1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
41 #include "proxmark3.h"
48 #include "iso14443a.h"
50 // Needed for CRC in emulation mode;
51 // same construction as in ISO 14443;
52 // different initial value (CRC_ICLASS)
53 #include "iso14443crc.h"
54 #include "iso15693tools.h"
55 #include "protocols.h"
56 #include "optimized_cipher.h"
57 #include "usb_cdc.h" // for usb_poll_validate_length
58 #include "fpgaloader.h"
60 static int timeout
= 4096;
62 //-----------------------------------------------------------------------------
63 // The software UART that receives commands from the reader, and its state
65 //-----------------------------------------------------------------------------
69 STATE_START_OF_COMMUNICATION
,
89 static RAMFUNC
int OutOfNDecoding(int bit
) {
93 if (!Uart
.bitBuffer
) {
94 Uart
.bitBuffer
= bit
^ 0xFF0;
98 Uart
.bitBuffer
^= bit
;
101 /*if (Uart.swapper) {
102 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
105 if (Uart.byteCnt > 15) { return true; }
111 if (Uart
.state
!= STATE_UNSYNCD
) {
114 if ((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
119 if (((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
124 if (bit
!= bitright
) {
129 // So, now we only have to deal with *bit*, lets see...
130 if (Uart
.posCnt
== 1) {
131 // measurement first half bitperiod
133 // Drop in first half means that we are either seeing
136 if (Uart
.nOutOfCnt
== 1) {
137 // End of Communication
138 Uart
.state
= STATE_UNSYNCD
;
140 if (Uart
.byteCnt
== 0) {
141 // Its not straightforward to show single EOFs
142 // So just leave it and do not return true
143 Uart
.output
[0] = 0xf0;
148 } else if (Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
149 // When not part of SOF or EOF, it is an error
150 Uart
.state
= STATE_UNSYNCD
;
156 // measurement second half bitperiod
157 // Count the bitslot we are in... (ISO 15693)
161 if (Uart
.dropPosition
) {
162 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
167 // It is an error if we already have seen a drop in current frame
168 Uart
.state
= STATE_UNSYNCD
;
171 Uart
.dropPosition
= Uart
.nOutOfCnt
;
178 if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
181 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
182 if (Uart
.dropPosition
== 4) {
183 Uart
.state
= STATE_RECEIVING
;
185 } else if (Uart
.dropPosition
== 3) {
186 Uart
.state
= STATE_RECEIVING
;
188 //Uart.output[Uart.byteCnt] = 0xdd;
191 Uart
.state
= STATE_UNSYNCD
;
194 Uart
.dropPosition
= 0;
198 if (!Uart
.dropPosition
) {
199 Uart
.state
= STATE_UNSYNCD
;
207 //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
208 //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
210 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
212 Uart
.dropPosition
= 0;
214 if (Uart
.bitCnt
== 8) {
215 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
222 } else if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
225 if (!Uart
.dropPosition
) {
226 Uart
.state
= STATE_UNSYNCD
;
231 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
236 Uart
.dropPosition
= 0;
241 Uart.output[Uart.byteCnt] = 0xAA;
243 Uart.output[Uart.byteCnt] = error & 0xFF;
245 Uart.output[Uart.byteCnt] = 0xAA;
247 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
249 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
251 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
253 Uart.output[Uart.byteCnt] = 0xAA;
260 bit
= Uart
.bitBuffer
& 0xf0;
262 bit
^= 0x0F; // drops become 1s ;-)
264 // should have been high or at least (4 * 128) / fc
265 // according to ISO this should be at least (9 * 128 + 20) / fc
266 if (Uart
.highCnt
== 8) {
267 // we went low, so this could be start of communication
268 // it turns out to be safer to choose a less significant
269 // syncbit... so we check whether the neighbour also represents the drop
270 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
271 Uart
.syncBit
= bit
& 8;
273 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
274 else if (bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
275 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
276 else if (bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
277 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
278 if (Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
281 // the first half bit period is expected in next sample
285 } else if (bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
288 Uart
.state
= STATE_START_OF_COMMUNICATION
;
292 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
293 Uart
.dropPosition
= 0;
299 } else if (Uart
.highCnt
< 8) {
308 //=============================================================================
310 //=============================================================================
315 DEMOD_START_OF_COMMUNICATION
,
316 DEMOD_START_OF_COMMUNICATION2
,
317 DEMOD_START_OF_COMMUNICATION3
,
321 DEMOD_END_OF_COMMUNICATION
,
322 DEMOD_END_OF_COMMUNICATION2
,
345 static RAMFUNC
int ManchesterDecoding(int v
) {
351 Demod
.buffer
= Demod
.buffer2
;
352 Demod
.buffer2
= Demod
.buffer3
;
355 if (Demod
.buff
< 3) {
360 if (Demod
.state
==DEMOD_UNSYNCD
) {
361 Demod
.output
[Demod
.len
] = 0xfa;
364 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
367 Demod
.syncBit
= 0x08;
374 Demod
.syncBit
= 0x04;
381 Demod
.syncBit
= 0x02;
384 if (bit
& 0x01 && Demod
.syncBit
) {
385 Demod
.syncBit
= 0x01;
390 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
391 Demod
.sub
= SUB_FIRST_HALF
;
395 if (Demod
.posCount
) {
396 switch (Demod
.syncBit
) {
397 case 0x08: Demod
.samples
= 3; break;
398 case 0x04: Demod
.samples
= 2; break;
399 case 0x02: Demod
.samples
= 1; break;
400 case 0x01: Demod
.samples
= 0; break;
402 // SOF must be long burst... otherwise stay unsynced!!!
