]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
18 static const uint8_t THRESHOLD
= 123;
19 //test samples are not just noise
20 uint8_t justNoise1
= 1;
21 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
22 justNoise1
= BitStream
[idx
] < THRESHOLD
;
28 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
29 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
33 // get high and low thresholds
34 for (int i
=0; i
< size
; i
++){
35 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
36 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
38 if (*high
< 123) return -1; // just noise
39 *high
= (int)(((*high
-128)*(((float)fuzzHi
)/100))+128);
40 *low
= (int)(((*low
-128)*(((float)fuzzLo
)/100))+128);
45 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
46 // returns 1 if passed
47 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
50 for (uint8_t i
= 0; i
< bitLen
; i
++){
51 ans
^= ((bits
>> i
) & 1);
53 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
54 return (ans
== pType
);
58 //search for given preamble in given BitStream and return startIndex and length
59 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
62 for (int idx
=0; idx
< *size
- pLen
; idx
++){
63 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
70 *size
= idx
- *startIdx
;
80 //takes 1s and 0s and searches for EM410x format - output EM ID
81 uint64_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
)
83 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
84 // otherwise could be a void with no arguments
88 if (BitStream
[1]>1){ //allow only 1s and 0s
89 // PrintAndLog("no data found");
92 // 111111111 bit pattern represent start of frame
93 uint8_t preamble
[] = {1,1,1,1,1,1,1,1,1};
95 uint32_t parityBits
= 0;
98 for (uint8_t extraBitChk
=0; extraBitChk
<5; extraBitChk
++){
99 errChk
= preambleSearch(BitStream
+extraBitChk
+*startIdx
, preamble
, sizeof(preamble
), size
, startIdx
);
100 if (errChk
== 0) return 0;
102 for (i
=0; i
<10;i
++){ //loop through 10 sets of 5 bits (50-10p = 40 bits)
103 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
105 if (parityTest(parityBits
, 5, 0) == 0){
106 //parity failed try next bit (in the case of 1111111111) but last 9 = preamble
111 //set uint64 with ID from BitStream
112 for (uint8_t ii
=0; ii
<4; ii
++){
113 lo
= (lo
<< 1LL) | (BitStream
[(i
*5)+ii
+idx
]);
116 if (errChk
!= 0) return lo
;
117 //skip last 5 bit parity test for simplicity.
124 //takes 3 arguments - clock, invert, maxErr as integers
125 //attempts to demodulate ask while decoding manchester
126 //prints binary found and saves in graphbuffer for further commands
127 int askmandemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
)
131 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
132 if (*clk
==0) return -3;
133 if (start
< 0) return -3;
134 // if autodetected too low then adjust //MAY NEED ADJUSTMENT
135 //if (clk2==0 && *clk<8) *clk =64;
136 //if (clk2==0 && *clk<32) *clk=32;
137 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
138 uint32_t initLoopMax
= 200;
139 if (initLoopMax
> *size
) initLoopMax
=*size
;
140 // Detect high and lows
141 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
143 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75);
144 if (ans
<1) return -2; //just noise
146 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
147 int lastBit
= 0; //set first clock check
148 uint32_t bitnum
= 0; //output counter
149 int tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
150 if (*clk
<=32) tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
152 uint32_t gLen
= *size
;
153 if (gLen
> 3000) gLen
=3000;
155 uint16_t MaxBits
= 500;
156 uint32_t bestStart
= *size
;
157 int bestErrCnt
= maxErr
+1;
158 // PrintAndLog("DEBUG - lastbit - %d",lastBit);
159 // loop to find first wave that works
160 for (iii
=0; iii
< gLen
; ++iii
){
161 if ((BinStream
[iii
] >= high
) || (BinStream
[iii
] <= low
)){
164 // loop through to see if this start location works
165 for (i
= iii
; i
< *size
; ++i
) {
166 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
168 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
169 //low found and we are expecting a bar
172 //mid value found or no bar supposed to be here
173 if ((i
-lastBit
)>(*clk
+tol
)){
174 //should have hit a high or low based on clock!!
