1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21 #include "fpgaloader.h"
24 * Function to do a modulation and then get samples.
30 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
35 // use lf config settings
36 sample_config
*sc
= getSamplingConfig();
38 // Make sure the tag is reset
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
43 // clear read buffer (after fpga bitstream loaded...)
44 BigBuf_Clear_keep_EM();
47 LFSetupFPGAForADC(sc
->divisor
, 1);
49 // And a little more time for the tag to fully power up
51 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
52 bool bitbang
= delay_off
== 0;
53 // now modulate the reader field
56 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
58 if (period_0
< hack_cnt
|| period_1
< hack_cnt
) {
59 DbpString("Warning periods cannot be less than 7us in bit bang mode");
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
65 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
66 // leading to ~ 1 to 2 125khz samples extra in every off period
67 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
68 // but is this time different for every antenna or other hw builds??? more testing needed
70 // prime cmd_len to save time comparing strings while modulating
72 while(command
[cmd_len
] != '\0' && command
[cmd_len
] != ' ')
77 for (counter
= 0; counter
< cmd_len
; counter
++) {
78 // if cmd = 0 then turn field off
79 if (command
[counter
] == '0') {
80 // if field already off leave alone (affects timing otherwise)
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
86 // note we appear to take about 7us to switch over (or run the if statements/loop...)
87 WaitUS(period_0
-hack_cnt
);
88 // else if cmd = 1 then turn field on
90 // if field already on leave alone (affects timing otherwise)
92 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
96 // note we appear to take about 7us to switch over (or run the if statements/loop...)
97 WaitUS(period_1
-hack_cnt
);
100 } else { // old mode of cmd read using delay as off period
101 while(*command
!= '\0' && *command
!= ' ') {
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
105 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
->divisor
);
106 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
108 if(*(command
++) == '0') {
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
->divisor
);
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
123 DoAcquisition_config(false, 0);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
127 // tell client we are done
128 cmd_send(CMD_ACK
,0,0,0,0,0);
131 /* blank r/w tag data stream
132 ...0000000000000000 01111111
133 1010101010101010101010101010101010101010101010101010101010101010
136 101010101010101[0]000...
138 [5555fe852c5555555555555555fe0000]
142 // some hardcoded initial params
143 // when we read a TI tag we sample the zerocross line at 2Mhz
144 // TI tags modulate a 1 as 16 cycles of 123.2Khz
145 // TI tags modulate a 0 as 16 cycles of 134.2Khz
146 #define FSAMPLE 2000000
147 #define FREQLO 123200
148 #define FREQHI 134200
150 signed char *dest
= (signed char *)BigBuf_get_addr();
151 uint16_t n
= BigBuf_max_traceLen();
152 // 128 bit shift register [shift3:shift2:shift1:shift0]
153 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
155 int i
, cycles
=0, samples
=0;
156 // how many sample points fit in 16 cycles of each frequency
157 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
158 // when to tell if we're close enough to one freq or another
159 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
161 // TI tags charge at 134.2Khz
162 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
163 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
165 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
166 // connects to SSP_DIN and the SSP_DOUT logic level controls
167 // whether we're modulating the antenna (high)
168 // or listening to the antenna (low)
169 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
171 // get TI tag data into the buffer
174 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
176 for (i
=0; i
<n
-1; i
++) {
177 // count cycles by looking for lo to hi zero crossings
178 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
180 // after 16 cycles, measure the frequency
183 samples
=i
-samples
; // number of samples in these 16 cycles
185 // TI bits are coming to us lsb first so shift them
186 // right through our 128 bit right shift register
187 shift0
= (shift0
>>1) | (shift1
<< 31);
188 shift1
= (shift1
>>1) | (shift2
<< 31);
189 shift2
= (shift2
>>1) | (shift3
<< 31);
192 // check if the cycles fall close to the number
193 // expected for either the low or high frequency
194 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
195 // low frequency represents a 1
197 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
198 // high frequency represents a 0
200 // probably detected a gay waveform or noise
201 // use this as gaydar or discard shift register and start again
202 shift3
= shift2
= shift1
= shift0
= 0;
206 // for each bit we receive, test if we've detected a valid tag
208 // if we see 17 zeroes followed by 6 ones, we might have a tag
209 // remember the bits are backwards
210 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
211 // if start and end bytes match, we have a tag so break out of the loop
212 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
213 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
221 // if flag is set we have a tag
223 DbpString("Info: No valid tag detected.");
225 // put 64 bit data into shift1 and shift0
226 shift0
= (shift0
>>24) | (shift1
<< 8);
227 shift1
= (shift1
>>24) | (shift2
<< 8);
229 // align 16 bit crc into lower half of shift2
230 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
232 // if r/w tag, check ident match
233 if (shift3
& (1<<15) ) {
234 DbpString("Info: TI tag is rewriteable");
235 // only 15 bits compare, last bit of ident is not valid
236 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
237 DbpString("Error: Ident mismatch!");
239 DbpString("Info: TI tag ident is valid");
242 DbpString("Info: TI tag is readonly");
245 // WARNING the order of the bytes in which we calc crc below needs checking
246 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
247 // bytes in reverse or something
251 crc
= update_crc16(crc
, (shift0
)&0xff);
252 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
253 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
254 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
255 crc
= update_crc16(crc
, (shift1
)&0xff);
256 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
257 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
258 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
260 Dbprintf("Info: Tag data: %x%08x, crc=%x",
261 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
262 if (crc
!= (shift2
&0xffff)) {
263 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
265 DbpString("Info: CRC is good");
270 void WriteTIbyte(uint8_t b
)
274 // modulate 8 bits out to the antenna
278 // stop modulating antenna
285 // stop modulating antenna
295 void AcquireTiType(void)
298 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
299 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
300 #define TIBUFLEN 1250
303 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
304 BigBuf_Clear_ext(false);
306 // Set up the synchronous serial port
307 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
308 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
310 // steal this pin from the SSP and use it to control the modulation
311 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
312 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
314 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
315 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
317 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
318 // 48/2 = 24 MHz clock must be divided by 12
319 AT91C_BASE_SSC
->SSC_CMR
= 12;
321 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
322 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
323 AT91C_BASE_SSC
->SSC_TCMR
= 0;
324 AT91C_BASE_SSC
->SSC_TFMR
= 0;
331 // Charge TI tag for 50ms.
