1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuning(void)
185 uint8_t LF_Results
[256];
186 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
187 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
202 for (i
=255; i
>=19; i
--) {
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
206 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
207 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
208 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
210 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results
[i
] > peak
) {
213 peak
= LF_Results
[i
];
219 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
235 void MeasureAntennaTuningHf(void)
237 int vHf
= 0; // in mV
239 DbpString("Measuring HF antenna, press button to exit");
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
247 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 Dbprintf("%d mV",vHf
);
250 if (BUTTON_PRESS()) break;
252 DbpString("cancelled");
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void ReadMem(int addr
)
261 const uint8_t *data
= ((uint8_t *)addr
);
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
267 /* osimage version information is linked in */
268 extern struct version_information version_information
;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
271 void SendVersion(void)
273 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
274 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
280 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
298 uint32_t compressed_data_section_size
= common_area
.arg1
;
299 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
302 * Prints runtime information about the PM3.
304 void SendStatus(void)
306 BigBuf_print_status();
308 printConfig(); //LF Sampling config
310 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
311 Dbprintf(" ToSendMax........%d",ToSendMax
);
312 Dbprintf(" ToSendBit........%d",ToSendBit
);
315 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
319 void StandAloneMode()
321 DbpString("Stand-alone mode! No PC necessary.");
322 // Oooh pretty -- notify user we're in elite samy mode now
324 LED(LED_ORANGE
, 200);
326 LED(LED_ORANGE
, 200);
328 LED(LED_ORANGE
, 200);
330 LED(LED_ORANGE
, 200);
339 #ifdef WITH_ISO14443a_StandAlone
340 void StandAloneMode14a()
343 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
347 int cardRead
[OPTS
] = {0};
348 uint8_t readUID
[10] = {0};
349 uint32_t uid_1st
[OPTS
]={0};
350 uint32_t uid_2nd
[OPTS
]={0};
352 LED(selected
+ 1, 0);
359 // Was our button held down or pressed?
360 int button_pressed
= BUTTON_HELD(1000);
363 // Button was held for a second, begin recording
364 if (button_pressed
> 0 && cardRead
[selected
] == 0)
367 LED(selected
+ 1, 0);
371 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
373 // wait for button to be released
374 while(BUTTON_PRESS())
376 /* need this delay to prevent catching some weird data */
378 /* Code for reading from 14a tag */
379 uint8_t uid
[10] ={0};
381 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
386 if (!iso14443a_select_card(uid
, NULL
, &cuid
))
390 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
391 memcpy(readUID
,uid
,10*sizeof(uint8_t));
392 uint8_t *dst
= (uint8_t *)&uid_1st
[selected
];
393 // Set UID byte order
394 for (int i
=0; i
<4; i
++)
396 dst
= (uint8_t *)&uid_2nd
[selected
];
397 for (int i
=0; i
<4; i
++)
404 LED(LED_ORANGE
, 200);
406 LED(LED_ORANGE
, 200);
409 LED(selected
+ 1, 0);
410 // Finished recording
412 // If we were previously playing, set playing off
413 // so next button push begins playing what we recorded
416 cardRead
[selected
] = 1;
420 else if (button_pressed
> 0 && cardRead
[selected
] == 1)
423 LED(selected
+ 1, 0);
424 LED(LED_ORANGE
, 250);
428 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
430 // wait for button to be released
431 while(BUTTON_PRESS())
433 // Delay cloning until card is in place
436 Dbprintf("Starting clone. [Bank: %u]", selected
);
437 // need this delay to prevent catching some weird data
439 // Begin clone function here:
440 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
441 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
442 memcpy(c.d.asBytes, data, 16);