177 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
180 lastBit
+=*clk
;//skip over until hit too many errors
181 if (errCnt
>(maxErr
)) break; //allow 1 error for every 1000 samples else start over
184 if ((i
-iii
) >(MaxBits
* *clk
)) break; //got plenty of bits
186 //we got more than 64 good bits and not all errors
187 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
192 break; //great read - finish
194 if (errCnt
<bestErrCnt
){ //set this as new best run
201 if (bestErrCnt
<=maxErr
){
202 //best run is good enough set to best run and set overwrite BinStream
204 lastBit
= bestStart
- *clk
;
206 for (i
= iii
; i
< *size
; ++i
) {
207 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
209 BinStream
[bitnum
] = *invert
;
211 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
212 //low found and we are expecting a bar
214 BinStream
[bitnum
] = 1-*invert
;
217 //mid value found or no bar supposed to be here
218 if ((i
-lastBit
)>(*clk
+tol
)){
219 //should have hit a high or low based on clock!!
222 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
224 BinStream
[bitnum
]=77;
228 lastBit
+=*clk
;//skip over error
231 if (bitnum
>=MaxBits
) break;
243 //encode binary data into binary manchester
244 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
246 size_t modIdx
=20000, i
=0;
247 if (size
>modIdx
) return -1;
248 for (size_t idx
=0; idx
< size
; idx
++){
249 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
250 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
252 for (; i
<(size
*2); i
++){
253 BitStream
[i
] = BitStream
[i
+20000];
259 //take 10 and 01 and manchester decode
260 //run through 2 times and take least errCnt
261 int manrawdecode(uint8_t * BitStream
, size_t *size
)
264 uint16_t MaxBits
= 500;
267 uint16_t bestErr
= 1000;
268 uint16_t bestRun
= 0;
270 if (size
== 0) return -1;
271 for (ii
=1;ii
<3;++ii
){
273 for (i
=i
+ii
;i
<*size
-2;i
+=2){
274 if(BitStream
[i
]==1 && (BitStream
[i
+1]==0)){
275 } else if((BitStream
[i
]==0)&& BitStream
[i
+1]==1){
279 if(bitnum
>MaxBits
) break;
291 for (i
=i
+ii
; i
< *size
-2; i
+=2){
292 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
293 BitStream
[bitnum
++]=0;
294 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
295 BitStream
[bitnum
++]=1;
297 BitStream
[bitnum
++]=77;
300 if(bitnum
>MaxBits
) break;
308 //take 01 or 10 = 0 and 11 or 00 = 1
309 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
314 uint16_t MaxBits
=500;
316 if (size
== 0) return -1;
317 for (;i
<*size
-2; i
+=2){
318 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
319 BitStream
[bitnum
++]=1^invert
;
320 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
321 BitStream
[bitnum
++]=invert
;
323 BitStream
[bitnum
++]=77;
326 if(bitnum
>MaxBits
) break;
333 void askAmp(uint8_t *BitStream
, size_t size
)
337 for(int i
= 1; i
<size
; i
++){
338 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
340 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
343 shiftedVal
=BitStream
[i
]+shift
;
347 else if (shiftedVal
<0)
349 BitStream
[i
-1] = shiftedVal
;
355 //takes 3 arguments - clock, invert and maxErr as integers
356 //attempts to demodulate ask only
357 int askrawdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
)
360 if (*size
==0) return -1;
361 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
362 if (*clk
==0) return -1;
363 if (start
<0) return -1;
364 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
365 uint32_t initLoopMax
= 200;
366 if (initLoopMax
> *size
) initLoopMax
=*size
;
367 // Detect high and lows
368 //25% fuzz in case highs and lows aren't clipped [marshmellow]
370 if (amp
==1) askAmp(BinStream
, *size
);
371 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75);
372 if (ans
<1) return -1; //just noise
374 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
375 int lastBit
= 0; //set first clock check
376 uint32_t bitnum
= 0; //output counter
377 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock
378 // if they fall + or - this value + clock from last valid wave
379 if (*clk
== 32) tol
=0; //clock tolerance may not be needed anymore currently set to
380 // + or - 1 but could be increased for poor waves or removed entirely
382 uint32_t gLen
= *size
;
383 if (gLen
> 500) gLen
=500;
385 uint32_t bestStart
= *size
;
386 uint32_t bestErrCnt
= maxErr
; //(*size/1000);
388 uint16_t MaxBits
=1000;
389 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
390 //loop to find first wave that works
391 for (iii
=start
; iii
< gLen
; ++iii
){
392 if ((BinStream
[iii
]>=high
) || (BinStream
[iii
]<=low
)){
395 //loop through to see if this start location works
396 for (i
= iii
; i
< *size
; ++i
) {
397 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
400 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
401 //low found and we are expecting a bar
404 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
407 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
410 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
414 //mid value found or no bar supposed to be here
416 if ((i
-lastBit
)>(*clk
+tol
)){
417 //should have hit a high or low based on clock!!
