]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
show device name during flashing and change advice on hanging
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 uint8_t ToSend[512];
40 int ToSendMax;
41 static int ToSendBit;
42 struct common_area common_area __attribute__((section(".commonarea")));
43
44 void BufferClear(void)
45 {
46 memset(BigBuf,0,sizeof(BigBuf));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
48 }
49
50 void ToSendReset(void)
51 {
52 ToSendMax = -1;
53 ToSendBit = 8;
54 }
55
56 void ToSendStuffBit(int b)
57 {
58 if(ToSendBit >= 8) {
59 ToSendMax++;
60 ToSend[ToSendMax] = 0;
61 ToSendBit = 0;
62 }
63
64 if(b) {
65 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
66 }
67
68 ToSendBit++;
69
70 if(ToSendBit >= sizeof(ToSend)) {
71 ToSendBit = 0;
72 DbpString("ToSendStuffBit overflowed!");
73 }
74 }
75
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
79
80 void DbpString(char *str)
81 {
82 byte_t len = strlen(str);
83 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
86 // return;
87 //
88 // UsbCommand c;
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
93 // }
94 // memcpy(c.d.asBytes, str, c.arg[0]);
95 //
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
98 // SpinDelay(50);
99 }
100
101 #if 0
102 void DbpIntegers(int x1, int x2, int x3)
103 {
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
107 // return;
108 //
109 // UsbCommand c;
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
111 // c.arg[0] = x1;
112 // c.arg[1] = x2;
113 // c.arg[2] = x3;
114 //
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
116 // // XXX
117 // SpinDelay(50);
118 }
119 #endif
120
121 void Dbprintf(const char *fmt, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string[128];
124 va_list ap;
125
126 va_start(ap, fmt);
127 kvsprintf(fmt, output_string, 10, ap);
128 va_end(ap);
129
130 DbpString(output_string);
131 }
132
133 // prints HEX & ASCII
134 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
135 int l=0,i;
136 char ascii[9];
137
138 while (len>0) {
139 if (len>8) l=8;
140 else l=len;
141
142 memcpy(ascii,d,l);
143 ascii[l]=0;
144
145 // filter safe ascii
146 for (i=0;i<l;i++)
147 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
148
149 if (bAsci) {
150 Dbprintf("%-8s %*D",ascii,l,d," ");
151 } else {
152 Dbprintf("%*D",l,d," ");
153 }
154
155 len-=8;
156 d+=8;
157 }
158 }
159
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
163 // return that.
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch)
166 {
167 uint32_t d;
168
169 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
170 AT91C_BASE_ADC->ADC_MR =
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
175
176 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
177 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
178 ;
179 d = AT91C_BASE_ADC->ADC_CDR[ch];
180
181 return d;
182 }
183
184 int AvgAdc(int ch) // was static - merlok
185 {
186 int i;
187 int a = 0;
188
189 for(i = 0; i < 32; i++) {
190 a += ReadAdc(ch);
191 }
192
193 return (a + 15) >> 5;
194 }
195
196 void MeasureAntennaTuning(void)
197 {
198 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
199 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
200 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
201
202 // UsbCommand c;
203
204 LED_B_ON();
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
207
208 /*
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
215 */
216
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
218 for (i=255; i>19; i--) {
219 WDT_HIT();
220 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
221 SpinDelay(20);
222 // Vref = 3.3V, and a 10000:240 voltage divider on the input
223 // can measure voltages up to 137500 mV
224 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
225 if (i==95) vLf125 = adcval; // voltage at 125Khz
226 if (i==89) vLf134 = adcval; // voltage at 134Khz
227
228 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
229 if(dest[i] > peak) {
230 peakv = adcval;
231 peak = dest[i];
232 peakf = i;
233 //ptr = i;
234 }
235 }
236
237 LED_A_ON();
238 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
239 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
240 SpinDelay(20);
241 // Vref = 3300mV, and an 10:1 voltage divider on the input
242 // can measure voltages up to 33000 mV
243 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
244
245 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
246 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
247 // c.arg[1] = vHf;
248 // c.arg[2] = peakf | (peakv << 16);
249
250 DbpString("Measuring complete, sending report back to host");
251 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
252 // UsbSendPacket((uint8_t *)&c, sizeof(c));
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
254 LED_A_OFF();
255 LED_B_OFF();
256 return;
257 }
258
259 void MeasureAntennaTuningHf(void)
260 {
261 int vHf = 0; // in mV
262
263 DbpString("Measuring HF antenna, press button to exit");
264
265 for (;;) {
266 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
268 SpinDelay(20);
269 // Vref = 3300mV, and an 10:1 voltage divider on the input
270 // can measure voltages up to 33000 mV
271 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
272
273 Dbprintf("%d mV",vHf);
274 if (BUTTON_PRESS()) break;
275 }
276 DbpString("cancelled");
277 }
278
279
280 void SimulateTagHfListen(void)
281 {
282 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
283 uint8_t v = 0;
284 int i;
285 int p = 0;
286
287 // We're using this mode just so that I can test it out; the simulated
288 // tag mode would work just as well and be simpler.