403 if (!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
404 Demod
.state
= DEMOD_UNSYNCD
;
407 // SOF must be long burst... otherwise stay unsynced!!!
408 if (!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
409 Demod
.state
= DEMOD_UNSYNCD
;
418 // state is DEMOD is in SYNC from here on.
419 modulation
= bit
& Demod
.syncBit
;
420 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
424 if (Demod
.posCount
== 0) {
427 Demod
.sub
= SUB_FIRST_HALF
;
429 Demod
.sub
= SUB_NONE
;
434 if (Demod
.sub
== SUB_FIRST_HALF
) {
435 Demod
.sub
= SUB_BOTH
;
437 Demod
.sub
= SUB_SECOND_HALF
;
439 } else if (Demod
.sub
== SUB_NONE
) {
440 if (Demod
.state
== DEMOD_SOF_COMPLETE
) {
441 Demod
.output
[Demod
.len
] = 0x0f;
443 Demod
.state
= DEMOD_UNSYNCD
;
446 Demod
.state
= DEMOD_ERROR_WAIT
;
451 switch(Demod
.state
) {
452 case DEMOD_START_OF_COMMUNICATION
:
453 if (Demod
.sub
== SUB_BOTH
) {
454 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
456 Demod
.sub
= SUB_NONE
;
458 Demod
.output
[Demod
.len
] = 0xab;
459 Demod
.state
= DEMOD_ERROR_WAIT
;
463 case DEMOD_START_OF_COMMUNICATION2
:
464 if (Demod
.sub
== SUB_SECOND_HALF
) {
465 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
467 Demod
.output
[Demod
.len
] = 0xab;
468 Demod
.state
= DEMOD_ERROR_WAIT
;
472 case DEMOD_START_OF_COMMUNICATION3
:
473 if (Demod
.sub
== SUB_SECOND_HALF
) {
474 Demod
.state
= DEMOD_SOF_COMPLETE
;
476 Demod
.output
[Demod
.len
] = 0xab;
477 Demod
.state
= DEMOD_ERROR_WAIT
;
481 case DEMOD_SOF_COMPLETE
:
482 case DEMOD_MANCHESTER_D
:
483 case DEMOD_MANCHESTER_E
:
484 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
485 // 00001111 = 1 (0 in 14443)
486 if (Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
488 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
489 Demod
.state
= DEMOD_MANCHESTER_D
;
490 } else if (Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
492 Demod
.shiftReg
>>= 1;
493 Demod
.state
= DEMOD_MANCHESTER_E
;
494 } else if (Demod
.sub
== SUB_BOTH
) {
495 Demod
.state
= DEMOD_MANCHESTER_F
;
497 Demod
.state
= DEMOD_ERROR_WAIT
;
502 case DEMOD_MANCHESTER_F
:
503 // Tag response does not need to be a complete byte!
504 if (Demod
.len
> 0 || Demod
.bitCount
> 0) {
505 if (Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
506 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
507 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
511 Demod
.state
= DEMOD_UNSYNCD
;
514 Demod
.output
[Demod
.len
] = 0xad;
515 Demod
.state
= DEMOD_ERROR_WAIT
;
520 case DEMOD_ERROR_WAIT
:
521 Demod
.state
= DEMOD_UNSYNCD
;
525 Demod
.output
[Demod
.len
] = 0xdd;
526 Demod
.state
= DEMOD_UNSYNCD
;
530 if (Demod
.bitCount
>= 8) {
531 Demod
.shiftReg
>>= 1;
532 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
539 Demod
.output
[Demod
.len
] = 0xBB;
541 Demod
.output
[Demod
.len
] = error
& 0xFF;
543 Demod
.output
[Demod
.len
] = 0xBB;
545 Demod
.output
[Demod
.len
] = bit
& 0xFF;
547 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
550 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
552 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
554 Demod
.output
[Demod
.len
] = 0xBB;
561 } // end (state != UNSYNCED)
566 //=============================================================================
567 // Finally, a `sniffer' for iClass communication
568 // Both sides of communication!
569 //=============================================================================
571 //-----------------------------------------------------------------------------
572 // Record the sequence of commands sent by the reader to the tag, with
573 // triggering so that we start recording at the point that the tag is moved
575 //-----------------------------------------------------------------------------
576 void RAMFUNC
SnoopIClass(void) {
578 // We won't start recording the frames that we acquire until we trigger;
579 // a good trigger condition to get started is probably when we see a
580 // response from the tag.
581 //int triggered = false; // false to wait first for card
583 // The command (reader -> tag) that we're receiving.
584 // The length of a received command will in most cases be no more than 18 bytes.
585 // So 32 should be enough!
586 #define ICLASS_BUFFER_SIZE 32
587 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
588 // The response (tag -> reader) that we're receiving.
589 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
591 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
593 // free all BigBuf memory
595 // The DMA buffer, used to stream samples from the FPGA
596 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
600 iso14a_set_trigger(false);
607 // Count of samples received so far, so that we can include timing
608 // information in the trace buffer.
612 // Set up the demodulator for tag -> reader responses.
613 Demod
.output
= tagToReaderResponse
;
615 Demod
.state
= DEMOD_UNSYNCD
;
617 // Setup for the DMA.
618 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
620 lastRxCounter
= DMA_BUFFER_SIZE
;
621 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
623 // And the reader -> tag commands
624 memset(&Uart
, 0, sizeof(Uart
));
625 Uart
.output
= readerToTagCmd
;
626 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
627 Uart
.state
= STATE_UNSYNCD
;
629 // And put the FPGA in the appropriate mode
630 // Signal field is off with the appropriate LED
632 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
633 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
635 uint32_t time_0
= GetCountSspClk();
636 uint32_t time_start
= 0;
637 uint32_t time_stop
= 0;
644 // And now we loop, receiving samples.
