1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
27 #include "proxmark3.h"
31 #include "crapto1/crapto1.h"
33 #include "hardnested/hardnested_bruteforce.h"
34 #include "hardnested/hardnested_bitarray_core.h"
36 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
37 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
39 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
41 #define STATE_FILES_DIRECTORY "hardnested/tables/"
42 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin"
44 #define DEBUG_KEY_ELIMINATION
45 // #define DEBUG_REDUCTION
47 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
49 #define NUM_PART_SUMS 9 // number of possible partial sum property values
56 static uint32_t num_acquired_nonces
= 0;
57 static uint64_t start_time
= 0;
58 static uint16_t effective_bitflip
[2][0x400];
59 static uint16_t num_effective_bitflips
[2] = {0, 0};
60 static uint16_t all_effective_bitflip
[0x400];
61 static uint16_t num_all_effective_bitflips
= 0;
62 static uint16_t num_1st_byte_effective_bitflips
= 0;
63 #define CHECK_1ST_BYTES 0x01
64 #define CHECK_2ND_BYTES 0x02
65 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
66 static uint64_t known_target_key
;
67 static uint32_t test_state
[2] = {0,0};
68 static float brute_force_per_second
;
71 static void get_SIMD_instruction_set(char* instruction_set
) {
72 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
73 if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set
, "AVX512F");
74 else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
76 if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
78 else if (__builtin_cpu_supports("avx")) strcpy(instruction_set
, "AVX");
79 else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set
, "SSE2");
80 else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set
, "MMX");
81 else strcpy(instruction_set
, "unsupported");
85 static void print_progress_header(void) {
86 char progress_text
[80];
87 char instr_set
[12] = "";
88 get_SIMD_instruction_set(instr_set
);
89 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
91 PrintAndLog(" time | #nonces | Activity | expected to brute force");
92 PrintAndLog(" | | | #states | time ");
93 PrintAndLog("------------------------------------------------------------------------------------------------------");
94 PrintAndLog(" 0 | 0 | %-55s | |", progress_text
);
98 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
99 static uint64_t last_print_time
= 0;
100 if (msclock() - last_print_time
> min_diff_print_time
) {
101 last_print_time
= msclock();
102 uint64_t total_time
= msclock() - start_time
;
103 float brute_force_time
= brute_force
/ brute_force_per_second
;
104 char brute_force_time_string
[20];
105 if (brute_force_time
< 90) {
106 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
107 } else if (brute_force_time
< 60 * 90) {
108 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60);
109 } else if (brute_force_time
< 60 * 60 * 36) {
110 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60));
112 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24));
114 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
119 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
120 // bitarray functions
122 static inline void clear_bitarray24(uint32_t *bitarray
)
124 memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19));
128 static inline void set_bitarray24(uint32_t *bitarray
)
130 memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19));
134 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
)
136 bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f);
140 static inline void clear_bit24(uint32_t *bitarray
, uint32_t index
)
142 bitarray
[index
>>5] &= ~(0x80000000>>(index
&0x0000001f));
146 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
)
148 return bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f));
152 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
)
154 if (++state
== 1<<24) return 1<<24;
155 uint32_t index
= state
>> 5;
156 uint_fast8_t bit
= state
& 0x1f;
157 uint32_t line
= bitarray
[index
] << bit
;
158 while (bit
<= 0x1f) {
159 if (line
& 0x80000000) return state
;
165 while (bitarray
[index
] == 0x00000000 && state
< 1<<24) {
169 if (state
>= 1<<24) return 1<<24;
171 return state
+ __builtin_clz(bitarray
[index
]);
174 line
= bitarray
[index
];
175 while (bit
<= 0x1f) {
176 if (line
& 0x80000000) return state
;
186 static inline uint32_t next_not_state(uint32_t *bitarray
, uint32_t state
)
188 if (++state
== 1<<24) return 1<<24;
189 uint32_t index
= state
>> 5;
190 uint_fast8_t bit
= state
& 0x1f;
191 uint32_t line
= bitarray
[index
] << bit
;
192 while (bit
<= 0x1f) {
193 if ((line
& 0x80000000) == 0) return state
;
199 while (bitarray
[index
] == 0xffffffff && state
< 1<<24) {
203 if (state
>= 1<<24) return 1<<24;
205 return state
+ __builtin_clz(~bitarray
[index
]);
208 line
= bitarray
[index
];
209 while (bit
<= 0x1f) {
210 if ((line
& 0x80000000) == 0) return state
;
222 #define BITFLIP_2ND_BYTE 0x0200
225 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
226 // bitflip property bitarrays
228 static uint32_t *bitflip_bitarrays
[2][0x400];
229 static uint32_t count_bitflip_bitarrays
[2][0x400];
231 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
)
233 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
234 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
235 return (count1
> count2
) - (count2
> count1
);
239 static void init_bitflip_bitarrays(void)
241 #if defined (DEBUG_REDUCTION)
245 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
246 char state_file_name
[strlen(STATE_FILE_TEMPLATE
)];
248 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
249 num_effective_bitflips
[odd_even
] = 0;
250 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
251 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
252 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24;
253 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
254 strcpy(state_files_path
, get_my_executable_directory());
255 strcat(state_files_path
, STATE_FILES_DIRECTORY
);
256 strcat(state_files_path
, state_file_name
);
257 FILE *statesfile
= fopen(state_files_path
, "rb");
258 if (statesfile
== NULL
) {
261 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
262 if (bitset
== NULL
) {
263 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
267 size_t bytesread
= fread(bitset
, 1, sizeof(uint32_t) * (1<<19), statesfile
);
268 if (bytesread
!= sizeof(uint32_t) * (1<<19)) {
269 printf("File read error with %s. Aborting...", state_file_name
);
271 free_bitarray(bitset
);
275 uint32_t count
= count_states(bitset
);
276 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) {
277 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
278 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
279 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
280 #if defined (DEBUG_REDUCTION)
281 printf("(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0);