419 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
422 lastBit
+=*clk
;//skip over until hit too many errors
423 if (errCnt
> maxErr
){
429 if ((i
-iii
)>(MaxBits
* *clk
)) break; //got enough bits
431 //we got more than 64 good bits and not all errors
432 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
437 break; //great read - finish
439 if (errCnt
<bestErrCnt
){ //set this as new best run
446 if (bestErrCnt
<=maxErr
){
447 //best run is good enough - set to best run and overwrite BinStream
449 lastBit
= bestStart
- *clk
;
451 for (i
= iii
; i
< *size
; ++i
) {
452 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
454 BinStream
[bitnum
] = *invert
;
457 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
458 //low found and we are expecting a bar
460 BinStream
[bitnum
] = 1 - *invert
;
463 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
466 BinStream
[bitnum
] = 1 - *invert
;
468 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
471 BinStream
[bitnum
] = *invert
;
473 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
476 if (bitnum
!=0) BinStream
[bitnum
] = BinStream
[bitnum
-1];
480 //mid value found or no bar supposed to be here
481 if ((i
-lastBit
)>(*clk
+tol
)){
482 //should have hit a high or low based on clock!!
485 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
487 BinStream
[bitnum
]=77;
490 lastBit
+=*clk
;//skip over error
493 if (bitnum
>= MaxBits
) break;
504 // demod gProxIIDemod
505 // error returns as -x
506 // success returns start position in BitStream
507 // BitStream must contain previously askrawdemod and biphasedemoded data
508 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
511 uint8_t preamble
[] = {1,1,1,1,1,0};
513 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
514 if (errChk
== 0) return -3; //preamble not found
515 if (*size
!= 96) return -2; //should have found 96 bits
516 //check first 6 spacer bits to verify format
517 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
518 //confirmed proper separator bits found
519 //return start position
520 return (int) startIdx
;
525 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
526 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
528 uint32_t last_transition
= 0;
531 if (fchigh
==0) fchigh
=10;
532 if (fclow
==0) fclow
=8;
533 //set the threshold close to 0 (graph) or 128 std to avoid static
534 uint8_t threshold_value
= 123;
536 // sync to first lo-hi transition, and threshold
538 // Need to threshold first sample
540 if(dest
[0] < threshold_value
) dest
[0] = 0;
544 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
545 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
546 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
547 for(idx
= 1; idx
< size
; idx
++) {
548 // threshold current value
550 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
553 // Check for 0->1 transition
554 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
555 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
556 //do nothing with extra garbage
557 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
559 } else { //9+ = 10 waves
562 last_transition
= idx
;
566 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
569 uint32_t myround2(float f
)
571 if (f
>= 2000) return 2000;//something bad happened
572 return (uint32_t) (f
+ (float)0.5);
575 //translate 11111100000 to 10
576 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
,
577 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
579 uint8_t lastval
=dest
[0];
584 for( idx
=1; idx
< size
; idx
++) {
586 if (dest
[idx
]==lastval
) {
590 //if lastval was 1, we have a 1->0 crossing
591 if ( dest
[idx
-1]==1 ) {
592 n
=myround2((float)(n
+1)/((float)(rfLen
)/(float)fclow
));
593 } else {// 0->1 crossing
594 n
=myround2((float)(n
+1)/((float)(rfLen
-1)/(float)fchigh
)); //-1 for fudge factor
598 if(n
< maxConsequtiveBits
) //Consecutive
600 if(invert
==0){ //invert bits
601 memset(dest
+numBits
, dest
[idx
-1] , n
);
603 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
612 //by marshmellow (from holiman's base)
613 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
614 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
617 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
618 size
= aggregate_bits(dest
, size
, rfLen
, 192, invert
, fchigh
, fclow
);
622 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
623 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
625 if (justNoise(dest
, *size
)) return -1;
627 size_t numStart
=0, size2
=*size
, startIdx
=0;
629 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
630 if (*size
< 96) return -2;
631 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
632 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
633 // find bitstring in array
634 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