648 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1);
649 if (behindBy
> maxBehindBy
) {
650 maxBehindBy
= behindBy
;
651 if (behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
652 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
656 if (behindBy
< 1) continue;
662 if (upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
663 upTo
-= DMA_BUFFER_SIZE
;
664 lastRxCounter
+= DMA_BUFFER_SIZE
;
665 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
666 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
673 decbyte
^= (1 << (3 - div
));
676 // FOR READER SIDE COMMUMICATION...
679 decbyter
^= (smpl
& 0x30);
683 if ((div
+ 1) % 2 == 0) {
685 if (OutOfNDecoding((smpl
& 0xF0) >> 4)) {
686 rsamples
= samples
- Uart
.samples
;
687 time_stop
= (GetCountSspClk()-time_0
) << 4;
690 //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
691 //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
692 uint8_t parity
[MAX_PARITY_SIZE
];
693 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
694 LogTrace(Uart
.output
, Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
696 /* And ready to receive another command. */
697 Uart
.state
= STATE_UNSYNCD
;
698 /* And also reset the demod code, which might have been */
699 /* false-triggered by the commands from the reader. */
700 Demod
.state
= DEMOD_UNSYNCD
;
704 time_start
= (GetCountSspClk()-time_0
) << 4;
711 if (ManchesterDecoding(smpl
& 0x0F)) {
712 time_stop
= (GetCountSspClk()-time_0
) << 4;
714 rsamples
= samples
- Demod
.samples
;
717 uint8_t parity
[MAX_PARITY_SIZE
];
718 GetParity(Demod
.output
, Demod
.len
, parity
);
719 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
721 // And ready to receive another response.
722 memset(&Demod
, 0, sizeof(Demod
));
723 Demod
.output
= tagToReaderResponse
;
724 Demod
.state
= DEMOD_UNSYNCD
;
727 time_start
= (GetCountSspClk()-time_0
) << 4;
734 if (BUTTON_PRESS()) {
735 DbpString("cancelled_a");
740 DbpString("COMMAND FINISHED");
742 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
743 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
746 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
747 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
748 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
752 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
754 for (i
= 0; i
< 8; i
++) {
755 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
760 static void CodeIClassTagSOF() {
761 //So far a dummy implementation, not used
762 //int lastProxToAirDuration =0;
766 ToSend
[++ToSendMax
] = 0x1D;
767 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
769 // Convert from last byte pos to length
773 static void AppendCrc(uint8_t *data
, int len
) {
774 ComputeCrc14443(CRC_ICLASS
, data
, len
, data
+len
, data
+len
+1);
779 * @brief Does the actual simulation
781 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
) {
783 // free eventually allocated BigBuf memory
784 BigBuf_free_keep_EM();
788 uint8_t *emulator
= BigBuf_get_EM_addr();
789 uint8_t *csn
= emulator
;
790 uint8_t sof_data
[] = { 0x0F } ;
792 // CSN followed by two CRC bytes
793 uint8_t anticoll_data
[10] = { 0 };
794 uint8_t csn_data
[10] = { 0 };
795 memcpy(csn_data
, csn
, sizeof(csn_data
));
796 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn
[0], csn
[1], csn
[2], csn
[3], csn
[4], csn
[5], csn
[6], csn
[7]);
798 // Construct anticollision-CSN
799 rotateCSN(csn_data
, anticoll_data
);
801 // Compute CRC on both CSNs
802 AppendCrc(anticoll_data
, 8);
803 AppendCrc(csn_data
, 8);
805 uint8_t diversified_key
[8] = { 0 };
807 uint8_t card_challenge_data
[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
808 //uint8_t card_challenge_data[8] = { 0 };
809 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
810 // The diversified key should be stored on block 3
811 // Get the diversified key from emulator memory
812 memcpy(diversified_key
, emulator
+ (8 * 3), 8);
813 // Card challenge, a.k.a e-purse is on block 2
814 memcpy(card_challenge_data
, emulator
+ (8 * 2), 8);
815 // Precalculate the cipher state, feeding it the CC
816 cipher_state
= opt_doTagMAC_1(card_challenge_data
, diversified_key
);
818 // save card challenge for sim2,4 attack
819 if (reader_mac_buf
!= NULL
) {
820 memcpy(reader_mac_buf
, card_challenge_data
, 8);
828 // Reader 81 anticoll. CSN
831 uint8_t *modulated_response
;
832 int modulated_response_size
= 0;
833 uint8_t *trace_data
= NULL
;
834 int trace_data_size
= 0;
836 // Respond SOF -- takes 1 bytes
837 uint8_t *resp_sof
= BigBuf_malloc(2);
840 // Anticollision CSN (rotated CSN)
841 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
842 uint8_t *resp_anticoll
= BigBuf_malloc(22);
843 int resp_anticoll_len
;
846 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
847 uint8_t *resp_csn
= BigBuf_malloc(22);
850 // configuration (block 1) picopass 2ks
851 uint8_t *resp_conf
= BigBuf_malloc(22);
853 uint8_t conf_data
[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
854 AppendCrc(conf_data
, 8);
857 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
858 uint8_t *resp_cc
= BigBuf_malloc(18);
861 // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
862 uint8_t *resp_ff
= BigBuf_malloc(22);
864 uint8_t ff_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
865 AppendCrc(ff_data
, 8);
867 // Application Issuer Area (block 5)
868 uint8_t *resp_aia
= BigBuf_malloc(22);
870 uint8_t aia_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
871 AppendCrc(aia_data
, 8);
873 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
876 // Prepare card messages
879 // First card answer: SOF only
881 memcpy(resp_sof