445 Block read is similar:
446 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
447 We need to imitate that call with blockNo 0 to set a uid.
449 The get and set commands are handled in this file:
450 // Work with "magic Chinese" card
451 case CMD_MIFARE_CSETBLOCK:
452 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
454 case CMD_MIFARE_CGETBLOCK:
455 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
459 mfCSetUID provides example logic for UID set workflow:
460 -Read block0 from card in field with MifareCGetBlock()
461 -Configure new values without replacing reserved bytes
462 memcpy(block0, uid, 4); // Copy UID bytes from byte array
464 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
465 Bytes 5-7 are reserved SAK and ATQA for mifare classic
466 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
468 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
469 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
470 MifareCGetBlock(0x1F, 1, 0, oldBlock0
);
471 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
472 memcpy(newBlock0
,oldBlock0
,16);
473 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
475 newBlock0
[0] = uid_1st
[selected
]>>24;
476 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
477 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
478 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
479 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
480 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
481 MifareCSetBlock(0, 0xFF,0, newBlock0
);
482 MifareCGetBlock(0x1F, 1, 0, testBlock0
);
483 if (memcmp(testBlock0
,newBlock0
,16)==0)
485 DbpString("Cloned successfull!");
486 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
489 LED(selected
+ 1, 0);
490 // Finished recording
492 // If we were previously playing, set playing off
493 // so next button push begins playing what we recorded
497 // Change where to record (or begin playing)
498 else if (button_pressed
&& cardRead
[selected
])
500 // Next option if we were previously playing
502 selected
= (selected
+ 1) % OPTS
;
506 LED(selected
+ 1, 0);
508 // Begin transmitting
512 DbpString("Playing");
513 while (!BUTTON_HELD(500)) { // Loop simulating tag until the button is held a half-sec
514 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
515 SimulateIso14443aTag(1,uid_1st
[selected
],uid_2nd
[selected
],NULL
);
517 //cardRead[selected] = 1;
518 Dbprintf("Done playing [Bank: %u]",selected
);
520 /* We pressed a button so ignore it here with a delay */
523 // when done, we're done playing, move to next option
524 selected
= (selected
+ 1) % OPTS
;
527 LED(selected
+ 1, 0);
530 while(BUTTON_PRESS())
536 // samy's sniff and repeat routine
540 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
542 int high
[OPTS
], low
[OPTS
];
547 // Turn on selected LED
548 LED(selected
+ 1, 0);
555 // Was our button held down or pressed?
556 int button_pressed
= BUTTON_HELD(1000);
559 // Button was held for a second, begin recording
560 if (button_pressed
> 0 && cardRead
== 0)
563 LED(selected
+ 1, 0);
567 DbpString("Starting recording");
569 // wait for button to be released
570 while(BUTTON_PRESS())
573 /* need this delay to prevent catching some weird data */
576 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
577 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
580 LED(selected
+ 1, 0);
581 // Finished recording
583 // If we were previously playing, set playing off
584 // so next button push begins playing what we recorded
591 else if (button_pressed
> 0 && cardRead
== 1)
594 LED(selected
+ 1, 0);
598 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
600 // wait for button to be released
601 while(BUTTON_PRESS())
604 /* need this delay to prevent catching some weird data */
607 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
608 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
611 LED(selected
+ 1, 0);
612 // Finished recording
614 // If we were previously playing, set playing off
615 // so next button push begins playing what we recorded
622 // Change where to record (or begin playing)
623 else if (button_pressed
)
625 // Next option if we were previously playing
627 selected
= (selected
+ 1) % OPTS
;
631 LED(selected
+ 1, 0);
633 // Begin transmitting
637 DbpString("Playing");
638 // wait for button to be released
639 while(BUTTON_PRESS())
641 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
642 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
643 DbpString("Done playing");
644 if (BUTTON_HELD(1000) > 0)
646 DbpString("Exiting");
651 /* We pressed a button so ignore it here with a delay */
654 // when done, we're done playing, move to next option
655 selected
= (selected
+ 1) % OPTS
;
658 LED(selected
+ 1, 0);
661 while(BUTTON_PRESS())