289 free_bitarray(bitset
);
293 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
298 num_all_effective_bitflips
= 0;
299 num_1st_byte_effective_bitflips
= 0;
300 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
301 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
302 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
304 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
305 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
308 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
311 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) {
312 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
315 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
316 #if defined (DEBUG_REDUCTION)
317 printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
318 for(uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
319 printf("%03x ", all_effective_bitflip
[i
]);
322 qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
323 #if defined (DEBUG_REDUCTION)
324 printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
325 for(uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
326 printf("%03x ", all_effective_bitflip
[i
]);
329 char progress_text
[80];
330 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
331 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
335 static void free_bitflip_bitarrays(void)
337 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
338 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
340 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
341 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
346 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
347 // sum property bitarrays
349 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
350 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
351 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
353 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
356 for (uint16_t j
= 0; j
< 16; j
++) {
358 uint16_t part_sum
= 0;
359 if (odd_even
== ODD_STATE
) {
360 for (uint16_t i
= 0; i
< 5; i
++) {
361 part_sum
^= filter(st
);
362 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
364 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
366 for (uint16_t i
= 0; i
< 4; i
++) {
367 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
368 part_sum
^= filter(st
);
377 static void init_part_sum_bitarrays(void)
379 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
380 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
381 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
382 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
383 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
386 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
389 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
390 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
391 for (uint32_t state
= 0; state
< (1<<20); state
++) {
392 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
393 for (uint16_t low_bits
= 0; low_bits
< 1<<4; low_bits
++) {
394 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
);
399 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
400 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
401 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
402 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
403 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
406 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
409 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
410 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
411 for (uint32_t state
= 0; state
< (1<<20); state
++) {
412 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
413 for (uint16_t high_bits
= 0; high_bits
< 1<<4; high_bits
++) {
414 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<<20);
421 static void free_part_sum_bitarrays(void)
423 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
424 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
426 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
427 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
429 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
430 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
432 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
433 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
438 static void init_sum_bitarrays(void)
440 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
441 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
442 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
443 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
444 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
447 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
450 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
451 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
452 uint16_t sum_a0
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
;
453 uint16_t sum_a0_idx
= 0;
454 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
455 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
456 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
459 // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
460 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
461 // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
462 // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
468 static void free_sum_bitarrays(void)
470 for (int8_t sum_a0
= NUM_SUMS
-1; sum_a0
>= 0; sum_a0
--) {
471 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
472 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
477 #ifdef DEBUG_KEY_ELIMINATION
478 char failstr
[250] = "";
481 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
482 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
485 static float my_p_K
[NUM_SUMS
];
487 static const float *p_K
;
489 static uint32_t cuid
;
490 static noncelist_t nonces
[256];
491 static uint8_t best_first_bytes
[256];
492 static uint64_t maximum_states
= 0;
493 static uint8_t best_first_byte_smallest_bitarray
= 0;
494 static uint16_t first_byte_Sum
= 0;
495 static uint16_t first_byte_num
= 0;
496 static bool write_stats
= false;
497 static FILE *fstats
= NULL
;
498 static uint32_t *all_bitflips_bitarray
[2];
499 static uint32_t num_all_bitflips_bitarray
[2];
500 static bool all_bitflips_bitarray_dirty
[2];
501 static uint64_t last_sample_clock
= 0;
502 static uint64_t sample_period
= 0;
503 static uint64_t num_keys_tested
= 0;
504 static statelist_t
*candidates
= NULL
;
507 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
509 uint8_t first_byte
= nonce_enc
>> 24;
510 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
511 noncelistentry_t
*p2
= NULL
;
513 if (p1
== NULL
) { // first nonce with this 1st byte
515 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
518 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
523 if (p1
== NULL
) { // need to add at the end of the list
524 if (p2
== NULL
) { // list is empty yet. Add first entry.