289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
290
291 // We need to listen to the high-frequency, peak-detected path.
292 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
293
294 FpgaSetupSsc();
295
296 i = 0;
297 for(;;) {
298 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
299 AT91C_BASE_SSC->SSC_THR = 0xff;
300 }
301 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
302 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
303
304 v <<= 1;
305 if(r & 1) {
306 v |= 1;
307 }
308 p++;
309
310 if(p >= 8) {
311 dest[i] = v;
312 v = 0;
313 p = 0;
314 i++;
315
316 if(i >= FREE_BUFFER_SIZE) {
317 break;
318 }
319 }
320 }
321 }
322 DbpString("simulate tag (now type bitsamples)");
323 }
324
325 void ReadMem(int addr)
326 {
327 const uint8_t *data = ((uint8_t *)addr);
328
329 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
330 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
331 }
332
333 /* osimage version information is linked in */
334 extern struct version_information version_information;
335 /* bootrom version information is pointed to from _bootphase1_version_pointer */
336 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
337 void SendVersion(void)
338 {
339 char temp[48]; /* Limited data payload in USB packets */
340 DbpString("Prox/RFID mark3 RFID instrument");
341
342 /* Try to find the bootrom version information. Expect to find a pointer at
343 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
344 * pointer, then use it.
345 */
346 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
347 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
348 DbpString("bootrom version information appears invalid");
349 } else {
350 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
351 DbpString(temp);
352 }
353
354 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
355 DbpString(temp);
356
357 FpgaGatherVersion(temp, sizeof(temp));
358 DbpString(temp);
359 // Send Chip ID
360 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
361 }
362
363 #ifdef WITH_LF
364 // samy's sniff and repeat routine
365 void SamyRun()
366 {
367 DbpString("Stand-alone mode! No PC necessary.");
368
369 // 3 possible options? no just 2 for now
370 #define OPTS 2
371
372 int high[OPTS], low[OPTS];
373
374 // Oooh pretty -- notify user we're in elite samy mode now
375 LED(LED_RED, 200);
376 LED(LED_ORANGE, 200);
377 LED(LED_GREEN, 200);
378 LED(LED_ORANGE, 200);
379 LED(LED_RED, 200);
380 LED(LED_ORANGE, 200);
381 LED(LED_GREEN, 200);
382 LED(LED_ORANGE, 200);
383 LED(LED_RED, 200);
384
385 int selected = 0;
386 int playing = 0;
387
388 // Turn on selected LED
389 LED(selected + 1, 0);
390
391 for (;;)
392 {
393 // UsbPoll(FALSE);
394 usb_poll();
395 WDT_HIT();
396
397 // Was our button held down or pressed?