334 // stop modulating antenna and listen
341 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
342 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
343 i
++; if(i
>= TIBUFLEN
) break;
348 // return stolen pin to SSP
349 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
350 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
352 char *dest
= (char *)BigBuf_get_addr();
355 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
356 for (j
=0; j
<32; j
++) {
357 if(BigBuf
[i
] & (1 << j
)) {
366 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
367 // if crc provided, it will be written with the data verbatim (even if bogus)
368 // if not provided a valid crc will be computed from the data and written.
369 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
371 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
373 crc
= update_crc16(crc
, (idlo
)&0xff);
374 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
375 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
376 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
377 crc
= update_crc16(crc
, (idhi
)&0xff);
378 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
379 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
380 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
382 Dbprintf("Writing to tag: %x%08x, crc=%x",
383 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
385 // TI tags charge at 134.2Khz
386 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
387 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
388 // connects to SSP_DIN and the SSP_DOUT logic level controls
389 // whether we're modulating the antenna (high)
390 // or listening to the antenna (low)
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
394 // steal this pin from the SSP and use it to control the modulation
395 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
396 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
398 // writing algorithm:
399 // a high bit consists of a field off for 1ms and field on for 1ms
400 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
401 // initiate a charge time of 50ms (field on) then immediately start writing bits
402 // start by writing 0xBB (keyword) and 0xEB (password)
403 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
404 // finally end with 0x0300 (write frame)
405 // all data is sent lsb firts
406 // finish with 15ms programming time
410 SpinDelay(50); // charge time
412 WriteTIbyte(0xbb); // keyword
413 WriteTIbyte(0xeb); // password
414 WriteTIbyte( (idlo
)&0xff );
415 WriteTIbyte( (idlo
>>8 )&0xff );
416 WriteTIbyte( (idlo
>>16)&0xff );
417 WriteTIbyte( (idlo
>>24)&0xff );
418 WriteTIbyte( (idhi
)&0xff );
419 WriteTIbyte( (idhi
>>8 )&0xff );
420 WriteTIbyte( (idhi
>>16)&0xff );
421 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
422 WriteTIbyte( (crc
)&0xff ); // crc lo
423 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
424 WriteTIbyte(0x00); // write frame lo
425 WriteTIbyte(0x03); // write frame hi
427 SpinDelay(50); // programming time
431 // get TI tag data into the buffer
434 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
435 DbpString("Now use `lf ti read` to check");
438 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
441 uint8_t *tab
= BigBuf_get_addr();
443 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
444 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
445 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
447 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
449 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
450 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
452 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
453 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
457 //wait until SSC_CLK goes HIGH
459 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
460 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
462 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
463 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
464 DbpString("Stopped");
483 //wait until SSC_CLK goes LOW
484 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
485 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
487 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
488 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
489 DbpString("Stopped");
511 #define DEBUG_FRAME_CONTENTS 1
512 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
516 // compose fc/8 fc/10 waveform (FSK2)
517 static void fc(int c
, int *n
)
519 uint8_t *dest
= BigBuf_get_addr();
522 // for when we want an fc8 pattern every 4 logical bits
534 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
536 for (idx
=0; idx
<6; idx
++) {
548 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
550 for (idx
=0; idx
<5; idx
++) {
564 // compose fc/X fc/Y waveform (FSKx)
565 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
567 uint8_t *dest
= BigBuf_get_addr();
568 uint8_t halfFC
= fc
/2;
569 uint8_t wavesPerClock
= clock
/fc
;
570 uint8_t mod
= clock
% fc
; //modifier
571 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
572 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=true;
573 // loop through clock - step field clock
574 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
575 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
576 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
577 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
580 if (mod
>0) (*modCnt
)++;
581 if ((mod
>0) && modAdjOk
){ //fsk2
582 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
583 memset(dest
+(*n
), 0, fc
-halfFC
);
584 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
588 if (mod
>0 && !modAdjOk
){ //fsk1
589 memset(dest
+(*n
), 0, mod
-(mod
/2));
590 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
595 // prepare a waveform pattern in the buffer based on the ID given then
596 // simulate a HID tag until the button is pressed
597 void CmdHIDsimTAG(int hi2
, int hi
, int lo
, int ledcontrol
)
601 HID tag bitstream format
602 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
603 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
604 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
605 A fc8 is inserted before every 4 bits
606 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
607 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
610 if (hi2
>0x0FFFFFFF) {
611 DbpString("Tags can only have 44 or 84 bits. - USE lf simfsk for larger tags");
614 // set LF so we don't kill the bigbuf we are setting with simulation data.
615 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
618 // special start of frame marker containing invalid bit sequences
619 fc(8, &n
); fc(8, &n
); // invalid
620 fc(8, &n
); fc(10, &n
); // logical 0
621 fc(10, &n
); fc(10, &n
); // invalid
622 fc(8, &n
); fc(10, &n
); // logical 0
625 if (hi2
> 0 || hi
> 0xFFF){
626 // manchester encode bits 91 to 64 (91-84 are part of the header)
627 for (i
=27; i
>=0; i
--) {
628 if ((i
%4)==3) fc(0,&n
);
630 fc(10, &n
); fc(8, &n
); // low-high transition
632 fc(8, &n
); fc(10, &n
); // high-low transition
636 // manchester encode bits 63 to 32
637 for (i
=31; i
>=0; i
--) {
638 if ((i
%4)==3) fc(0,&n
);
640 fc(10, &n
); fc(8, &n
); // low-high transition
642 fc(8, &n
); fc(10, &n
); // high-low transition
646 // manchester encode bits 43 to 32
647 for (i
=11; i
>=0; i
--) {
648 if ((i
%4)==3) fc(0,&n
);
650 fc(10, &n
); fc(8, &n
); // low-high transition
652 fc(8, &n
); fc(10, &n
); // high-low transition
658 // manchester encode bits 31 to 0
659 for (i
=31; i
>=0; i
--) {
660 if ((i
%4)==3) fc(0,&n
);
662 fc(10, &n
); fc(8, &n
); // low-high transition
664 fc(8, &n
); fc(10, &n
); // high-low transition
670 SimulateTagLowFrequency(n
, 0, ledcontrol
);
676 // prepare a waveform pattern in the buffer based on the ID given then
677 // simulate a FSK tag until the button is pressed
678 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
679 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
683 uint8_t fcHigh
= arg1
>> 8;
684 uint8_t fcLow
= arg1
& 0xFF;
686 uint8_t clk
= arg2
& 0xFF;
687 uint8_t invert
= (arg2
>> 8) & 1;
689 // set LF so we don't kill the bigbuf we are setting with simulation data.