670 Listen and detect an external reader. Determine the best location
674 Inside the ListenReaderField() function, there is two mode.
675 By default, when you call the function, you will enter mode 1.
676 If you press the PM3 button one time, you will enter mode 2.
677 If you press the PM3 button a second time, you will exit the function.
679 DESCRIPTION OF MODE 1:
680 This mode just listens for an external reader field and lights up green
681 for HF and/or red for LF. This is the original mode of the detectreader
684 DESCRIPTION OF MODE 2:
685 This mode will visually represent, using the LEDs, the actual strength of the
686 current compared to the maximum current detected. Basically, once you know
687 what kind of external reader is present, it will help you spot the best location to place
688 your antenna. You will probably not get some good results if there is a LF and a HF reader
689 at the same place! :-)
693 static const char LIGHT_SCHEME
[] = {
694 0x0, /* ---- | No field detected */
695 0x1, /* X--- | 14% of maximum current detected */
696 0x2, /* -X-- | 29% of maximum current detected */
697 0x4, /* --X- | 43% of maximum current detected */
698 0x8, /* ---X | 57% of maximum current detected */
699 0xC, /* --XX | 71% of maximum current detected */
700 0xE, /* -XXX | 86% of maximum current detected */
701 0xF, /* XXXX | 100% of maximum current detected */
703 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
705 void ListenReaderField(int limit
)
707 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
708 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
709 int mode
=1, display_val
, display_max
, i
;
713 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
716 // switch off FPGA - we don't want to measure our own signal
717 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
718 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
722 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
724 if(limit
!= HF_ONLY
) {
725 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
729 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
731 if (limit
!= LF_ONLY
) {
732 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
737 if (BUTTON_PRESS()) {
742 DbpString("Signal Strength Mode");
746 DbpString("Stopped");
754 if (limit
!= HF_ONLY
) {
756 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
762 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
763 // see if there's a significant change
764 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
765 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
772 if (limit
!= LF_ONLY
) {
774 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
780 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
781 // see if there's a significant change
782 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
783 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
791 if (limit
== LF_ONLY
) {
793 display_max
= lf_max
;
794 } else if (limit
== HF_ONLY
) {
796 display_max
= hf_max
;
797 } else { /* Pick one at random */
798 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
800 display_max
= hf_max
;
803 display_max
= lf_max
;
806 for (i
=0; i
<LIGHT_LEN
; i
++) {
807 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
808 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
809 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
810 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
811 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
819 void UsbPacketReceived(uint8_t *packet
, int len
)
821 UsbCommand
*c
= (UsbCommand
*)packet
;
823 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
827 case CMD_SET_LF_SAMPLING_CONFIG
:
828 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
830 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
831 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
833 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
834 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
836 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
837 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
839 case CMD_HID_DEMOD_FSK
:
840 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
842 case CMD_HID_SIM_TAG
:
843 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
845 case CMD_FSK_SIM_TAG
:
846 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
848 case CMD_ASK_SIM_TAG
:
849 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
851 case CMD_PSK_SIM_TAG
:
852 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
854 case CMD_HID_CLONE_TAG
:
855 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
857 case CMD_IO_DEMOD_FSK
:
858 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
860 case CMD_IO_CLONE_TAG
:
861 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
863 case CMD_EM410X_DEMOD
:
864 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
866 case CMD_EM410X_WRITE_TAG
:
867 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
869 case CMD_READ_TI_TYPE
:
872 case CMD_WRITE_TI_TYPE
:
873 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
875 case CMD_SIMULATE_TAG_125K
:
877 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
880 case CMD_LF_SIMULATE_BIDIR
:
881 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
883 case CMD_INDALA_CLONE_TAG
:
884 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
886 case CMD_INDALA_CLONE_TAG_L
:
887 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
889 case CMD_T55XX_READ_BLOCK
:
890 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
892 case CMD_T55XX_WRITE_BLOCK
:
893 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
894 cmd_send(CMD_ACK
,0,0,0,0,0);
896 case CMD_T55XX_READ_TRACE
:
899 case CMD_PCF7931_READ
:
901 cmd_send(CMD_ACK
,0,0,0,0,0);
903 case CMD_EM4X_READ_WORD
:
904 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
906 case CMD_EM4X_WRITE_WORD
:
907 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
909 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
910 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
915 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
916 SnoopHitag(c
->arg
[0]);
918 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
919 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
921 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
922 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
927 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
928 AcquireRawAdcSamplesIso15693();
930 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
931 RecordRawAdcSamplesIso15693();
934 case CMD_ISO_15693_COMMAND
:
935 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
938 case CMD_ISO_15693_FIND_AFI
:
939 BruteforceIso15693Afi(c
->arg
[0]);
942 case CMD_ISO_15693_DEBUG
:
943 SetDebugIso15693(c
->arg
[0]);
946 case CMD_READER_ISO_15693
:
947 ReaderIso15693(c
->arg
[0]);