, ToSend
, ToSendMax
);
882 resp_sof_Len
= ToSendMax
;
885 CodeIso15693AsTag(anticoll_data
, sizeof(anticoll_data
));
886 memcpy(resp_anticoll
, ToSend
, ToSendMax
);
887 resp_anticoll_len
= ToSendMax
;
890 CodeIso15693AsTag(csn_data
, sizeof(csn_data
));
891 memcpy(resp_csn
, ToSend
, ToSendMax
);
892 resp_csn_len
= ToSendMax
;
894 // Configuration (block 1)
895 CodeIso15693AsTag(conf_data
, sizeof(conf_data
));
896 memcpy(resp_conf
, ToSend
, ToSendMax
);
897 resp_conf_len
= ToSendMax
;
900 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
901 memcpy(resp_cc
, ToSend
, ToSendMax
);
902 resp_cc_len
= ToSendMax
;
904 // Kd, Kc (blocks 3 and 4)
905 CodeIso15693AsTag(ff_data
, sizeof(ff_data
));
906 memcpy(resp_ff
, ToSend
, ToSendMax
);
907 resp_ff_len
= ToSendMax
;
909 // Application Issuer Area (block 5)
910 CodeIso15693AsTag(aia_data
, sizeof(aia_data
));
911 memcpy(resp_aia
, ToSend
, ToSendMax
);
912 resp_aia_len
= ToSendMax
;
914 //This is used for responding to READ-block commands or other data which is dynamically generated
915 uint8_t *data_generic_trace
= BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
916 uint8_t *data_response
= BigBuf_malloc( (32 + 2) * 2 + 2);
919 bool buttonPressed
= false;
920 enum { IDLE
, ACTIVATED
, SELECTED
, HALTED
} chip_state
= IDLE
;
926 // Can be used to get a trigger for an oscilloscope..
929 uint32_t reader_eof_time
= 0;
930 len
= GetIso15693CommandFromReader(receivedCmd
, MAX_FRAME_SIZE
, &reader_eof_time
);
932 buttonPressed
= true;
939 // Now look at the reader command and provide appropriate responses
940 // default is no response:
941 modulated_response
= NULL
;
942 modulated_response_size
= 0;
946 if (receivedCmd
[0] == ICLASS_CMD_ACTALL
&& len
== 1) {
947 // Reader in anticollision phase
948 if (chip_state
!= HALTED
) {
949 modulated_response
= resp_sof
;
950 modulated_response_size
= resp_sof_Len
;
951 trace_data
= sof_data
;
952 trace_data_size
= sizeof(sof_data
);
953 chip_state
= ACTIVATED
;
956 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) { // identify
957 // Reader asks for anticollision CSN
958 if (chip_state
== SELECTED
|| chip_state
== ACTIVATED
) {
959 modulated_response
= resp_anticoll
;
960 modulated_response_size
= resp_anticoll_len
;
961 trace_data
= anticoll_data
;
962 trace_data_size
= sizeof(anticoll_data
);
965 } else if (receivedCmd
[0] == ICLASS_CMD_SELECT
&& len
== 9) {
966 // Reader selects anticollision CSN.
967 // Tag sends the corresponding real CSN
968 if (chip_state
== ACTIVATED
|| chip_state
== SELECTED
) {
969 if (!memcmp(receivedCmd
+1, anticoll_data
, 8)) {
970 modulated_response
= resp_csn
;
971 modulated_response_size
= resp_csn_len
;
972 trace_data
= csn_data
;
973 trace_data_size
= sizeof(csn_data
);
974 chip_state
= SELECTED
;
978 } else if (chip_state
== HALTED
) {
980 if (!memcmp(receivedCmd
+1, csn_data
, 8)) {
981 modulated_response
= resp_csn
;
982 modulated_response_size
= resp_csn_len
;
983 trace_data
= csn_data
;
984 trace_data_size
= sizeof(csn_data
);
985 chip_state
= SELECTED
;
989 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4) { // read block
990 uint16_t blockNo
= receivedCmd
[1];
991 if (chip_state
== SELECTED
) {
992 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
993 // provide defaults for blocks 0 ... 5
995 case 0: // csn (block 00)
996 modulated_response
= resp_csn
;
997 modulated_response_size
= resp_csn_len
;
998 trace_data
= csn_data
;
999 trace_data_size
= sizeof(csn_data
);
1001 case 1: // configuration (block 01)
1002 modulated_response
= resp_conf
;
1003 modulated_response_size
= resp_conf_len
;
1004 trace_data
= conf_data
;
1005 trace_data_size
= sizeof(conf_data
);
1007 case 2: // e-purse (block 02)
1008 modulated_response
= resp_cc
;
1009 modulated_response_size
= resp_cc_len
;
1010 trace_data
= card_challenge_data
;
1011 trace_data_size
= sizeof(card_challenge_data
);
1012 // set epurse of sim2,4 attack
1013 if (reader_mac_buf
!= NULL
) {
1014 memcpy(reader_mac_buf
, card_challenge_data
, 8);
1018 case 4: // Kd, Kc, always respond with 0xff bytes
1019 modulated_response
= resp_ff
;
1020 modulated_response_size
= resp_ff_len
;
1021 trace_data
= ff_data
;
1022 trace_data_size
= sizeof(ff_data
);
1024 case 5: // Application Issuer Area (block 05)
1025 modulated_response
= resp_aia
;
1026 modulated_response_size
= resp_aia_len
;
1027 trace_data
= aia_data
;
1028 trace_data_size
= sizeof(aia_data
);
1030 // default: don't respond
1032 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1033 if (blockNo
== 3 || blockNo
== 4) { // Kd, Kc, always respond with 0xff bytes
1034 modulated_response
= resp_ff
;
1035 modulated_response_size
= resp_ff_len
;
1036 trace_data
= ff_data
;
1037 trace_data_size
= sizeof(ff_data
);
1038 } else { // use data from emulator memory
1039 memcpy(data_generic_trace
, emulator
+ 8*blockNo
, 8);
1040 AppendCrc(data_generic_trace
, 8);
1041 trace_data
= data_generic_trace
;
1042 trace_data_size
= 10;
1043 CodeIso15693AsTag(trace_data
, trace_data_size
);
1044 memcpy(data_response
, ToSend
, ToSendMax
);
1045 modulated_response
= data_response
;
1046 modulated_response_size
= ToSendMax
;
1051 } else if ((receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
1052 || receivedCmd
[0] == ICLASS_CMD_READCHECK_KC
) && len
== 2) {
1053 // Read e-purse (88 02 || 18 02)
1054 if (chip_state
== SELECTED
) {
1055 modulated_response
= resp_cc
;
1056 modulated_response_size
= resp_cc_len
;
1057 trace_data
= card_challenge_data
;
1058 trace_data_size
= sizeof(card_challenge_data
);
1062 } else if (receivedCmd
[0] == ICLASS_CMD_CHECK
&& len
== 9) {
1063 // Reader random and reader MAC!!!