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
692 for (i
=0; i
<size
; i
++){
693 if (BitStream
[i
] == invert
){
694 fcAll(fcLow
, &n
, clk
, &modCnt
);
696 fcAll(fcHigh
, &n
, clk
, &modCnt
);
699 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
700 /*Dbprintf("DEBUG: First 32:");
701 uint8_t *dest = BigBuf_get_addr();
703 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
705 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
710 SimulateTagLowFrequency(n
, 0, ledcontrol
);
716 // compose ask waveform for one bit(ASK)
717 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
719 uint8_t *dest
= BigBuf_get_addr();
720 uint8_t halfClk
= clock
/2;
721 // c = current bit 1 or 0
723 memset(dest
+(*n
), c
, halfClk
);
724 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
726 memset(dest
+(*n
), c
, clock
);
731 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
733 uint8_t *dest
= BigBuf_get_addr();
734 uint8_t halfClk
= clock
/2;
736 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
737 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
739 memset(dest
+(*n
), c
^ *phase
, clock
);
745 static void stAskSimBit(int *n
, uint8_t clock
) {
746 uint8_t *dest
= BigBuf_get_addr();
747 uint8_t halfClk
= clock
/2;
748 //ST = .5 high .5 low 1.5 high .5 low 1 high
749 memset(dest
+(*n
), 1, halfClk
);
750 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
751 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
752 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
753 memset(dest
+(*n
) + clock
*3, 1, clock
);
757 // args clock, ask/man or askraw, invert, transmission separator
758 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
762 uint8_t clk
= (arg1
>> 8) & 0xFF;
763 uint8_t encoding
= arg1
& 0xFF;
764 uint8_t separator
= arg2
& 1;
765 uint8_t invert
= (arg2
>> 8) & 1;
767 // set LF so we don't kill the bigbuf we are setting with simulation data.
768 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
770 if (encoding
==2){ //biphase
772 for (i
=0; i
<size
; i
++){
773 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
775 if (phase
==1) { //run a second set inverted to keep phase in check
776 for (i
=0; i
<size
; i
++){
777 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
780 } else { // ask/manchester || ask/raw
781 for (i
=0; i
<size
; i
++){
782 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
784 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for ask/raw || biphase phase)
785 for (i
=0; i
<size
; i
++){
786 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
790 if (separator
==1 && encoding
== 1)
791 stAskSimBit(&n
, clk
);
792 else if (separator
==1)
793 Dbprintf("sorry but separator option not yet available");
795 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
797 //Dbprintf("First 32:");
798 //uint8_t *dest = BigBuf_get_addr();
800 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
802 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
804 if (ledcontrol
) LED_A_ON();
805 SimulateTagLowFrequency(n
, 0, ledcontrol
);
806 if (ledcontrol
) LED_A_OFF();
809 //carrier can be 2,4 or 8
810 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
812 uint8_t *dest
= BigBuf_get_addr();
813 uint8_t halfWave
= waveLen
/2;
817 // write phase change
818 memset(dest
+(*n
), *curPhase
^1, halfWave
);
819 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
824 //write each normal clock wave for the clock duration
825 for (; i
< clk
; i
+=waveLen
){
826 memset(dest
+(*n
), *curPhase
, halfWave
);
827 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
832 // args clock, carrier, invert,
833 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
837 uint8_t clk
= arg1
>> 8;
838 uint8_t carrier
= arg1
& 0xFF;
839 uint8_t invert
= arg2
& 0xFF;
840 uint8_t curPhase
= 0;
841 // set LF so we don't kill the bigbuf we are setting with simulation data.