635 if (errChk
== 0) return -3; //preamble not found
637 numStart
= startIdx
+ sizeof(preamble
);
638 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
639 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
640 if (dest
[idx
] == dest
[idx
+1]){
641 return -4; //not manchester data
643 *hi2
= (*hi2
<<1)|(*hi
>>31);
644 *hi
= (*hi
<<1)|(*lo
>>31);
645 //Then, shift in a 0 or one into low
646 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
651 return (int)startIdx
;
654 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
655 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
657 if (justNoise(dest
, *size
)) return -1;
659 size_t numStart
=0, size2
=*size
, startIdx
=0;
661 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
662 if (*size
< 96) return -2;
664 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
665 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
667 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
668 if (errChk
== 0) return -3; //preamble not found
670 numStart
= startIdx
+ sizeof(preamble
);
671 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
672 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
673 if (dest
[idx
] == dest
[idx
+1])
674 return -4; //not manchester data
675 *hi2
= (*hi2
<<1)|(*hi
>>31);
676 *hi
= (*hi
<<1)|(*lo
>>31);
677 //Then, shift in a 0 or one into low
678 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
683 return (int)startIdx
;
686 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
689 for(int i
= 0 ; i
< numbits
; i
++)
691 num
= (num
<< 1) | (*src
);
697 int IOdemodFSK(uint8_t *dest
, size_t size
)
699 if (justNoise(dest
, size
)) return -1;
700 //make sure buffer has data
701 if (size
< 66*64) return -2;
703 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
704 if (size
< 65) return -3; //did we get a good demod?
706 //0 10 20 30 40 50 60
708 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
709 //-----------------------------------------------------------------------------
710 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
712 //XSF(version)facility:codeone+codetwo
715 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
716 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
717 if (errChk
== 0) return -4; //preamble not found
719 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
720 //confirmed proper separator bits found
721 //return start position
722 return (int) startIdx
;
728 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
729 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
730 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
732 uint32_t parityWd
= 0;
733 size_t j
= 0, bitCnt
= 0;
734 for (int word
= 0; word
< (bLen
); word
+=pLen
){
735 for (int bit
=0; bit
< pLen
; bit
++){
736 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
737 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
740 // if parity fails then return 0
741 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
745 // if we got here then all the parities passed
746 //return ID start index and size
751 // FSK Demod then try to locate an AWID ID
752 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
754 //make sure buffer has enough data
755 if (*size
< 96*50) return -1;
757 if (justNoise(dest
, *size
)) return -2;
760 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
761 if (*size
< 96) return -3; //did we get a good demod?
763 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
765 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
766 if (errChk
== 0) return -4; //preamble not found
767 if (*size
!= 96) return -5;
768 return (int)startIdx
;
772 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
773 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
775 //make sure buffer has data
776 if (*size
< 128*50) return -5;
778 //test samples are not just noise
779 if (justNoise(dest
, *size
)) return -1;
782 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
783 if (*size
< 128) return -2; //did we get a good demod?
785 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
787 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
788 if (errChk
== 0) return -4; //preamble not found
789 if (*size
!= 128) return -3;
790 return (int)startIdx
;
794 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, int high
, int low
)
798 for (size_t i
=20; i
<255; i
++){
799 if (dest
[i
]>low
&& dest
[i
]<high
)
805 if (cntPeaks
>190) return 1;
811 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
812 // maybe somehow adjust peak trimming value based on samples to fix?
813 // return start index of best starting position for that clock and return clock (by reference)
814 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
817 int clk
[]={8,16,32,40,50,64,100,128,256};
818 int loopCnt
= 256; //don't need to loop through entire array...