525 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
526 } else { // add new entry at end of existing list.
527 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
529 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
530 if (p2
== NULL
) { // need to insert at start of list
531 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
533 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
535 } else { // we have seen this 2nd byte before. Nothing to add or insert.
539 // add or insert new data
541 p2
->nonce_enc
= nonce_enc
;
542 p2
->par_enc
= par_enc
;
544 nonces
[first_byte
].num
++;
545 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
546 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
547 return (1); // new nonce added
551 static void init_nonce_memory(void)
553 for (uint16_t i
= 0; i
< 256; i
++) {
556 nonces
[i
].first
= NULL
;
557 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++) {
558 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
559 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
561 nonces
[i
].sum_a8_guess_dirty
= false;
562 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
563 nonces
[i
].BitFlips
[bitflip
] = 0;
565 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
566 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
567 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
570 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
571 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
572 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
573 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
574 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
577 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
578 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
579 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
580 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
587 static void free_nonce_list(noncelistentry_t
*p
)
592 free_nonce_list(p
->next
);
598 static void free_nonces_memory(void)
600 for (uint16_t i
= 0; i
< 256; i
++) {
601 free_nonce_list(nonces
[i
].first
);
603 for (int i
= 255; i
>= 0; i
--) {
604 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
605 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
610 // static double p_hypergeometric_cache[257][NUM_SUMS][257];
612 // #define CACHE_INVALID -1.0
613 // static void init_p_hypergeometric_cache(void)
615 // for (uint16_t n = 0; n <= 256; n++) {
616 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
617 // for (uint16_t k = 0; k <= 256; k++) {
618 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
625 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)
627 // for efficient computation we are using the recursive definition
629 // P(X=k) = P(X=k-1) * --------------------
632 // (N-K)*(N-K-1)*...*(N-K-n+1)
633 // P(X=0) = -----------------------------
634 // N*(N-1)*...*(N-n+1)
637 uint16_t const N
= 256;
638 uint16_t K
= sums
[i_K
];
640 // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
641 // return p_hypergeometric_cache[n][i_K][k];
644 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
646 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
647 double log_result
= 0.0;
648 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
649 log_result
+= log(i
);
651 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
652 log_result
-= log(i
);
654 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
655 return exp(log_result
);
657 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
658 double log_result
= 0.0;
659 for (int16_t i
= k
+1; i
<= n
; i
++) {
660 log_result
+= log(i
);
662 for (int16_t i
= K
+1; i
<= N
; i
++) {
663 log_result
-= log(i
);
665 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
666 return exp(log_result
);
667 } else { // recursion
668 return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
674 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
)
676 if (k
> sums
[i_K
]) return 0.0;
678 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
679 double p_S_is_K
= p_K
[i_K
];
681 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
682 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
684 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
688 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
690 static void init_allbitflips_array(void)
692 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
693 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
694 if (bitset
== NULL
) {
695 printf("Out of memory in init_allbitflips_array(). Aborting...");
698 set_bitarray24(bitset
);
699 all_bitflips_bitarray_dirty
[odd_even
] = false;
700 num_all_bitflips_bitarray
[odd_even
] = 1<<24;
705 static void update_allbitflips_array(void)
707 if (hardnested_stage
& CHECK_2ND_BYTES
) {
708 for (uint16_t i
= 0; i
< 256; i
++) {
709 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
710 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
711 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
712 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
713 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
714 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
715 all_bitflips_bitarray_dirty
[odd_even
] = true;
724 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
726 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
730 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
732 if (odd_even
== ODD_STATE
) {
733 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
734 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
735 nonces
[first_byte
].states_bitarray
[odd_even
]);
737 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
738 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
739 nonces
[first_byte
].states_bitarray
[odd_even
],
740 nonces
[first_byte
^0x80].states_bitarray
[odd_even
]);
743 // estimate reduction by all_bitflips_match()
745 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
746 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
753 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
)
755 uint64_t num_states
= 0;
756 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
757 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