398 int button_pressed = BUTTON_HELD(1000);
399 SpinDelay(300);
400
401 // Button was held for a second, begin recording
402 if (button_pressed > 0)
403 {
404 LEDsoff();
405 LED(selected + 1, 0);
406 LED(LED_RED2, 0);
407
408 // record
409 DbpString("Starting recording");
410
411 // wait for button to be released
412 while(BUTTON_PRESS())
413 WDT_HIT();
414
415 /* need this delay to prevent catching some weird data */
416 SpinDelay(500);
417
418 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
419 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
420
421 LEDsoff();
422 LED(selected + 1, 0);
423 // Finished recording
424
425 // If we were previously playing, set playing off
426 // so next button push begins playing what we recorded
427 playing = 0;
428 }
429
430 // Change where to record (or begin playing)
431 else if (button_pressed)
432 {
433 // Next option if we were previously playing
434 if (playing)
435 selected = (selected + 1) % OPTS;
436 playing = !playing;
437
438 LEDsoff();
439 LED(selected + 1, 0);
440
441 // Begin transmitting
442 if (playing)
443 {
444 LED(LED_GREEN, 0);
445 DbpString("Playing");
446 // wait for button to be released
447 while(BUTTON_PRESS())
448 WDT_HIT();
449 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
450 CmdHIDsimTAG(high[selected], low[selected], 0);
451 DbpString("Done playing");
452 if (BUTTON_HELD(1000) > 0)
453 {
454 DbpString("Exiting");
455 LEDsoff();
456 return;
457 }
458
459 /* We pressed a button so ignore it here with a delay */
460 SpinDelay(300);
461
462 // when done, we're done playing, move to next option
463 selected = (selected + 1) % OPTS;
464 playing = !playing;
465 LEDsoff();
466 LED(selected + 1, 0);
467 }
468 else
469 while(BUTTON_PRESS())
470 WDT_HIT();
471 }
472 }
473 }
474 #endif
475
476 /*
477 OBJECTIVE
478 Listen and detect an external reader. Determine the best location
479 for the antenna.
480
481 INSTRUCTIONS:
482 Inside the ListenReaderField() function, there is two mode.
483 By default, when you call the function, you will enter mode 1.
484 If you press the PM3 button one time, you will enter mode 2.
485 If you press the PM3 button a second time, you will exit the function.
486
487 DESCRIPTION OF MODE 1:
488 This mode just listens for an external reader field and lights up green
489 for HF and/or red for LF. This is the original mode of the detectreader
490 function.
491
492 DESCRIPTION OF MODE 2:
493 This mode will visually represent, using the LEDs, the actual strength of the
494 current compared to the maximum current detected. Basically, once you know
495 what kind of external reader is present, it will help you spot the best location to place
496 your antenna. You will probably not get some good results if there is a LF and a HF reader
497 at the same place! :-)
498
499 LIGHT SCHEME USED:
500 */
501 static const char LIGHT_SCHEME[] = {
502 0x0, /* ---- | No field detected */
503 0x1, /* X--- | 14% of maximum current detected */
504 0x2, /* -X-- | 29% of maximum current detected */
505 0x4, /* --X- | 43% of maximum current detected */
506 0x8, /* ---X | 57% of maximum current detected */
507 0xC, /* --XX | 71% of maximum current detected */
508 0xE, /* -XXX | 86% of maximum current detected */
509 0xF, /* XXXX | 100% of maximum current detected */
510 };
511 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
512
513 void ListenReaderField(int limit)
514 {
515 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
516 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
517 int mode=1, display_val, display_max, i;
518
519 #define LF_ONLY 1
520 #define HF_ONLY 2
521
522 LEDsoff();
523
524 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
525
526 if(limit != HF_ONLY) {
527 Dbprintf("LF 125/134 Baseline: %d", lf_av);
528 lf_baseline = lf_av;
529 }
530
531 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
532
533 if (limit != LF_ONLY) {
534 Dbprintf("HF 13.56 Baseline: %d", hf_av);
535 hf_baseline = hf_av;
536 }
537
538 for(;;) {
539 if (BUTTON_PRESS()) {
540 SpinDelay(500);
541 switch (mode) {
542 case 1:
543 mode=2;
544 DbpString("Signal Strength Mode");
545 break;
546 case 2:
547 default:
548 DbpString("Stopped");
549 LEDsoff();
550 return;
551 break;
552 }
553 }
554 WDT_HIT();
555
556 if (limit != HF_ONLY) {