819 if (size
== 0) return -1;
820 if (size
<loopCnt
) loopCnt
= size
;
821 //if we already have a valid clock quit
824 if (clk
[i
] == *clock
) return 0;
826 //get high and low peak
828 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
830 //test for large clean peaks
831 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
834 fcTest
=countFC(dest
, size
, &mostFC
);
835 uint8_t fc1
= fcTest
>> 8;
836 uint8_t fc2
= fcTest
& 0xFF;
853 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
854 int bestStart
[]={0,0,0,0,0,0,0,0,0};
856 //test each valid clock from smallest to greatest to see which lines up
857 for(clkCnt
=0; clkCnt
< 8; clkCnt
++){
858 if (clk
[clkCnt
] == 32){
863 bestErr
[clkCnt
]=1000;
864 //try lining up the peaks by moving starting point (try first 256)
865 for (ii
=0; ii
< loopCnt
; ii
++){
866 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
868 // now that we have the first one lined up test rest of wave array
869 for (i
=0; i
<((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
870 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
871 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
872 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
873 }else{ //error no peak detected
877 //if we found no errors then we can stop here
878 // this is correct one - return this clock
879 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
880 if(errCnt
==0 && clkCnt
<6) {
881 *clock
= clk
[clkCnt
];
884 //if we found errors see if it is lowest so far and save it as best run
885 if(errCnt
<bestErr
[clkCnt
]){
886 bestErr
[clkCnt
]=errCnt
;
887 bestStart
[clkCnt
]=ii
;
894 for (iii
=0; iii
<8; ++iii
){
895 if (bestErr
[iii
]<bestErr
[best
]){
896 if (bestErr
[iii
]==0) bestErr
[iii
]=1;
897 // current best bit to error ratio vs new bit to error ratio
898 if (((size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
]) ){
903 if (bestErr
[best
]>maxErr
) return -1;
905 return bestStart
[best
];
909 //detect psk clock by reading each phase shift
910 // a phase shift is determined by measuring the sample length of each wave
911 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
913 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
914 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
915 if (size
== 0) return 0;
916 if (size
<loopCnt
) loopCnt
= size
;
918 //if we already have a valid clock quit
921 if (clk
[i
] == clock
) return clock
;
923 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
924 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
925 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
926 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
927 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
928 countFC(dest
, size
, &fc
);
929 //PrintAndLog("DEBUG: FC: %d",fc);
931 //find first full wave
932 for (i
=0; i
<loopCnt
; i
++){
933 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
934 if (waveStart
== 0) {
936 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
939 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
940 waveLenCnt
= waveEnd
-waveStart
;
941 if (waveLenCnt
> fc
){
942 firstFullWave
= waveStart
;
943 fullWaveLen
=waveLenCnt
;
950 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
952 //test each valid clock from greatest to smallest to see which lines up
953 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
954 lastClkBit
= firstFullWave
; //set end of wave as clock align
958 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
960 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
961 //top edge of wave = start of new wave
962 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
963 if (waveStart
== 0) {
968 waveLenCnt
= waveEnd
-waveStart
;
969 if (waveLenCnt
> fc
){
970 //if this wave is a phase shift
971 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
972 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
974 lastClkBit
+=clk
[clkCnt
];
975 } else if (i
<lastClkBit
+8){
976 //noise after a phase shift - ignore
977 } else { //phase shift before supposed to based on clock
980 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
981 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
990 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
991 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
993 //all tested with errors
994 //return the highest clk with the most peaks found
996 for (i
=7; i
>=1; i
--){
997 if (peaksdet
[i
] > peaksdet
[best
]) {
1000 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1006 //detect nrz clock by reading #peaks vs no peaks(or errors)
1007 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1010 int clk
[]={8,16,32,40,50,64,100,128,256};
1011 int loopCnt
= 4096; //don't need to loop through entire array...