842 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
844 for (i
=0; i
<size
; i
++){
845 if (BitStream
[i
] == curPhase
){
846 pskSimBit(carrier
, &n
, clk
, &curPhase
, false);
848 pskSimBit(carrier
, &n
, clk
, &curPhase
, true);
851 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
852 //Dbprintf("DEBUG: First 32:");
853 //uint8_t *dest = BigBuf_get_addr();
855 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
857 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
859 if (ledcontrol
) LED_A_ON();
860 SimulateTagLowFrequency(n
, 0, ledcontrol
);
861 if (ledcontrol
) LED_A_OFF();
864 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
865 void CmdHIDdemodFSK(int findone
, int *high2
, int *high
, int *low
, int ledcontrol
)
867 uint8_t *dest
= BigBuf_get_addr();
868 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
870 uint32_t hi2
=0, hi
=0, lo
=0;
873 // Configure to go in 125Khz listen mode
874 LFSetupFPGAForADC(95, true);
877 BigBuf_Clear_keep_EM();
879 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
881 if (ledcontrol
) LED_A_ON();
883 DoAcquisition_default(-1,true);
885 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
886 size
= 50*128*2; //big enough to catch 2 sequences of largest format
887 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
, &dummyIdx
);
889 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
892 uint32_t cardnum
= 0;
893 bool decoded
= false;
895 // go over previously decoded manchester data and decode into usable tag ID
896 if ((hi2
& 0x000FFFF) != 0){ //extra large HID tags 88/192 bits
897 uint32_t bp
= hi2
& 0x000FFFFF;
903 } else if ((hi
>> 6) > 0) {
910 } else if (((hi
>> 5) & 1) == 0) {
912 } else if ((hi
& 0x0000001F) > 0 ) {
913 uint32_t bp
= (hi
& 0x0000001F);
929 cardnum
= (lo
>>1)&0xFFFF;
934 cardnum
= (lo
>>1)&0xFFFFF;
935 fc
= ((hi
&1)<<11)|(lo
>>21);
940 if (hi2
!= 0) //extra large HID tags 88/192 bits
941 Dbprintf("TAG ID: %x%08x%08x (%d)",
942 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
944 Dbprintf("TAG ID: %x%08x (%d)",
945 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
948 Dbprintf("Format Len: %dbits - FC: %d - Card: %d",
949 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
952 if (ledcontrol
) LED_A_OFF();
960 hi2
= hi
= lo
= idx
= 0;
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
965 DbpString("Stopped");
966 if (ledcontrol
) LED_A_OFF();
969 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
970 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
972 uint8_t *dest
= BigBuf_get_addr();
974 int idx
=0, dummyIdx
=0;
976 BigBuf_Clear_keep_EM();
977 // Configure to go in 125Khz listen mode
978 LFSetupFPGAForADC(95, true);
980 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
983 if (ledcontrol
) LED_A_ON();
985 DoAcquisition_default(-1,true);
987 size
= 50*128*2; //big enough to catch 2 sequences of largest format
988 idx
= AWIDdemodFSK(dest
, &size
, &dummyIdx
);
990 if (idx
<=0 || size
!=96) continue;
992 // 0 10 20 30 40 50 60
994 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
995 // -----------------------------------------------------------------------------
996 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
997 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
998 // |---26 bit---| |-----117----||-------------142-------------|
999 // b = format bit len, o = odd parity of last 3 bits
1000 // f = facility code, c = card number
1001 // w = wiegand parity
1002 // (26 bit format shown)
1004 //get raw ID before removing parities
1005 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
1006 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
1007 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
1009 size
= removeParity(dest
, idx
+8, 4, 1, 88);
1010 if (size
!= 66) continue;
1011 // ok valid card found!
1014 // 0 10 20 30 40 50 60
1016 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
1017 // -----------------------------------------------------------------------------
1018 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
1019 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1020 // |26 bit| |-117--| |-----142------|
1021 // b = format bit len, o = odd parity of last 3 bits
1022 // f = facility code, c = card number
1023 // w = wiegand parity
1024 // (26 bit format shown)
1027 uint32_t cardnum
= 0;
1030 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
1032 fc
= bytebits_to_byte(dest
+9, 8);
1033 cardnum
= bytebits_to_byte(dest
+17, 16);
1034 code1
= bytebits_to_byte(dest
+8,fmtLen
);
1035 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
1037 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
1039 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
1040 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
1041 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
1043 code1
= bytebits_to_byte(dest
+8,fmtLen
);
1044 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
1048 if (ledcontrol
) LED_A_OFF();
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1056 DbpString("Stopped");
1057 if (ledcontrol
) LED_A_OFF();
1060 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
1062 uint8_t *dest
= BigBuf_get_addr();
1064 size_t size
=0, idx
=0;
1065 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
1069 BigBuf_Clear_keep_EM();
1070 // Configure to go in 125Khz listen mode
1071 LFSetupFPGAForADC(95, true);
1073 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1076 if (ledcontrol
) LED_A_ON();
1078 DoAcquisition_default(-1,true);
1079 size
= BigBuf_max_traceLen();
1080 //askdemod and manchester decode
1081 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
1082 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
1085 if (errCnt
<0) continue;
1087 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
1090 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1094 (uint32_t)(lo
&0xFFFF),
1095 (uint32_t)((lo
>>16LL) & 0xFF),
1096 (uint32_t)(lo
& 0xFFFFFF));
1098 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1101 (uint32_t)(lo
&0xFFFF),
1102 (uint32_t)((lo
>>16LL) & 0xFF),
1103 (uint32_t)(lo
& 0xFFFFFF));
1107 if (ledcontrol
) LED_A_OFF();
1109 *low
=lo
& 0xFFFFFFFF;
1114 hi
= lo
= size
= idx
= 0;
1115 clk
= invert
= errCnt
= 0;
1117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1118 DbpString("Stopped");
1119 if (ledcontrol
) LED_A_OFF();
1122 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1124 uint8_t *dest
= BigBuf_get_addr();
1126 uint32_t code
=0, code2
=0;
1128 uint8_t facilitycode
=0;
1132 BigBuf_Clear_keep_EM();
1133 // Configure to go in 125Khz listen mode
1134 LFSetupFPGAForADC(95, true);
1136 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1138 if (ledcontrol
) LED_A_ON();
1139 DoAcquisition_default(-1,true);
1140 //fskdemod and get start index
1142 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen(), &dummyIdx
);
1143 if (idx
<0) continue;
1147 //0 10 20 30 40 50 60
1149 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1150 //-----------------------------------------------------------------------------
1151 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1153 //XSF(version)facility:codeone+codetwo
1155 if(findone
){ //only print binary if we are doing one
1156 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1157 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1158 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1159 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1160 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1161 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1162 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1164 code
= bytebits_to_byte(dest
+idx
,32);
1165 code2
= bytebits_to_byte(dest
+idx
+32,32);
1166 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1167 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1168 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1170 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
1171 // if we're only looking for one tag
1173 if (ledcontrol
) LED_A_OFF();
1180 version
=facilitycode
=0;
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1187 DbpString("Stopped");
1188 if (ledcontrol
) LED_A_OFF();
1191 /*------------------------------
1192 * T5555/T5557/T5567/T5577 routines
1193 *------------------------------
1194 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1196 * Relevant communication times in microsecond
1197 * To compensate antenna falling times shorten the write times
1198 * and enlarge the gap ones.