557 if(mode==1) {
558 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
559 else LED_D_OFF();
560 }
561
562 ++lf_count;
563 lf_av_new= ReadAdc(ADC_CHAN_LF);
564 // see if there's a significant change
565 if(abs(lf_av - lf_av_new) > 10) {
566 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
567 lf_av = lf_av_new;
568 if (lf_av > lf_max)
569 lf_max = lf_av;
570 lf_count= 0;
571 }
572 }
573
574 if (limit != LF_ONLY) {
575 if (mode == 1){
576 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
577 else LED_B_OFF();
578 }
579
580 ++hf_count;
581 hf_av_new= ReadAdc(ADC_CHAN_HF);
582 // see if there's a significant change
583 if(abs(hf_av - hf_av_new) > 10) {
584 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
585 hf_av = hf_av_new;
586 if (hf_av > hf_max)
587 hf_max = hf_av;
588 hf_count= 0;
589 }
590 }
591
592 if(mode == 2) {
593 if (limit == LF_ONLY) {
594 display_val = lf_av;
595 display_max = lf_max;
596 } else if (limit == HF_ONLY) {
597 display_val = hf_av;
598 display_max = hf_max;
599 } else { /* Pick one at random */
600 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
601 display_val = hf_av;
602 display_max = hf_max;
603 } else {
604 display_val = lf_av;
605 display_max = lf_max;
606 }
607 }
608 for (i=0; i<LIGHT_LEN; i++) {
609 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
610 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
611 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
612 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
613 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
614 break;
615 }
616 }
617 }
618 }
619 }
620
621 void UsbPacketReceived(uint8_t *packet, int len)
622 {
623 UsbCommand *c = (UsbCommand *)packet;
624
625 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
626
627 switch(c->cmd) {
628 #ifdef WITH_LF
629 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
630 AcquireRawAdcSamples125k(c->arg[0]);
631 cmd_send(CMD_ACK,0,0,0,0,0);
632 break;
633 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
634 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
635 break;
636 case CMD_HID_DEMOD_FSK:
637 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
638 break;
639 case CMD_HID_SIM_TAG:
640 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
641 break;
642 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
643 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
644 break;
645 case CMD_EM410X_WRITE_TAG:
646 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
647 break;
648 case CMD_READ_TI_TYPE:
649 ReadTItag();
650 break;
651 case CMD_WRITE_TI_TYPE:
652 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
653 break;
654 case CMD_SIMULATE_TAG_125K:
655 LED_A_ON();
656 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
657 LED_A_OFF();
658 break;
659 case CMD_LF_SIMULATE_BIDIR:
660 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
661 break;
662 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
663 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
664 break;
665 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
666 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
667 break;
668 case CMD_T55XX_READ_BLOCK:
669 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
670 break;
671 case CMD_T55XX_WRITE_BLOCK:
672 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
673 break;
674 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
675 T55xxReadTrace();
676 break;
677 case CMD_PCF7931_READ: // Read PCF7931 tag
678 ReadPCF7931();
679 cmd_send(CMD_ACK,0,0,0,0,0);
680 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
681 break;
682 case CMD_EM4X_READ_WORD:
683 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
684 break;
685 case CMD_EM4X_WRITE_WORD:
686 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
687 break;
688 #endif
689
690 #ifdef WITH_HITAG
691 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
692 SnoopHitag(c->arg[0]);
693 break;
694 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
695 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
696 break;
697 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
698 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
699 break;
700 #endif
701
702 #ifdef WITH_ISO15693
703 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