1064 if (chip_state
== SELECTED
) {
1065 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1066 //NR, from reader, is in receivedCmd+1
1067 opt_doTagMAC_2(cipher_state
, receivedCmd
+1, data_generic_trace
, diversified_key
);
1068 trace_data
= data_generic_trace
;
1069 trace_data_size
= 4;
1070 CodeIso15693AsTag(trace_data
, trace_data_size
);
1071 memcpy(data_response
, ToSend
, ToSendMax
);
1072 modulated_response
= data_response
;
1073 modulated_response_size
= ToSendMax
;
1075 } else { // Not fullsim, we don't respond
1076 // We do not know what to answer, so lets keep quiet
1077 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1078 if (reader_mac_buf
!= NULL
) {
1079 // save NR and MAC for sim 2,4
1080 memcpy(reader_mac_buf
+ 8, receivedCmd
+ 1, 8);
1087 } else if (receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1088 if (chip_state
== SELECTED
) {
1089 // Reader ends the session
1090 chip_state
= HALTED
;
1093 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
&& receivedCmd
[0] == ICLASS_CMD_READ4
&& len
== 4) { // 0x06
1095 if (chip_state
== SELECTED
) {
1096 memcpy(data_generic_trace
, emulator
+ (receivedCmd
[1] << 3), 8 * 4);
1097 AppendCrc(data_generic_trace
, 8 * 4);
1098 trace_data
= data_generic_trace
;
1099 trace_data_size
= 8 * 4 + 2;
1100 CodeIso15693AsTag(trace_data
, trace_data_size
);
1101 memcpy(data_response
, ToSend
, ToSendMax
);
1102 modulated_response
= data_response
;
1103 modulated_response_size
= ToSendMax
;
1106 } else if (receivedCmd
[0] == ICLASS_CMD_UPDATE
&& (len
== 12 || len
== 14)) {
1107 // Probably the reader wants to update the nonce. Let's just ignore that for now.
1108 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1109 // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
1110 // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
1111 if (chip_state
== SELECTED
) {
1112 memcpy(data_generic_trace
, receivedCmd
+ 2, 8);
1113 AppendCrc(data_generic_trace
, 8);
1114 trace_data
= data_generic_trace
;
1115 trace_data_size
= 10;
1116 CodeIso15693AsTag(trace_data
, trace_data_size
);
1117 memcpy(data_response
, ToSend
, ToSendMax
);
1118 modulated_response
= data_response
;
1119 modulated_response_size
= ToSendMax
;
1122 } else if (receivedCmd
[0] == ICLASS_CMD_PAGESEL
&& len
== 4) {
1124 if (chip_state
== SELECTED
) {
1125 // Pagesel enables to select a page in the selected chip memory and return its configuration block
1126 // Chips with a single page will not answer to this command
1127 // It appears we're fine ignoring this.
1128 // Otherwise, we should answer 8bytes (block) + 2bytes CRC
1131 } else if (receivedCmd
[0] == 0x26 && len
== 5) {
1132 // standard ISO15693 INVENTORY command. Ignore.
1135 // don't know how to handle this command
1136 char debug_message
[250]; // should be enough
1137 sprintf(debug_message
, "Unhandled command (len = %d) received from reader:", len
);
1138 for (int i
= 0; i
< len
&& strlen(debug_message
) < sizeof(debug_message
) - 3 - 1; i
++) {
1139 sprintf(debug_message
+ strlen(debug_message
), " %02x", receivedCmd
[i
]);
1141 Dbprintf("%s", debug_message
);
1146 A legit tag has about 311,5us delay between reader EOT and tag SOF.
1148 if (modulated_response_size
> 0) {
1149 uint32_t response_time
= reader_eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
- DELAY_ARM_TO_READER_SIM
;
1150 TransmitTo15693Reader(modulated_response
, modulated_response_size
, response_time
, false);
1151 LogTrace(trace_data
, trace_data_size
, response_time
+ DELAY_ARM_TO_READER_SIM
, response_time
+ (modulated_response_size
<< 6) + DELAY_ARM_TO_READER_SIM
, NULL
, false);
1162 DbpString("Button pressed");
1164 return buttonPressed
;
1168 * @brief SimulateIClass simulates an iClass card.