758 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
759 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
760 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
761 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
762 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
763 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
774 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
)
776 uint64_t num_states
= 0;
777 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
778 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
779 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
780 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
781 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
782 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
783 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
784 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
795 static void update_p_K(void)
797 if (hardnested_stage
& CHECK_2ND_BYTES
) {
798 uint64_t total_count
= 0;
799 uint16_t sum_a0
= sums
[first_byte_Sum
];
800 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
801 uint16_t sum_a8
= sums
[sum_a8_idx
];
802 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
804 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
805 uint16_t sum_a8
= sums
[sum_a8_idx
];
806 my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
;
808 // printf("my_p_K = [");
809 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
810 // printf("%7.4f ", my_p_K[sum_a8_idx]);
817 static void update_sum_bitarrays(odd_even_t odd_even
)
819 if (all_bitflips_bitarray_dirty
[odd_even
]) {
820 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
821 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
822 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
824 for (uint16_t i
= 0; i
< 256; i
++) {
825 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
827 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
828 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
829 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
830 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
833 all_bitflips_bitarray_dirty
[odd_even
] = false;
838 static int compare_expected_num_brute_force(const void *b1
, const void *b2
)
840 uint8_t index1
= *(uint8_t *)b1
;
841 uint8_t index2
= *(uint8_t *)b2
;
842 float score1
= nonces
[index1
].expected_num_brute_force
;
843 float score2
= nonces
[index2
].expected_num_brute_force
;
844 return (score1
> score2
) - (score1
< score2
);
848 static int compare_sum_a8_guess(const void *b1
, const void *b2
)
850 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
851 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
852 return (prob1
< prob2
) - (prob1
> prob2
);
857 static float check_smallest_bitflip_bitarrays(void)
859 uint32_t num_odd
, num_even
;
860 uint64_t smallest
= 1LL << 48;
861 // initialize best_first_bytes, do a rough estimation on remaining states
862 for (uint16_t i
= 0; i
< 256; i
++) {
863 num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
864 num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
865 if ((uint64_t)num_odd
* num_even
< smallest
) {
866 smallest
= (uint64_t)num_odd
* num_even
;
867 best_first_byte_smallest_bitarray
= i
;
871 #if defined (DEBUG_REDUCTION)
872 num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
873 num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
874 printf("0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
)/log(2.0));
876 return (float)smallest
/2.0;
880 static void update_expected_brute_force(uint8_t best_byte
) {
882 float total_prob
= 0.0;
883 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
884 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
886 // linear adjust probabilities to result in total_prob = 1.0;
887 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
888 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
890 float prob_all_failed
= 1.0;
891 nonces
[best_byte
].expected_num_brute_force
= 0.0;
892 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
893 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
894 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
895 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
901 static float sort_best_first_bytes(void)
904 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
905 // and the expected number of states to brute force
906 for (uint16_t i
= 0; i
< 256; i
++) {
907 best_first_bytes
[i
] = i
;
908 float prob_all_failed
= 1.0;
909 nonces
[i
].expected_num_brute_force
= 0.0;
910 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
911 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
912 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
913 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
914 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
918 // sort based on expected number of states to brute force
919 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
921 // printf("refine estimations: ");
922 #define NUM_REFINES 1
923 // refine scores for the best:
924 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
925 // printf("%d...", i);
926 uint16_t first_byte
= best_first_bytes
[i
];
927 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
928 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
930 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
931 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
932 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
933 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
934 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
935 // printf("(0x%02x,%d)", first_byte, 0);
937 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
938 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
939 // printf("(0x%02x,%d)", first_byte, 1);
941 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
942 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
943 // printf("(0x%02x,%d)", first_byte, 2);
946 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
947 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
948 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
951 // float fix_probs = 0.0;