704 AcquireRawAdcSamplesIso15693();
705 break;
706 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
707 RecordRawAdcSamplesIso15693();
708 break;
709
710 case CMD_ISO_15693_COMMAND:
711 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
712 break;
713
714 case CMD_ISO_15693_FIND_AFI:
715 BruteforceIso15693Afi(c->arg[0]);
716 break;
717
718 case CMD_ISO_15693_DEBUG:
719 SetDebugIso15693(c->arg[0]);
720 break;
721
722 case CMD_READER_ISO_15693:
723 ReaderIso15693(c->arg[0]);
724 break;
725 case CMD_SIMTAG_ISO_15693:
726 SimTagIso15693(c->arg[0]);
727 break;
728 #endif
729
730 #ifdef WITH_LEGICRF
731 case CMD_SIMULATE_TAG_LEGIC_RF:
732 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
733 break;
734
735 case CMD_WRITER_LEGIC_RF:
736 LegicRfWriter(c->arg[1], c->arg[0]);
737 break;
738
739 case CMD_READER_LEGIC_RF:
740 LegicRfReader(c->arg[0], c->arg[1]);
741 break;
742 #endif
743
744 #ifdef WITH_ISO14443b
745 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
746 AcquireRawAdcSamplesIso14443(c->arg[0]);
747 break;
748 case CMD_READ_SRI512_TAG:
749 ReadSTMemoryIso14443(0x0F);
750 break;
751 case CMD_READ_SRIX4K_TAG:
752 ReadSTMemoryIso14443(0x7F);
753 break;
754 case CMD_SNOOP_ISO_14443:
755 SnoopIso14443();
756 break;
757 case CMD_SIMULATE_TAG_ISO_14443:
758 SimulateIso14443Tag();
759 break;
760 case CMD_ISO_14443B_COMMAND:
761 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
762 break;
763 #endif
764
765 #ifdef WITH_ISO14443a
766 case CMD_SNOOP_ISO_14443a:
767 SnoopIso14443a(c->arg[0]);
768 break;
769 case CMD_READER_ISO_14443a:
770 ReaderIso14443a(c);
771 break;
772 case CMD_SIMULATE_TAG_ISO_14443a:
773 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
774 break;
775 case CMD_EPA_PACE_COLLECT_NONCE:
776 EPA_PACE_Collect_Nonce(c);
777 break;
778
779 case CMD_READER_MIFARE:
780 ReaderMifare(c->arg[0]);
781 break;
782 case CMD_MIFARE_READBL:
783 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
784 break;
785 case CMD_MIFARE_READSC:
786 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
787 break;
788 case CMD_MIFARE_WRITEBL:
789 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
790 break;
791 case CMD_MIFARE_NESTED:
792 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
793 break;
794 case CMD_MIFARE_CHKKEYS:
795 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
796 break;
797 case CMD_SIMULATE_MIFARE_CARD:
798 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
799 break;
800
801 // emulator
802 case CMD_MIFARE_SET_DBGMODE:
803 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
804 break;
805 case CMD_MIFARE_EML_MEMCLR:
806 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
807 break;
808 case CMD_MIFARE_EML_MEMSET:
809 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
810 break;
811 case CMD_MIFARE_EML_MEMGET:
812 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
813 break;
814 case CMD_MIFARE_EML_CARDLOAD:
815 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
816 break;
817
818 // Work with "magic Chinese" card
819 case CMD_MIFARE_EML_CSETBLOCK:
820 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
821 break;
822 case CMD_MIFARE_EML_CGETBLOCK:
823 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
824 break;
825
826 // mifare sniffer
827 case CMD_MIFARE_SNIFFER:
828 SniffMifare(c->arg[0]);
829 break;
830 #endif
831
832 #ifdef WITH_ICLASS
833 // Makes use of ISO14443a FPGA Firmware
834 case CMD_SNOOP_ICLASS:
835 SnoopIClass();
836 break;
837 case CMD_SIMULATE_TAG_ICLASS:
838 SimulateIClass(c->arg[0], c->d.asBytes);
839 break;
840 case CMD_READER_ICLASS:
841 ReaderIClass(c->arg[0]);
842 break;
843 #endif
844
845 case CMD_SIMULATE_TAG_HF_LISTEN:
846 SimulateTagHfListen();
847 break;
848
849 case CMD_BUFF_CLEAR:
850 BufferClear();
851 break;
852
853 case CMD_MEASURE_ANTENNA_TUNING:
854 MeasureAntennaTuning();
855 break;
856
857 case CMD_MEASURE_ANTENNA_TUNING_HF:
858 MeasureAntennaTuningHf();
859 break;
860
861 case CMD_LISTEN_READER_FIELD:
862 ListenReaderField(c->arg[0]);
863 break;
864
865 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
866 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
867 SpinDelay(200);
868 LED_D_OFF(); // LED D indicates field ON or OFF
869 break;
870
871 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