1169 * @param arg0 type of simulation
1170 * - 0 uses the first 8 bytes in usb data as CSN
1171 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
1172 * in the usb data. This mode collects MAC from the reader, in order to do an offline
1173 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
1174 * - Other : Uses the default CSN (031fec8af7ff12e0)
1175 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
1179 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) {
1180 uint32_t simType
= arg0
;
1181 uint32_t numberOfCSNS
= arg1
;
1183 // setup hardware for simulation:
1184 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1185 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1187 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1190 // Enable and clear the trace
1193 //Use the emulator memory for SIM
1194 uint8_t *emulator
= BigBuf_get_EM_addr();
1196 if (simType
== ICLASS_SIM_MODE_CSN
) {
1197 // Use the CSN from commandline
1198 memcpy(emulator
, datain
, 8);
1199 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1200 } else if (simType
== ICLASS_SIM_MODE_CSN_DEFAULT
) {
1202 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1203 // Use the CSN from commandline
1204 memcpy(emulator
, csn_crc
, 8);
1205 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1206 } else if (simType
== ICLASS_SIM_MODE_READER_ATTACK
) {
1207 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1208 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1209 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1210 // in order to collect MAC's from the reader. This can later be used in an offline-attack
1211 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1213 for (i
= 0; i
< numberOfCSNS
&& i
*16+16 <= USB_CMD_DATA_SIZE
; i
++) {
1214 // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
1215 memcpy(emulator
, datain
+(i
*8), 8);
1216 if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC
, mac_responses
+i
*16)) {
1220 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1221 datain
[i
*8+0], datain
[i
*8+1], datain
[i
*8+2], datain
[i
*8+3],
1222 datain
[i
*8+4], datain
[i
*8+5], datain
[i
*8+6], datain
[i
*8+7]);
1223 Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
1224 mac_responses
[i
*16+ 8], mac_responses
[i
*16+ 9], mac_responses
[i
*16+10], mac_responses
[i
*16+11],
1225 mac_responses
[i
*16+12], mac_responses
[i
*16+13], mac_responses
[i
*16+14], mac_responses
[i
*16+15]);
1226 SpinDelay(100); // give the reader some time to prepare for next CSN
1228 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*16);
1229 } else if (simType
== ICLASS_SIM_MODE_FULL
) {
1230 //This is 'full sim' mode, where we use the emulator storage for data.
1231 doIClassSimulation(ICLASS_SIM_MODE_FULL
, NULL
);
1233 // We may want a mode here where we hardcode the csns to use (from proxclone).
1234 // That will speed things up a little, but not required just yet.
1235 Dbprintf("The mode is not implemented, reserved for future use");
1237 Dbprintf("Done...");
1244 //-----------------------------------------------------------------------------
1245 // Transmit the command (to the tag) that was placed in ToSend[].
1246 //-----------------------------------------------------------------------------
1247 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
) {
1249 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1250 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1251 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1254 if (*wait
< 10) *wait
= 10;
1256 for (c
= 0; c
< *wait
;) {
1257 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1258 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1261 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1262 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1270 bool firstpart
= true;
1273 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1275 // DOUBLE THE SAMPLES!
1277 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1279 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1282 if (sendbyte
== 0xff) {
1285 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1286 firstpart
= !firstpart
;
1292 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1293 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1298 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1302 //-----------------------------------------------------------------------------
1303 // Prepare iClass reader command to send to FPGA
1304 //-----------------------------------------------------------------------------
1305 void CodeIClassCommand(const uint8_t *cmd
, int len
) {
1310 // Start of Communication: 1 out of 4
1311 ToSend
[++ToSendMax
] = 0xf0;
1312 ToSend
[++ToSendMax
] = 0x00;
1313 ToSend
[++ToSendMax
] = 0x0f;
1314 ToSend
[++ToSendMax
] = 0x00;
1316 // Modulate the bytes
1317 for (i
= 0; i
< len
; i
++) {
1319 for (j
= 0; j
< 4; j
++) {
1320 for (k
= 0; k
< 4; k
++) {
1322 ToSend
[++ToSendMax
] = 0xf0;
1324 ToSend
[++ToSendMax
] = 0x00;
1331 // End of Communication
1332 ToSend
[++ToSendMax
] = 0x00;
1333 ToSend
[++ToSendMax
] = 0x00;
1334 ToSend
[++ToSendMax
] = 0xf0;
1335 ToSend
[++ToSendMax
] = 0x00;
1337 // Convert from last character reference to length
1341 static void ReaderTransmitIClass(uint8_t *frame
, int len
) {
1345 // This is tied to other size changes
1346 CodeIClassCommand(frame
, len
);
1349 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1353 // Store reader command in buffer
1354 uint8_t par
[MAX_PARITY_SIZE
];
1355 GetParity(frame
, len
, par
);
1356 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1359 //-----------------------------------------------------------------------------
1360 // Wait a certain time for tag response
1361 // If a response is captured return true
1362 // If it takes too long return false
1363 //-----------------------------------------------------------------------------
1364 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) {
1366 // buffer needs to be 512 bytes
1369 // Set FPGA mode to "reader listen mode", no modulation (listen
1370 // only, since we are receiving, not transmitting).