952 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
953 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
955 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
956 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
958 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
959 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
961 float prob_all_failed
= 1.0;
962 nonces
[first_byte
].expected_num_brute_force
= 0.0;
963 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
964 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
965 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
966 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
970 // copy best byte to front:
971 float least_expected_brute_force
= (1LL << 48);
972 uint8_t best_byte
= 0;
973 for (uint16_t i
= 0; i
< 10; i
++) {
974 uint16_t first_byte
= best_first_bytes
[i
];
975 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
976 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
980 if (best_byte
!= 0) {
981 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
982 uint8_t tmp
= best_first_bytes
[0];
983 best_first_bytes
[0] = best_first_bytes
[best_byte
];
984 best_first_bytes
[best_byte
] = tmp
;
987 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
991 static float update_reduction_rate(float last
, bool init
)
994 static float queue
[QUEUE_LEN
];
996 for (uint16_t i
= 0; i
< QUEUE_LEN
-1; i
++) {
998 queue
[i
] = (float)(1LL << 48);
1000 queue
[i
] = queue
[i
+1];
1004 queue
[QUEUE_LEN
-1] = (float)(1LL << 48);
1006 queue
[QUEUE_LEN
-1] = last
;
1009 // linear regression
1012 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1021 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1022 dev_xy
+= (i
- avg_x
)*(queue
[i
] - avg_y
);
1023 dev_x2
+= (i
- avg_x
)*(i
- avg_x
);
1026 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1028 #if defined (DEBUG_REDUCTION)
1029 printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1031 return reduction_rate
;
1035 static bool shrink_key_space(float *brute_forces
)
1037 #if defined(DEBUG_REDUCTION)
1038 printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1040 float brute_forces1
= check_smallest_bitflip_bitarrays();
1041 float brute_forces2
= (float)(1LL << 47);
1042 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1043 brute_forces2
= sort_best_first_bytes();
1045 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1046 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1047 return ((hardnested_stage
& CHECK_2ND_BYTES
)
1048 && reduction_rate
>= 0.0 && reduction_rate
< brute_force_per_second
* sample_period
/ 1000.0);
1052 static void estimate_sum_a8(void)
1054 if (first_byte_num
== 256) {
1055 for (uint16_t i
= 0; i
< 256; i
++) {
1056 if (nonces
[i
].sum_a8_guess_dirty
) {
1057 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++ ) {
1058 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1059 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1061 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1062 nonces
[i
].sum_a8_guess_dirty
= false;
1069 static int read_nonce_file(void)
1071 FILE *fnonces
= NULL
;
1075 uint8_t read_buf
[9];
1076 uint32_t nt_enc1
, nt_enc2
;
1079 num_acquired_nonces
= 0;
1080 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
1081 PrintAndLog("Could not open file nonces.bin");
1085 hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
1086 bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1087 if (bytes_read
!= 6) {
1088 PrintAndLog("File reading error.");
1092 cuid
= bytes_to_num(read_buf
, 4);
1093 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
1094 trgKeyType
= bytes_to_num(read_buf
+5, 1);
1096 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1097 while (bytes_read
== 9) {
1098 nt_enc1
= bytes_to_num(read_buf
, 4);
1099 nt_enc2
= bytes_to_num(read_buf
+4, 4);
1100 par_enc
= bytes_to_num(read_buf
+8, 1);
1101 add_nonce(nt_enc1
, par_enc
>> 4);
1102 add_nonce(nt_enc2
, par_enc
& 0x0f);
1103 num_acquired_nonces
+= 2;
1104 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1108 char progress_string
[80];
1109 sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);
1110 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1111 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B');
1112 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1114 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1115 if (first_byte_Sum
== sums
[i
]) {
1125 noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
)
1127 noncelistentry_t
*p
= nonces
[b1
].first
;
1129 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1138 static bool timeout(void)
1140 return (msclock() > last_sample_clock
+ sample_period
);
1144 static void *check_for_BitFlipProperties_thread(void *args
)
1146 uint8_t first_byte
= ((uint8_t *)args
)[0];
1147 uint8_t last_byte
= ((uint8_t *)args
)[1];
1148 uint8_t time_budget
= ((uint8_t *)args
)[2];
1150 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1151 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1152 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1153 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1154 if (time_budget
& timeout()) {
1155 #if defined (DEBUG_REDUCTION)
1156 printf("break at bitflip_idx %d...", bitflip_idx
);
1160 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1161 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1162 && nonces
[i
].first
!= NULL
&& nonces
[i
^(bitflip
&0xff)].first
!= NULL
) {
1163 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1164 uint8_t parity2
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1165 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1166 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1167 nonces
[i
].BitFlips
[bitflip
] = 1;
1168 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1169 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1170 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1171 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1172 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1173 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1175 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1181 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1185 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1187 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1188 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1189 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1190 if (time_budget