1199 * Q5 tags seems to have issues when these values changes.
1202 // Original Timings for reference
1204 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1205 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1206 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1207 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1208 #define READ_GAP 15*8
1211 // Structure to hold Timing values. In future will be simplier to add user changable timings.
1224 // Set Initial/Default Values. Note: *8 can occure when used. This should keep things simplier here.
1225 T55xx_Timing T55xx_Timing_FixedBit
= { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1226 T55xx_Timing T55xx_Timing_LLR
= { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1227 T55xx_Timing T55xx_Timing_Leading0
= { 31 * 8 , 20 * 8 , 18 * 8 , 40 * 8 , 0 , 0 , 15 * 8 };
1228 T55xx_Timing T55xx_Timing_1of4
= { 31 * 8 , 20 * 8 , 18 * 8 , 34 * 8 , 50 * 8 , 66 * 8 , 15 * 8 };
1231 // Some defines for readability
1232 #define T55xx_LongLeadingReference 4 // Value to tell Write Bit to send long reference
1233 #define T55xx_DLMode_Fixed 0 // Default Mode
1234 #define T55xx_DLMode_LLR 1 // Long Leading Reference
1235 #define T55xx_DLMode_Leading0 2 // Leading Zero
1236 #define T55xx_DLMode_1of4 3 // 1 of 4
1238 void TurnReadLFOn(int delay
) {
1239 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1240 // Give it a bit of time for the resonant antenna to settle.
1241 WaitUS(delay
); //155*8 //50*8
1244 // Write one bit to card
1245 void T55xxWriteBit(int bit
, T55xx_Timing
*Timings
) {
1247 // If bit = 4 Send Long Leading Reference which is 138 + WRITE_0
1250 case 0 : TurnReadLFOn(Timings
->WRITE_0
); break; // Send bit 0/00
1251 case 1 : TurnReadLFOn(Timings
->WRITE_1
); break; // Send bit 1/01
1252 case 2 : TurnReadLFOn(Timings
->WRITE_2
); break; // Send bits 10
1253 case 3 : TurnReadLFOn(Timings
->WRITE_3
); break; // Send bits 11
1254 case 4 : TurnReadLFOn(Timings
->WRITE_0
+ (136 * 8)); break; // Send Long Leading Reference
1256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1257 WaitUS(Timings
->WRITE_GAP
);
1261 // Function to abstract an Arbitrary length byte array to store bit pattern.
1262 // bit_array - Array to hold data/bit pattern
1263 // start_offset - bit location to start storing new bits.
1264 // data - upto 32 bits of data to store
1265 // num_bits - how many bits (low x bits of data) Max 32 bits at a time
1266 // max_len - how many bytes can the bit_array hold (ensure no buffer overflow)
1267 // returns "Next" bit offset / bits stored (for next store)
1268 int T55xx_SetBits (uint8_t *bit_array
, int start_offset
, uint32_t data
, int num_bits
, int max_len
)
1270 int bit
,byte_idx
, bit_idx
;
1272 int NextOffset
= start_offset
;
1274 // Check if data will fit.
1275 if ((start_offset
+ num_bits
) <= (max_len
*8)) {
1277 // Loop through the data and store
1278 for (offset
= (num_bits
-1); offset
>= 0; offset
--) {
1280 bit
= (data
>> offset
) & 1; // Get data bit value (0/1)
1281 byte_idx
= (NextOffset
/ 8); // Get Array Byte Index to Store
1282 bit_idx
= NextOffset
- (byte_idx
* 8); // Get Bit Index to set/clr
1284 // If set (1) we OR, if clear (0) we AND with inverse
1285 // Dbprintf ("Add Bit : %d at byte %d bit %d",bit,byte_idx,bit_idx);
1287 bit_array
[byte_idx
] |= (1 << bit_idx
); // Set the bit to 1
1290 bit_array
[byte_idx
] &= (0xff ^ (1 << bit_idx
)); // Set the bit to 0 (clr)
1296 Dbprintf ("Too Many Bits to fit into bit buffer");
1300 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1301 void T55xxResetRead(void) {
1303 //clear buffer now so it does not interfere with timing later
1304 BigBuf_Clear_keep_EM();
1306 // Set up FPGA, 125kHz
1307 LFSetupFPGAForADC(95, true);
1309 // make sure tag is fully powered up...
1312 // Trigger T55x7 in mode.
1313 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1314 WaitUS(T55xx_Timing_FixedBit
.START_GAP
);
1316 // reset tag - op code 00
1317 T55xxWriteBit(0,&T55xx_Timing_FixedBit
);
1318 T55xxWriteBit(0,&T55xx_Timing_FixedBit
);
1320 TurnReadLFOn(T55xx_Timing_FixedBit
.READ_GAP
);
1323 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1325 // Turn the field off
1326 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1327 cmd_send(CMD_ACK
,0,0,0,0,0);
1331 // Send one downlink command to the card
1332 void T55xx_SendCMD (uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) { //, bool read_cmd) {//, struct T55xx_Timing *Timing) {
1336 xxxxxxx1 0x01 PwdMode
1338 xxxxx1xx 0x04 testMode
1339 xxx11xxx 0x18 downlink mode
1340 xx1xxxxx 0x20 reg_readmode
1341 x1xxxxxx 0x40 called for a read, so no data packet
1344 bool PwdMode
= ((arg
& 0x01) == 0x01);
1345 uint8_t Page
= (arg
& 0x02) >> 1;
1346 bool testMode
= ((arg
& 0x04) == 0x04);
1347 uint8_t downlink_mode
= (arg
>> 3) & 0x03;;
1348 bool reg_readmode
= ((arg
& 0x20) == 0x20);
1349 bool read_cmd
= ((arg
& 0x40) == 0x40);
1352 uint8_t BitStream
[10]; // Max Downlink Command size ~75 bits, so 10 bytes (80 bits)
1353 uint8_t BitStreamLen
;
1354 int byte_idx
, bit_idx
;
1355 T55xx_Timing
*Timing
;
1358 // Assigning Downlink Timeing for write
1359 switch (downlink_mode
)
1361 case T55xx_DLMode_Fixed
: Timing
= &T55xx_Timing_FixedBit
; break;
1362 case T55xx_DLMode_LLR
: Timing
= &T55xx_Timing_LLR
; break;
1363 case T55xx_DLMode_Leading0
: Timing
= &T55xx_Timing_Leading0
; break;
1364 case T55xx_DLMode_1of4
: Timing
= &T55xx_Timing_1of4
; break;
1366 Timing
= &T55xx_Timing_FixedBit
;
1369 // Build Bit Stream to send.