1012 if (size
== 0) return 0;
1013 if (size
<loopCnt
) loopCnt
= size
;
1015 //if we already have a valid clock quit
1017 if (clk
[i
] == clock
) return clock
;
1019 //get high and low peak
1021 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
1023 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
1028 int peaksdet
[]={0,0,0,0,0,0,0,0};
1030 //test for large clipped waves
1031 for (i
=0; i
<loopCnt
; i
++){
1032 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1035 if (peakcnt
>0 && maxPeak
< peakcnt
){
1042 //test each valid clock from smallest to greatest to see which lines up
1043 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1044 //ignore clocks smaller than largest peak
1045 if (clk
[clkCnt
]<maxPeak
) continue;
1047 //try lining up the peaks by moving starting point (try first 256)
1048 for (ii
=0; ii
< loopCnt
; ++ii
){
1049 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1051 // now that we have the first one lined up test rest of wave array
1052 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
1053 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
1057 if(peakcnt
>peaksdet
[clkCnt
]) {
1058 peaksdet
[clkCnt
]=peakcnt
;
1065 for (iii
=7; iii
> 0; iii
--){
1066 if (peaksdet
[iii
] > peaksdet
[best
]){
1069 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1075 // convert psk1 demod to psk2 demod
1076 // only transition waves are 1s
1077 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1080 uint8_t lastBit
=BitStream
[0];
1081 for (; i
<size
; i
++){
1082 if (lastBit
!=BitStream
[i
]){
1083 lastBit
=BitStream
[i
];
1093 // convert psk2 demod to psk1 demod
1094 // from only transition waves are 1s to phase shifts change bit
1095 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1098 uint8_t phase
=BitStream
[0];
1099 //uint8_t lastBit=BitStream[0];
1100 for (i
=1; i
<size
; i
++){
1101 if (phase
!=BitStream
[i
]){
1109 // redesigned by marshmellow adjusted from existing decode functions
1110 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1111 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1113 //26 bit 40134 format (don't know other formats)
1115 int long_wait
=29;//29 leading zeros in format
1121 // Finding the start of a UID
1122 for (start
= 0; start
<= *size
- 250; start
++) {
1123 first
= bitStream
[start
];
1124 for (i
= start
; i
< start
+ long_wait
; i
++) {
1125 if (bitStream
[i
] != first
) {
1129 if (i
== (start
+ long_wait
)) {
1133 if (start
== *size
- 250 + 1) {
1134 // did not find start sequence
1137 // Inverting signal if needed
1139 for (i
= start
; i
< *size
; i
++) {
1140 bitStream
[i
] = !bitStream
[i
];
1146 //found start once now test length by finding next one
1147 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
1148 first2
= bitStream
[ii
];
1149 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1150 if (bitStream
[iii
] != first2
) {
1154 if (iii
== (ii
+ long_wait
)) {
1158 if (ii
== *size
- 250 + 1){
1159 // did not find second start sequence
1166 for (ii
= 0; ii
< bitCnt
; ii
++) {
1167 bitStream
[ii
] = bitStream
[i
++];
1173 // by marshmellow - demodulate NRZ wave (both similar enough)
1174 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1175 // there probably is a much simpler way to do this....
1176 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int maxErr
)
1178 if (justNoise(dest
, *size
)) return -1;
1179 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1180 if (*clk
==0) return -2;
1183 ans
= getHiLo(dest
, 1260, &high
, &low
, 75, 75); //25% fuzz on high 25% fuzz on low
1184 if (ans
<1) return -2; //just noise
1185 uint32_t gLen
= 256;
1186 if (gLen
>*size
) gLen
= *size
;
1187 int lastBit
= 0; //set first clock check
1188 uint32_t bitnum
= 0; //output counter
1189 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1192 uint16_t MaxBits
= 1000;
1193 uint32_t bestErrCnt
= maxErr
+1;
1194 uint32_t bestPeakCnt
= 0;
1195 uint32_t bestPeakStart
=0;
1198 uint8_t errBitHigh
=0;
1200 uint8_t ignoreWindow
=4;
1201 uint8_t ignoreCnt
=ignoreWindow
; //in case of noice near peak
1202 //loop to find first wave that works - align to clock
1203 for (iii
=0; iii
< gLen
; ++iii
){
1204 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1209 //loop through to see if this start location works
1210 for (i
= iii
; i
< *size
; ++i
) {
1211 //if we found a high bar and we are at a clock bit
1212 if ((dest
[i
]>=high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1218 ignoreCnt
=ignoreWindow
;
1219 //else if low bar found and we are at a clock point
1220 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1226 ignoreCnt
=ignoreWindow
;
1227 //else if no bars found
1228 }else if(dest
[i
] < high
&& dest
[i
] > low
) {
1238 //if we are past a clock point
1239 if (i
>= lastBit
+*clk
+tol
){ //clock val
1243 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1244 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (i
<lastBit
+*clk
-tol
|| i
>lastBit
+*clk
+tol
) && (bitHigh
==0)){
1245 //error bar found no clock...