949 case CMD_SIMTAG_ISO_15693
:
950 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
955 case CMD_SIMULATE_TAG_LEGIC_RF
:
956 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
959 case CMD_WRITER_LEGIC_RF
:
960 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
963 case CMD_READER_LEGIC_RF
:
964 LegicRfReader(c
->arg
[0], c
->arg
[1]);
968 #ifdef WITH_ISO14443b
969 case CMD_READ_SRI512_TAG
:
970 ReadSTMemoryIso14443b(0x0F);
972 case CMD_READ_SRIX4K_TAG
:
973 ReadSTMemoryIso14443b(0x7F);
975 case CMD_SNOOP_ISO_14443B
:
978 case CMD_SIMULATE_TAG_ISO_14443B
:
979 SimulateIso14443bTag();
981 case CMD_ISO_14443B_COMMAND
:
982 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
986 #ifdef WITH_ISO14443a
987 case CMD_SNOOP_ISO_14443a
:
988 SnoopIso14443a(c
->arg
[0]);
990 case CMD_READER_ISO_14443a
:
993 case CMD_SIMULATE_TAG_ISO_14443a
:
994 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
997 case CMD_EPA_PACE_COLLECT_NONCE
:
998 EPA_PACE_Collect_Nonce(c
);
1000 case CMD_EPA_PACE_REPLAY
:
1004 case CMD_READER_MIFARE
:
1005 ReaderMifare(c
->arg
[0]);
1007 case CMD_MIFARE_READBL
:
1008 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1010 case CMD_MIFAREU_READBL
:
1011 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1013 case CMD_MIFAREUC_AUTH
:
1014 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1016 case CMD_MIFAREU_READCARD
:
1017 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1019 case CMD_MIFAREUC_SETPWD
:
1020 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1022 case CMD_MIFARE_READSC
:
1023 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1025 case CMD_MIFARE_WRITEBL
:
1026 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1028 //case CMD_MIFAREU_WRITEBL_COMPAT:
1029 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1031 case CMD_MIFAREU_WRITEBL
:
1032 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1034 case CMD_MIFARE_NESTED
:
1035 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1037 case CMD_MIFARE_CHKKEYS
:
1038 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1040 case CMD_SIMULATE_MIFARE_CARD
:
1041 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1045 case CMD_MIFARE_SET_DBGMODE
:
1046 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1048 case CMD_MIFARE_EML_MEMCLR
:
1049 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1051 case CMD_MIFARE_EML_MEMSET
:
1052 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1054 case CMD_MIFARE_EML_MEMGET
:
1055 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1057 case CMD_MIFARE_EML_CARDLOAD
:
1058 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1061 // Work with "magic Chinese" card
1062 case CMD_MIFARE_CSETBLOCK
:
1063 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1065 case CMD_MIFARE_CGETBLOCK
:
1066 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1068 case CMD_MIFARE_CIDENT
:
1073 case CMD_MIFARE_SNIFFER
:
1074 SniffMifare(c
->arg
[0]);
1080 // Makes use of ISO14443a FPGA Firmware
1081 case CMD_SNOOP_ICLASS
:
1084 case CMD_SIMULATE_TAG_ICLASS
:
1085 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1087 case CMD_READER_ICLASS
:
1088 ReaderIClass(c
->arg
[0]);
1090 case CMD_READER_ICLASS_REPLAY
:
1091 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1093 case CMD_ICLASS_EML_MEMSET
:
1094 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1098 case CMD_BUFF_CLEAR
:
1102 case CMD_MEASURE_ANTENNA_TUNING
:
1103 MeasureAntennaTuning();
1106 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1107 MeasureAntennaTuningHf();
1110 case CMD_LISTEN_READER_FIELD
:
1111 ListenReaderField(c
->arg
[0]);
1114 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1115 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1117 LED_D_OFF(); // LED D indicates field ON or OFF
1120 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1123 uint8_t *BigBuf
= BigBuf_get_addr();
1124 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1125 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1126 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1128 // Trigger a finish downloading signal with an ACK frame
1129 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1133 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1134 uint8_t *b
= BigBuf_get_addr();
1135 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1136 cmd_send(CMD_ACK
,0,0,0,0,0);
1143 case CMD_SET_LF_DIVISOR
:
1144 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1145 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1148 case CMD_SET_ADC_MUX
:
1150 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1151 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1152 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1153 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1164 cmd_send(CMD_ACK
,0,0,0,0,0);
1174 case CMD_SETUP_WRITE
:
1175 case CMD_FINISH_WRITE
:
1176 case CMD_HARDWARE_RESET
:
1180 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1182 // We're going to reset, and the bootrom will take control.
1186 case CMD_START_FLASH
:
1187 if(common_area
.flags
.bootrom_present
) {
1188 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1191 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1195 case CMD_DEVICE_INFO
: {
1196 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1197 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1198 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1202 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1207 void __attribute__((noreturn
)) AppMain(void)
1211 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1212 /* Initialize common area */
1213 memset(&common_area
, 0, sizeof(common_area
));
1214 common_area
.magic
= COMMON_AREA_MAGIC
;
1215 common_area
.version
= 1;
1217 common_area
.flags
.osimage_present
= 1;
1227 // The FPGA gets its clock from us from PCK0 output, so set that up.
1228 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1229 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1230 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1231 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1232 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1233 AT91C_PMC_PRES_CLK_4
;
1234 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1237 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1239 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1241 // Load the FPGA image, which we have stored in our flash.
1242 // (the HF version by default)
1243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1251 byte_t rx
[sizeof(UsbCommand
)];
1256 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1258 UsbPacketReceived(rx
,rx_len
);
1264 #ifndef WITH_ISO14443a_StandAlone
1265 if (BUTTON_HELD(1000) > 0)
1269 #ifdef WITH_ISO14443a
1270 #ifdef WITH_ISO14443a_StandAlone
1271 if (BUTTON_HELD(1000) > 0)
1272 StandAloneMode14a();