSE
;
2802 TagIsActive
= FALSE
;
2803 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2807 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2808 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2809 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2810 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2812 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2814 // test for length of buffer
2815 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2816 maxDataLen
= dataLen
;
2817 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2818 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2822 if(dataLen
< 1) continue;
2824 // primary buffer was stopped ( <-- we lost data!
2825 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2826 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2827 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2828 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2830 // secondary buffer sets as primary, secondary buffer was stopped
2831 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2832 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2833 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2838 if (sniffCounter
& 0x01) {
2840 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2841 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2842 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2844 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2846 /* And ready to receive another command. */
2849 /* And also reset the demod code */
2852 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2855 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2856 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2857 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2860 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2862 // And ready to receive another response.
2865 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2869 previous_data
= *data
;
2872 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2878 DbpString("COMMAND FINISHED");
2880 FpgaDisableSscDma();
2883 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);