1370 memset (BitStream
,0x00,sizeof(BitStream
));
1374 // Add Leading 0 and 1 of 4 reference bit
1375 if ((downlink_mode
== T55xx_DLMode_Leading0
) || (downlink_mode
== T55xx_DLMode_1of4
))
1376 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, 0, 1,sizeof(BitStream
));
1378 // Add extra reference 0 for 1 of 4
1379 if (downlink_mode
== T55xx_DLMode_1of4
)
1380 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, 0, 1,sizeof(BitStream
));
1383 if (testMode
) Dbprintf("TestMODE");
1384 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
,testMode
? 0 : 1 , 1,sizeof(BitStream
));
1385 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
,testMode
? 1 : Page
, 1,sizeof(BitStream
));
1389 // Leading 0 and 1 of 4 00 fixed bits if passsword used
1390 if ((downlink_mode
== T55xx_DLMode_Leading0
) || (downlink_mode
== T55xx_DLMode_1of4
)) {
1391 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, 0, 1,sizeof(BitStream
));
1392 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, 0, 1,sizeof(BitStream
));
1394 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, Pwd
, 32,sizeof(BitStream
));
1398 BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, 0, 1,sizeof(BitStream
));
1400 // Add Data if a write command
1401 if (!read_cmd
) BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, Data
, 32,sizeof(BitStream
));
1404 if (!reg_readmode
) BitStreamLen
= T55xx_SetBits (BitStream
, BitStreamLen
, Block
, 3,sizeof(BitStream
));
1408 // Send Bits to T55xx
1410 // Set up FPGA, 125kHz
1411 LFSetupFPGAForADC(95, true);
1413 // make sure tag is fully powered up...
1415 // Trigger T55x7 in mode.
1416 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1417 WaitUS(Timing
->START_GAP
);
1420 // If long leading 0 send long reference pulse
1421 if (downlink_mode
== T55xx_DLMode_LLR
)
1422 T55xxWriteBit (T55xx_LongLeadingReference
,Timing
); // Send Long Leading Start Reference
1426 if (downlink_mode
== T55xx_DLMode_1of4
) { // 1 of 4 need to send 2 bits at a time
1427 for (i
= 0; i
< BitStreamLen
; i
+=2) {
1429 bit_idx
= i
- (byte_idx
* 8);
1430 SendBits
= ((BitStream
[byte_idx
] >> bit_idx
) & 1) << 1;
1432 byte_idx
= (i
+1) / 8;
1433 bit_idx
= (i
+1) - (byte_idx
* 8);
1434 SendBits
+= (BitStream
[byte_idx
] >> bit_idx
) & 1;
1436 T55xxWriteBit (SendBits
,Timing
);
1440 for (i
= 0; i
< BitStreamLen
; i
++) {
1442 bit_idx
= i
- (byte_idx
* 8);
1443 SendBits
= (BitStream
[byte_idx
] >> bit_idx
) & 1;
1444 T55xxWriteBit (SendBits
,Timing
);
1450 // Write one card block in page 0, no lock
1451 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1454 xxxxxxx1 0x01 PwdMode
1456 xxxxx1xx 0x04 testMode
1457 xxx11xxx 0x18 downlink mode
1458 xx1xxxxx 0x20 reg_readmode
1459 x1xxxxxx 0x40 called for a read, so no data packet
1462 bool testMode
= ((arg
& 0x04) == 0x04);
1463 arg
&= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0
1466 T55xx_SendCMD (Data
, Block
, Pwd
, arg
) ;//, false);
1468 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1469 // so wait a little more)
1471 // "there is a clock delay before programming"
1472 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1473 // so we should wait 1 clock + 5.6ms then read response?
1474 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1476 //TESTMODE TIMING TESTS:
1477 // <566us does nothing
1478 // 566-568 switches between wiping to 0s and doing nothing
1479 // 5184 wipes and allows 1 block to be programmed.
1480 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1484 TurnReadLFOn(20 * 1000);
1485 //could attempt to do a read to confirm write took
1486 // as the tag should repeat back the new block
1487 // until it is reset, but to confirm it we would
1488 // need to know the current block 0 config mode for
1489 // modulation clock an other details to demod the response...
1490 // response should be (for t55x7) a 0 bit then (ST if on)
1491 // block data written in on repeat until reset.
1493 //DoPartialAcquisition(20, true, 12000);
1496 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1498 cmd_send(CMD_ACK
,0,0,0,0,0);
1503 // Read one card block in page [page]
1504 void T55xxReadBlock (uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {//, struct T55xx_Timing *Timing) {
1510 xxxxxxx1 0x01 PwdMode
1512 xxxxx1xx 0x04 testMode
1513 xxx11xxx 0x18 downlink mode
1514 xx1xxxxx 0x20 reg_readmode
1515 x1xxxxxx 0x40 called for a read, so no data packet
1518 // Set Read Flag to ensure SendCMD does not add "data" to the packet
1522 if (Block
== 0xff) arg0
|= 0x20;
1524 //make sure block is at max 7
1526 //clear buffer now so it does not interfere with timing later
1527 BigBuf_Clear_ext(false);
1529 T55xx_SendCMD (0, Block
, Pwd
, arg0
); //, true);
1532 // Turn field on to read the response
1533 // 137*8 seems to get to the start of data pretty well...
1534 // but we want to go past the start and let the repeating data settle in...