1371 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1373 // Now get the answer from the card
1374 Demod
.output
= receivedResponse
;
1376 Demod
.state
= DEMOD_UNSYNCD
;
1379 if (elapsed
) *elapsed
= 0;
1387 if (BUTTON_PRESS()) return false;
1389 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1390 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1391 if (elapsed
) (*elapsed
)++;
1393 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1399 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1403 if (ManchesterDecoding(b
& 0x0f)) {
1411 static int ReaderReceiveIClass(uint8_t *receivedAnswer
) {
1413 if (!GetIClassAnswer(receivedAnswer
, 160, &samples
, 0)) {
1416 rsamples
+= samples
;
1417 uint8_t parity
[MAX_PARITY_SIZE
];
1418 GetParity(receivedAnswer
, Demod
.len
, parity
);
1419 LogTrace(receivedAnswer
, Demod
.len
, rsamples
, rsamples
, parity
, false);
1420 if (samples
== 0) return false;
1424 static void setupIclassReader() {
1425 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1426 // Reset trace buffer
1431 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1432 // Start from off (no field generated)
1433 // Signal field is off with the appropriate LED
1435 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1438 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1440 // Now give it time to spin up.
1441 // Signal field is on with the appropriate LED
1442 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1448 static bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
) {
1449 while (retries
-- > 0) {
1450 ReaderTransmitIClass(command
, cmdsize
);
1451 if (expected_size
== ReaderReceiveIClass(resp
)) {
1455 return false;//Error
1459 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1460 * @param card_data where the CSN and CC are stored for return
1463 * 2 = Got CSN and CC
1465 static uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
) {
1466 static uint8_t act_all
[] = { 0x0a };
1467 //static uint8_t identify[] = { 0x0c };
1468 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1469 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1470 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1472 readcheck_cc
[0] = 0x18;
1474 readcheck_cc
[0] = 0x88;
1476 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1478 uint8_t read_status
= 0;
1481 ReaderTransmitIClass(act_all
, 1);
1483 if (!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1485 ReaderTransmitIClass(identify
, 1);
1486 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1487 uint8_t len
= ReaderReceiveIClass(resp
);
1488 if (len
!= 10) return read_status
;//Fail
1490 //Copy the Anti-collision CSN to our select-packet
1491 memcpy(&select
[1], resp
, 8);
1493 ReaderTransmitIClass(select
, sizeof(select
));
1494 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1495 len
= ReaderReceiveIClass(resp
);
1496 if (len
!= 10) return read_status
;//Fail
1498 //Success - level 1, we got CSN
1499 //Save CSN in response data
1500 memcpy(card_data
, resp
, 8);
1502 //Flag that we got to at least stage 1, read CSN
1505 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1506 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1507 if (ReaderReceiveIClass(resp
) == 8) {
1508 //Save CC (e-purse) in response data
1509 memcpy(card_data
+8, resp
, 8);
1516 static uint8_t handshakeIclassTag(uint8_t *card_data
) {
1517 return handshakeIclassTag_ext(card_data
, false);
1521 // Reader iClass Anticollission
1522 void ReaderIClass(uint8_t arg0
) {
1524 uint8_t card_data
[6 * 8] = {0};
1525 memset(card_data
, 0xFF, sizeof(card_data
));
1526 uint8_t last_csn
[8] = {0,0,0,0,0,0,0,0};
1527 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1528 memset(resp
, 0xFF, sizeof(resp
));
1529 //Read conf block CRC(0x01) => 0xfa 0x22
1530 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x01, 0xfa, 0x22};
1531 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1532 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x05, 0xde, 0x64};
1535 uint8_t result_status
= 0;
1536 // flag to read until one tag is found successfully
1537 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1538 // flag to only try 5 times to find one tag then return
1539 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1540 // if neither abort_after_read nor try_once then continue reading until button pressed.
1542 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1543 // test flags for what blocks to be sure to read
1544 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1545 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1546 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1549 setupIclassReader();
1551 uint16_t tryCnt
= 0;
1552 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1553 while (!userCancelled
) {
1554 // if only looking for one card try 2 times if we missed it the first time
1555 if (try_once
&& tryCnt
> 2) {
1559 if (!get_tracing()) {
1560 DbpString("Trace full");
1565 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1567 if (read_status
== 0) continue;
1568 if (read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1569 if (read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
| FLAG_ICLASS_READER_CC
;
1571 // handshakeIclass returns CSN|CC, but the actual block
1572 // layout is CSN|CONFIG|CC, so here we reorder the data,
1573 // moving CC forward 8 bytes
1574 memcpy(card_data
+16, card_data
+8, 8);
1575 //Read block 1, config
1576 if (flagReadConfig
) {
1577 if (sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10)) {
1578 result_status
|= FLAG_ICLASS_READER_CONF
;
1579 memcpy(card_data
+8, resp
, 8);
1581 Dbprintf("Failed to dump config block");
1587 if (sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10)) {
1588 result_status
|= FLAG_ICLASS_READER_AA
;
1589 memcpy(card_data
+ (8*5), resp
, 8);
1591 //Dbprintf("Failed to dump AA block");
1596 // 1 : Configuration
1598 // 3 : kd / debit / aa2 (write-only)
1599 // 4 : kc / credit / aa1 (write-only)
1600 // 5 : AIA, Application issuer area
1601 //Then we can 'ship' back the 6 * 8 bytes of data,
1602 // with 0xFF:s in block 3 and 4.
1605 //Send back to client, but don't bother if we already sent this -
1606 // only useful if looping in arm (not try_once && not abort_after_read)
1607 if (memcmp(last_csn
, card_data
, 8) != 0) {
1608 // If caller requires that we get Conf, CC, AA, continue until we got it
1609 if ( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1610 cmd_send(CMD_ACK
, result_status
, 0, 0, card_data
, sizeof(card_data
));
1611 if (abort_after_read
) {
1616 //Save that we already sent this....