1248 if (bitnum
>=MaxBits
) break;
1250 //we got more than 64 good bits and not all errors
1251 if (bitnum
> (64) && (errCnt
<= (maxErr
))) {
1252 //possible good read
1255 bestErrCnt
= errCnt
;
1256 bestPeakCnt
= peakCnt
;
1257 bestPeakStart
= iii
;
1258 break; //great read - finish
1260 if (errCnt
< bestErrCnt
){ //set this as new best run
1261 bestErrCnt
= errCnt
;
1264 if (peakCnt
> bestPeakCnt
){
1265 bestPeakCnt
=peakCnt
;
1271 //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
1272 if (bestErrCnt
<= maxErr
){
1273 //best run is good enough set to best run and set overwrite BinStream
1275 lastBit
=bestPeakStart
-*clk
;
1277 for (i
= iii
; i
< *size
; ++i
) {
1278 //if we found a high bar and we are at a clock bit
1279 if ((dest
[i
] >= high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1283 dest
[bitnum
]=curBit
;
1286 ignoreCnt
=ignoreWindow
;
1287 //else if low bar found and we are at a clock point
1288 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1292 dest
[bitnum
]=curBit
;
1295 ignoreCnt
=ignoreWindow
;
1296 //else if no bars found
1297 }else if(dest
[i
]<high
&& dest
[i
]>low
) {
1300 //if peak is done was it an error peak?
1310 //if we are past a clock point
1311 if (i
>=lastBit
+*clk
+tol
){ //clock val
1313 dest
[bitnum
]=curBit
;
1316 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1317 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && ((i
<lastBit
+*clk
-tol
) || (i
>lastBit
+*clk
+tol
)) && (bitHigh
==0)){
1318 //error bar found no clock...
1321 if (bitnum
>= MaxBits
) break;
1336 //detects the bit clock for FSK given the high and low Field Clocks
1337 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1339 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1340 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1341 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1342 uint8_t rfLensFnd
= 0;
1343 uint8_t lastFCcnt
=0;
1344 uint32_t fcCounter
= 0;
1345 uint16_t rfCounter
= 0;
1346 uint8_t firstBitFnd
= 0;
1348 if (size
== 0) return 0;
1350 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1355 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1356 // prime i to first up transition
1357 for (i
= 1; i
< size
-1; i
++)
1358 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1361 for (; i
< size
-1; i
++){
1362 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1]){
1366 // if we got less than the small fc + tolerance then set it to the small fc
1367 if (fcCounter
< fcLow
+fcTol
)
1369 else //set it to the large fc
1372 //look for bit clock (rf/xx)
1373 if ((fcCounter
<lastFCcnt
|| fcCounter
>lastFCcnt
)){
1374 //not the same size as the last wave - start of new bit sequence
1376 if (firstBitFnd
>1){ //skip first wave change - probably not a complete bit
1377 for (int ii
=0; ii
<15; ii
++){
1378 if (rfLens
[ii
]==rfCounter
){
1384 if (rfCounter
>0 && rfLensFnd
<15){
1385 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1386 rfCnts
[rfLensFnd
]++;
1387 rfLens
[rfLensFnd
++]=rfCounter
;
1393 lastFCcnt
=fcCounter
;
1402 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1404 for (i
=0; i
<15; i
++){
1405 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1406 //get highest 2 RF values (might need to get more values to compare or compare all?)
1407 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1408 rfHighest3
=rfHighest2
;
1409 rfHighest2
=rfHighest
;
1411 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1412 rfHighest3
=rfHighest2
;
1414 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1418 // set allowed clock remainder tolerance to be 1 large field clock length+1
1419 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1420 uint8_t tol1
= fcHigh
+1;
1422 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1424 // loop to find the highest clock that has a remainder less than the tolerance
1425 // compare samples counted divided by
1427 for (; ii
>=0; ii
--){
1428 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1429 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1430 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1437 if (ii
<0) return 0; // oops we went too far
1443 //countFC is to detect the field clock lengths.