1535 TurnReadLFOn(210*8);
1538 // Now do the acquisition
1539 DoPartialAcquisition(0, true, 12000, 0);
1541 // Turn the field off
1542 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1543 cmd_send(CMD_ACK
,0,0,0,0,0);
1548 void T55xxWakeUp(uint32_t Pwd
){
1552 // Set up FPGA, 125kHz
1553 LFSetupFPGAForADC(95, true);
1555 // make sure tag is fully powered up...
1558 // Trigger T55x7 Direct Access Mode
1559 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1560 WaitUS(T55xx_Timing_FixedBit
.START_GAP
);
1563 T55xxWriteBit(1,&T55xx_Timing_FixedBit
);
1564 T55xxWriteBit(0,&T55xx_Timing_FixedBit
); //Page 0
1568 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1569 T55xxWriteBit(Pwd
& i
,&T55xx_Timing_FixedBit
);
1571 // Turn and leave field on to let the begin repeating transmission
1572 TurnReadLFOn(20*1000);
1575 /*-------------- Cloning routines -----------*/
1577 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1578 // write last block first and config block last (if included)
1579 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--) {
1580 T55xxWriteBlock(blockdata
[i
-1],i
-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1581 // T55xx_SendCMD (blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1585 // Copy a HID-like card (e.g. HID Proximity, Paradox) to a T55x7 compatible card
1586 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
, uint8_t preamble
) {
1587 uint32_t data
[] = {0,0,0,0,0,0,0};
1588 uint8_t last_block
= 0;
1591 // Ensure no more than 84 bits supplied
1593 DbpString("Tags can only have 84 bits.");
1596 // Build the 6 data blocks for supplied 84bit ID
1598 // load preamble & long format identifier (9E manchester encoded)
1599 data
[1] = (preamble
<< 24) | 0x96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1600 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1601 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1602 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1603 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1604 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1605 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1607 // Ensure no more than 44 bits supplied
1609 DbpString("Tags can only have 44 bits.");
1612 // Build the 3 data blocks for supplied 44bit ID
1615 data
[1] = (preamble
<< 24) | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1616 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1617 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1619 // load chip config block
1620 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1622 //TODO add selection of chip for Q5 or T55x7
1623 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1626 // Program the data blocks for supplied ID
1627 // and the block 0 for HID format
1628 WriteT55xx(data
, 0, last_block
+1);
1635 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1636 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1637 //TODO add selection of chip for Q5 or T55x7
1638 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1641 // Program the data blocks for supplied ID
1642 // and the block 0 config
1643 WriteT55xx(data
, 0, 3);
1650 // Clone Indala 64-bit tag by UID to T55x7
1651 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1652 //Program the 2 data blocks for supplied 64bit UID
1653 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1654 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1655 //TODO add selection of chip for Q5 or T55x7
1656 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1658 WriteT55xx(data
, 0, 3);
1659 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1660 // T5567WriteBlock(0x603E1042,0);
1663 // Clone Indala 224-bit tag by UID to T55x7
1664 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1665 //Program the 7 data blocks for supplied 224bit UID
1666 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1667 // and the block 0 for Indala224 format
1668 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1669 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK2
| (7 << T55x7_MAXBLOCK_SHIFT
);
1670 //TODO add selection of chip for Q5 or T55x7
1671 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1672 WriteT55xx(data
, 0, 8);
1673 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1674 // T5567WriteBlock(0x603E10E2,0);
1677 // clone viking tag to T55xx
1678 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1679 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1680 if (Q5
) data
[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1681 // Program the data blocks for supplied ID and the block 0 config
1682 WriteT55xx(data
, 0, 3);
1684 cmd_send(CMD_ACK
,0,0,0,0,0);
1687 // Define 9bit header for EM410x tags
1688 #define EM410X_HEADER 0x1FF
1689 #define EM410X_ID_LENGTH 40
1691 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1693 uint64_t id
= EM410X_HEADER
;
1694 uint64_t rev_id
= 0; // reversed ID
1695 int c_parity
[4]; // column parity
1696 int r_parity
= 0; // row parity
1699 // Reverse ID bits given as parameter (for simpler operations)
1700 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1702 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1705 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1710 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1711 id_bit
= rev_id
& 1;
1714 // Don't write row parity bit at start of parsing
1716 id
= (id
<< 1) | r_parity
;
1717 // Start counting parity for new row
1724 // First elements in column?