1617 memcpy(last_csn
, card_data
, 8);
1622 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1624 if (userCancelled
) {
1625 cmd_send(CMD_ACK
, 0xFF, 0, 0, card_data
, 0);
1627 cmd_send(CMD_ACK
, 0, 0, 0, card_data
, 0);
1632 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1634 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1635 uint16_t block_crc_LUT
[255] = {0};
1637 //Generate a lookup table for block crc
1638 for (int block
= 0; block
< 255; block
++){
1640 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1642 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1644 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1645 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1648 uint8_t cardsize
= 0;
1651 static struct memory_t
{
1659 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1661 setupIclassReader();
1664 while (!BUTTON_PRESS()) {
1668 if (!get_tracing()) {
1669 DbpString("Trace full");
1673 uint8_t read_status
= handshakeIclassTag(card_data
);
1674 if (read_status
< 2) continue;
1676 //for now replay captured auth (as cc not updated)
1677 memcpy(check
+5, MAC
, 4);
1679 if (!sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 5)) {
1680 Dbprintf("Error: Authentication Fail!");
1684 //first get configuration block (block 1)
1685 crc
= block_crc_LUT
[1];
1688 read
[3] = crc
& 0xff;
1690 if (!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10)) {
1691 Dbprintf("Dump config (block 1) failed");
1696 memory
.k16
= (mem
& 0x80);
1697 memory
.book
= (mem
& 0x20);
1698 memory
.k2
= (mem
& 0x8);
1699 memory
.lockauth
= (mem
& 0x2);
1700 memory
.keyaccess
= (mem
& 0x1);
1702 cardsize
= memory
.k16
? 255 : 32;
1704 //Set card_data to all zeroes, we'll fill it with data
1705 memset(card_data
, 0x0, USB_CMD_DATA_SIZE
);
1706 uint8_t failedRead
= 0;
1707 uint32_t stored_data_length
= 0;
1708 //then loop around remaining blocks
1709 for (int block
= 0; block
< cardsize
; block
++) {
1711 crc
= block_crc_LUT
[block
];
1713 read
[3] = crc
& 0xff;
1715 if (sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10)) {
1716 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1717 block
, resp
[0], resp
[1], resp
[2],
1718 resp
[3], resp
[4], resp
[5],
1721 //Fill up the buffer
1722 memcpy(card_data
+stored_data_length
, resp
, 8);
1723 stored_data_length
+= 8;
1724 if (stored_data_length
+8 > USB_CMD_DATA_SIZE
) {
1725 //Time to send this off and start afresh
1727 stored_data_length
,//data length
1728 failedRead
,//Failed blocks?
1730 card_data
, stored_data_length
);
1732 stored_data_length
= 0;
1738 stored_data_length
+= 8;//Otherwise, data becomes misaligned
1739 Dbprintf("Failed to dump block %d", block
);
1743 //Send off any remaining data
1744 if (stored_data_length
> 0) {
1746 stored_data_length
,//data length
1747 failedRead
,//Failed blocks?
1750 stored_data_length
);
1752 //If we got here, let's break
1755 //Signal end of transmission
1766 void iClass_ReadCheck(uint8_t blockNo
, uint8_t keyType
) {
1767 uint8_t readcheck
[] = { keyType
, blockNo
};
1768 uint8_t resp
[] = {0,0,0,0,0,0,0,0};
1770 isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6);
1771 cmd_send(CMD_ACK
,isOK
, 0, 0, 0, 0);
1774 void iClass_Authentication(uint8_t *MAC
) {
1775 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1776 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1777 memcpy(check
+5, MAC
, 4);
1779 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1780 cmd_send(CMD_ACK
,isOK
, 0, 0, 0, 0);
1783 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1784 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1786 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1787 readcmd
[2] = rdCrc
>> 8;
1788 readcmd
[3] = rdCrc
& 0xff;
1789 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1792 //readcmd[1] = blockNo;
1793 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1794 memcpy(readdata
, resp
, sizeof(resp
));
1799 void iClass_ReadBlk(uint8_t blockno
) {
1800 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1802 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1803 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1806 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1807 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1812 uint8_t *dataout
= BigBuf_malloc(255*8);
1813 if (dataout
== NULL
) {
1814 Dbprintf("out of memory");
1815 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1817 cmd_send(CMD_ACK
, 0, 1, 0, 0, 0);
1821 memset(dataout
, 0xFF, 255*8);
1823 for ( ; blkCnt
< numblks
; blkCnt
++) {
1824 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1825 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1826 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1828 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1832 memcpy(dataout
+ (blkCnt
*8), readblockdata
, 8);
1834 //return pointer to dump memory in arg3
1835 cmd_send(CMD_ACK
, isOK
, blkCnt
, BigBuf_max_traceLen(), 0, 0);
1836 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1841 static bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1842 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1843 //uint8_t readblockdata[10];
1844 //write[1] = blockNo;
1845 memcpy(write
+2, data
, 12); // data + mac
1846 char *wrCmd
= (char *)(write
+1);
1847 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1848 write
[14] = wrCrc
>> 8;
1849 write
[15] = wrCrc
& 0xff;
1850 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1853 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1854 if (isOK
) { //if reader responded correctly
1855 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1856 if (memcmp(write
+2, resp
, 8)) { //if response is not equal to write values
1857 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
1859 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1866 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
1867 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
1869 Dbprintf("Write block [%02x] successful", blockNo
);
1871 Dbprintf("Write block [%02x] failed", blockNo
);
1873 cmd_send(CMD_ACK
, isOK
, 0, 0, 0, 0);
1876 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
1879 int total_block
= (endblock
- startblock
) + 1;
1880 for (i
= 0; i
< total_block
; i
++) {
1882 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1883 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1886 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1887 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1890 Dbprintf("Write block [%02x] failed", i
+ startblock
);
1894 if (written
== total_block
)
1895 Dbprintf("Clone complete");
1897 Dbprintf("Clone incomplete");
1899 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
1900 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);