1444 //counts and returns the 2 most common wave lengths
1445 //mainly used for FSK field clock detection
1446 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t *mostFC
)
1448 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1449 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1450 uint8_t fcLensFnd
= 0;
1451 uint8_t lastFCcnt
=0;
1452 uint32_t fcCounter
= 0;
1454 if (size
== 0) return 0;
1456 // prime i to first up transition
1457 for (i
= 1; i
< size
-1; i
++)
1458 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1461 for (; i
< size
-1; i
++){
1462 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1463 // new up transition
1466 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1467 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1468 //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
1469 if ((fcCounter
==9 && fcCounter
& 1) || fcCounter
==4) fcCounter
++;
1471 // save last field clock count (fc/xx)
1472 // find which fcLens to save it to:
1473 for (int ii
=0; ii
<10; ii
++){
1474 if (fcLens
[ii
]==fcCounter
){
1480 if (fcCounter
>0 && fcLensFnd
<10){
1482 fcCnts
[fcLensFnd
]++;
1483 fcLens
[fcLensFnd
++]=fcCounter
;
1492 uint8_t best1
=9, best2
=9, best3
=9;
1494 // go through fclens and find which ones are bigest 2
1495 for (i
=0; i
<10; i
++){
1496 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1497 // get the 3 best FC values
1498 if (fcCnts
[i
]>maxCnt1
) {
1503 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1506 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1510 uint8_t fcH
=0, fcL
=0;
1511 if (fcLens
[best1
]>fcLens
[best2
]){
1519 *mostFC
=fcLens
[best1
];
1520 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1522 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1523 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
1529 //countPSK_FC is to detect the psk carrier clock length.
1530 //counts and returns the 1 most common wave length
1531 uint8_t countPSK_FC(uint8_t *BitStream
, size_t size
)
1533 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1534 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1535 uint8_t fcLensFnd
= 0;
1536 uint32_t fcCounter
= 0;
1538 if (size
== 0) return 0;
1540 // prime i to first up transition
1541 for (i
= 1; i
< size
-1; i
++)
1542 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1545 for (; i
< size
-1; i
++){
1546 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1547 // new up transition
1550 // save last field clock count (fc/xx)
1551 // find which fcLens to save it to:
1552 for (int ii
=0; ii
<10; ii
++){
1553 if (fcLens
[ii
]==fcCounter
){
1559 if (fcCounter
>0 && fcLensFnd
<10){
1561 fcCnts
[fcLensFnd
]++;
1562 fcLens
[fcLensFnd
++]=fcCounter
;
1573 // go through fclens and find which ones are bigest
1574 for (i
=0; i
<10; i
++){
1575 //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
1576 // get the best FC value
1577 if (fcCnts
[i
]>maxCnt1
) {
1582 return fcLens
[best1
];
1585 //by marshmellow - demodulate PSK1 wave
1586 //uses wave lengths (# Samples)
1587 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1589 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1590 if (size
== 0) return -1;
1591 if (*size
<loopCnt
) loopCnt
= *size
;
1593 uint8_t curPhase
= *invert
;
1594 size_t i
, waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1595 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1596 uint16_t errCnt
=0, waveLenCnt
=0;
1597 fc
= countPSK_FC(dest
, *size
);
1598 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1599 //PrintAndLog("DEBUG: FC: %d",fc);
1600 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1601 if (*clock
==0) return -1;
1602 int avgWaveVal
=0, lastAvgWaveVal
=0;
1603 //find first full wave
1604 for (i
=0; i
<loopCnt
; i
++){
1605 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1606 if (waveStart
== 0) {
1608 avgWaveVal
=dest
[i
+1];
1609 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
1612 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1613 waveLenCnt
= waveEnd
-waveStart
;
1614 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1615 if (waveLenCnt
> fc
){
1616 firstFullWave
= waveStart
;
1617 fullWaveLen
=waveLenCnt
;
1618 //if average wave value is > graph 0 then it is an up wave or a 1
1619 if (lastAvgWaveVal
> 128) curPhase
^=1;
1626 avgWaveVal
+=dest
[i
+1];
1628 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1629 lastClkBit
= firstFullWave
; //set start of wave as clock align
1633 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1635 for (i
= firstFullWave
+fullWaveLen
-1; i
< *size
-3; i
++){
1636 //top edge of wave = start of new wave
1637 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1638 if (waveStart
== 0) {
1641 avgWaveVal
= dest
[i
+1];
1644 waveLenCnt
= waveEnd
-waveStart
;
1645 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1646 if (waveLenCnt
> fc
){
1647 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1648 //if this wave is a phase shift
1649 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1650 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1652 dest
[numBits
] = curPhase
;
1654 lastClkBit
+= *clock
;
1655 } else if (i
<lastClkBit
+10){
1656 //noise after a phase shift - ignore
1657 } else { //phase shift before supposed to based on clock
1662 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1663 lastClkBit
+= *clock
; //no phase shift but clock bit
1664 dest
[numBits
] = curPhase
;
1671 avgWaveVal
+=dest
[i
+1];