1726 // Fill out first elements
1727 c_parity
[i
] = id_bit
;
1729 // Count column parity
1730 c_parity
[i
% 4] ^= id_bit
;
1733 id
= (id
<< 1) | id_bit
;
1737 // Insert parity bit of last row
1738 id
= (id
<< 1) | r_parity
;
1740 // Fill out column parity at the end of tag
1741 for (i
= 0; i
< 4; ++i
)
1742 id
= (id
<< 1) | c_parity
[i
];
1747 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1751 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1753 clock
= (card
& 0xFF00) >> 8;
1754 clock
= (clock
== 0) ? 64 : clock
;
1755 Dbprintf("Clock rate: %d", clock
);
1756 if (card
& 0xFF) { //t55x7
1757 clock
= GetT55xxClockBit(clock
);
1759 Dbprintf("Invalid clock rate: %d", clock
);
1762 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1763 } else { //t5555 (Q5)
1764 data
[0] = T5555_SET_BITRATE(clock
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1767 WriteT55xx(data
, 0, 3);
1770 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1771 (uint32_t)(id
>> 32), (uint32_t)id
);
1774 //-----------------------------------
1775 // EM4469 / EM4305 routines
1776 //-----------------------------------
1777 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1778 #define FWD_CMD_WRITE 0xA
1779 #define FWD_CMD_READ 0x9
1780 #define FWD_CMD_DISABLE 0x5
1782 uint8_t forwardLink_data
[64]; //array of forwarded bits
1783 uint8_t * forward_ptr
; //ptr for forward message preparation
1784 uint8_t fwd_bit_sz
; //forwardlink bit counter
1785 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1787 //====================================================================
1788 // prepares command bits
1790 //====================================================================
1791 //--------------------------------------------------------------------
1792 // VALUES TAKEN FROM EM4x function: SendForward
1793 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1794 // WRITE_GAP = 128; (16*8)
1795 // WRITE_1 = 256 32*8; (32*8)
1797 // These timings work for 4469/4269/4305 (with the 55*8 above)
1798 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1800 uint8_t Prepare_Cmd( uint8_t cmd
) {
1802 *forward_ptr
++ = 0; //start bit
1803 *forward_ptr
++ = 0; //second pause for 4050 code
1805 *forward_ptr
++ = cmd
;
1807 *forward_ptr
++ = cmd
;
1809 *forward_ptr
++ = cmd
;
1811 *forward_ptr
++ = cmd
;
1813 return 6; //return number of emited bits
1816 //====================================================================
1817 // prepares address bits
1819 //====================================================================
1820 uint8_t Prepare_Addr( uint8_t addr
) {
1822 register uint8_t line_parity
;
1827 *forward_ptr
++ = addr
;
1828 line_parity
^= addr
;
1832 *forward_ptr
++ = (line_parity
& 1);
1834 return 7; //return number of emited bits
1837 //====================================================================
1838 // prepares data bits intreleaved with parity bits
1840 //====================================================================
1841 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1843 register uint8_t line_parity
;
1844 register uint8_t column_parity
;
1845 register uint8_t i
, j
;
1846 register uint16_t data
;
1851 for(i
=0; i
<4; i
++) {
1853 for(j
=0; j
<8; j
++) {
1854 line_parity
^= data
;
1855 column_parity
^= (data
& 1) << j
;
1856 *forward_ptr
++ = data
;
1859 *forward_ptr
++ = line_parity
;
1864 for(j
=0; j
<8; j
++) {
1865 *forward_ptr
++ = column_parity
;
1866 column_parity
>>= 1;
1870 return 45; //return number of emited bits
1873 //====================================================================
1874 // Forward Link send function
1875 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1876 // fwd_bit_count set with number of bits to be sent
1877 //====================================================================
1878 void SendForward(uint8_t fwd_bit_count
) {
1880 fwd_write_ptr
= forwardLink_data
;
1881 fwd_bit_sz
= fwd_bit_count
;
1883 // Set up FPGA, 125kHz or 95 divisor
1884 LFSetupFPGAForADC(95, true);
1886 // force 1st mod pulse (start gap must be longer for 4305)
1887 fwd_bit_sz
--; //prepare next bit modulation
1889 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1890 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1891 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1892 WaitUS(18*8); //18 cycles on (8us each)
1894 // now start writting
1895 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1896 if(((*fwd_write_ptr
++) & 1) == 1)
1897 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1899 //These timings work for 4469/4269/4305 (with the 55*8 above)
1900 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1901 WaitUS(23*8); //23 cycles off (8us each)
1902 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1903 WaitUS(18*8); //18 cycles on (8us each)
1908 void EM4xLogin(uint32_t Password
) {
1910 uint8_t fwd_bit_count
;
1912 forward_ptr
= forwardLink_data
;
1913 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1914 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1916 SendForward(fwd_bit_count
);
1918 //Wait for command to complete
1922 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1924 uint8_t fwd_bit_count
;
1926 // Clear destination buffer before sending the command
1927 BigBuf_Clear_ext(false);
1931 //If password mode do login
1932 if (PwdMode
== 1) EM4xLogin(Pwd
);
1934 forward_ptr
= forwardLink_data
;
1935 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1936 fwd_bit_count
+= Prepare_Addr( Address
);
1938 SendForward(fwd_bit_count
);
1940 // Now do the acquisition
1941 DoPartialAcquisition(20, true, 6000, 1000);
1943 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1945 cmd_send(CMD_ACK
,0,0,0,0,0);
1948 void EM4xWriteWord(uint32_t flag
, uint32_t Data
, uint32_t Pwd
) {
1950 bool PwdMode
= (flag
& 0xF);
1951 uint8_t Address
= (flag
>> 8) & 0xFF;
1952 uint8_t fwd_bit_count
;
1954 //clear buffer now so it does not interfere with timing later
1955 BigBuf_Clear_ext(false);
1959 //If password mode do login
1960 if (PwdMode
) EM4xLogin(Pwd
);
1962 forward_ptr
= forwardLink_data
;
1963 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1964 fwd_bit_count
+= Prepare_Addr( Address
);
1965 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1967 SendForward(fwd_bit_count
);
1969 //Wait for write to complete
1973 //Capture response if one exists
1974 DoPartialAcquisition(20, true, 6000, 1000);
1976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1978 cmd_send(CMD_ACK
,0,0,0,0,0);
1983 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1984 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1986 READER START SEQUENCE:
1987 burst 800 us, gap 2.2 msecs
1988 burst 3.6 msecs gap 2.2 msecs
1989 burst 800 us gap 2.2 msecs
1992 This triggers a COTAG tag to response
1994 void Cotag(uint32_t arg0
) {
1996 #define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1997 #define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1999 uint8_t rawsignal
= arg0
& 0xF;
2003 // Switching to LF image on FPGA. This might empty BigBuff
2004 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
2006 //clear buffer now so it does not interfere with timing later
2007 BigBuf_Clear_ext(false);
2009 // Set up FPGA, 132kHz to power up the tag
2010 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 89);
2011 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
2013 // Connect the A/D to the peak-detected low-frequency path.
2014 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
2016 // Now set up the SSC to get the ADC samples that are now streaming at us.
2017 FpgaSetupSsc(FPGA_MAJOR_MODE_LF_ADC
);
2019 // start clock - 1.5ticks is 1us
2022 //send COTAG start pulse
2029 case 0: doCotagAcquisition(50000); break;
2030 case 1: doCotagAcquisitionManchester(); break;
2031 case 2: DoAcquisition_config(true, 0); break;
2034 // Turn the field off
2035 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2036 cmd_send(CMD_ACK
,0,0,0,0,0);