872 // UsbCommand n;
873 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
874 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
875 // } else {
876 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
877 // }
878 // n.arg[0] = c->arg[0];
879 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
880 // LED_B_ON();
881 // usb_write((uint8_t *)&n, sizeof(n));
882 // UsbSendPacket((uint8_t *)&n, sizeof(n));
883 // LED_B_OFF();
884
885 LED_B_ON();
886 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
887 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
888 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
889 }
890 // Trigger a finish downloading signal with an ACK frame
891 cmd_send(CMD_ACK,0,0,0,0,0);
892 LED_B_OFF();
893 break;
894
895 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
896 uint8_t *b = (uint8_t *)BigBuf;
897 memcpy(b+c->arg[0], c->d.asBytes, 48);
898 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
899 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
900 cmd_send(CMD_ACK,0,0,0,0,0);
901 break;
902 }
903 case CMD_READ_MEM:
904 ReadMem(c->arg[0]);
905 break;
906
907 case CMD_SET_LF_DIVISOR:
908 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
909 break;
910
911 case CMD_SET_ADC_MUX:
912 switch(c->arg[0]) {
913 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
914 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
915 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
916 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
917 }
918 break;
919
920 case CMD_VERSION:
921 SendVersion();
922 break;
923
924 #ifdef WITH_LCD
925 case CMD_LCD_RESET:
926 LCDReset();
927 break;
928 case CMD_LCD:
929 LCDSend(c->arg[0]);
930 break;
931 #endif
932 case CMD_SETUP_WRITE:
933 case CMD_FINISH_WRITE:
934 case CMD_HARDWARE_RESET:
935 usb_disable();
936 SpinDelay(1000);
937 SpinDelay(1000);
938 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
939 for(;;) {
940 // We're going to reset, and the bootrom will take control.
941 }
942 break;
943
944 case CMD_START_FLASH:
945 if(common_area.flags.bootrom_present) {
946 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
947 }
948 usb_disable();
949 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
950 for(;;);
951 break;
952
953 case CMD_DEVICE_INFO: {
954 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
955 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
956 // UsbSendPacket((uint8_t*)&c, sizeof(c));
957 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
958 break;
959 }
960 default:
961 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
962 break;
963 }
964 }
965
966 void __attribute__((noreturn)) AppMain(void)
967 {
968 SpinDelay(100);
969
970 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
971 /* Initialize common area */
972 memset(&common_area, 0, sizeof(common_area));
973 common_area.magic = COMMON_AREA_MAGIC;
974 common_area.version = 1;
975 }
976 common_area.flags.osimage_present = 1;
977
978 LED_D_OFF();
979 LED_C_OFF();
980 LED_B_OFF();
981 LED_A_OFF();
982
983 // Init USB device`
984 usb_enable();
985 // UsbStart();
986
987 // The FPGA gets its clock from us from PCK0 output, so set that up.
988 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
989 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
990 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
991 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
992 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
993 AT91C_PMC_PRES_CLK_4;
994 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
995
996 // Reset SPI
997 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
998 // Reset SSC
999 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1000
1001 // Load the FPGA image, which we have stored in our flash.
1002 FpgaDownloadAndGo();
1003
1004 StartTickCount();
1005
1006 #ifdef WITH_LCD
1007 LCDInit();
1008 #endif
1009
1010 byte_t rx[sizeof(UsbCommand)];
1011 size_t rx_len;
1012
1013 for(;;) {
1014 if (usb_poll()) {
1015 rx_len = usb_read(rx,sizeof(UsbCommand));
1016 if (rx_len) {
1017 UsbPacketReceived(rx,rx_len);
1018 }
1019 }
1020 // UsbPoll(FALSE);
1021
1022 WDT_HIT();
1023
1024 #ifdef WITH_LF
1025 if (BUTTON_HELD(1000) > 0)
1026 SamyRun();
1027 #endif
1028 }
1029 }
Impressum, Datenschutz