& timeout()) {
1191 #if defined (DEBUG_REDUCTION)
1192 printf("break at bitflip_idx %d...", bitflip_idx
);
1196 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1197 // Check for Bit Flip Property of 2nd bytes
1198 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1199 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1200 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1201 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^(bitflip
&0xff));
1202 if (byte1
!= NULL
&& byte2
!= NULL
) {
1203 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1204 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1205 if ((parity1
== parity2
&& !(bitflip
&0x100)) // bitflip
1206 || (parity1
!= parity2
&& (bitflip
&0x100))) { // not bitflip
1207 nonces
[i
].BitFlips
[bitflip
] = 1;
1208 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1209 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1210 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1211 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1212 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1213 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1222 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1223 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1232 static void check_for_BitFlipProperties(bool time_budget
)
1234 // create and run worker threads
1235 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1237 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1238 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;
1239 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1240 args
[i
][0] = i
* bytes_per_thread
;
1241 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255);
1242 args
[i
][2] = time_budget
;
1244 args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255);
1247 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1248 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1251 // wait for threads to terminate:
1252 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1253 pthread_join(thread_id
[i
], NULL
);
1256 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1257 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1258 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1259 if (args
[i
][1] != 0) {
1260 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1265 #if defined (DEBUG_REDUCTION)
1266 if (hardnested_stage
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n");
1271 static void update_nonce_data(bool time_budget
)
1273 check_for_BitFlipProperties(time_budget
);
1274 update_allbitflips_array();
1275 update_sum_bitarrays(EVEN_STATE
);
1276 update_sum_bitarrays(ODD_STATE
);
1282 static void apply_sum_a0(void)
1284 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1285 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1286 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1287 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1289 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1290 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1291 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1292 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1297 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
1299 struct Crypto1State sim_cs
= {0, 0};
1301 // init cryptostate with key:
1302 for(int8_t i
= 47; i
> 0; i
-= 2) {
1303 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1304 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1308 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1309 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1310 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
1311 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1312 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1313 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1314 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1315 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1321 static void simulate_acquire_nonces()
1323 time_t time1
= time(NULL
);
1324 last_sample_clock
= 0;
1325 sample_period
= 1000; // for simulation
1326 hardnested_stage
= CHECK_1ST_BYTES
;
1327 bool acquisition_completed
= false;
1328 uint32_t total_num_nonces
= 0;
1330 bool reported_suma8
= false;
1332 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1333 if (known_target_key
== -1) {
1334 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1337 char progress_text
[80];
1338 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1339 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
1340 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1342 num_acquired_nonces
= 0;
1345 uint32_t nt_enc
= 0;
1346 uint8_t par_enc
= 0;
1348 for (uint16_t i
= 0; i
< 113; i
++) {
1349 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1350 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1354 last_sample_clock
= msclock();
1356 if (first_byte_num
== 256 ) {
1357 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1358 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1359 if (first_byte_Sum
== sums
[i
]) {
1364 hardnested_stage
|= CHECK_2ND_BYTES
;
1367 update_nonce_data(true);
1368 acquisition_completed
= shrink_key_space(&brute_force
);
1369 if (!reported_suma8
) {
1370 char progress_string
[80];
1371 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1372 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1373 reported_suma8
= true;
1375 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1378 update_nonce_data(true);
1379 acquisition_completed
= shrink_key_space(&brute_force
);
1380 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1382 } while (!acquisition_completed
);
1384 time_t end_time
= time(NULL
);
1385 // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1386 // num_acquired_nonces,
1387 // difftime(end_time, time1),
1388 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1391 fprintf(fstats
, "%" PRId32
";%" PRId32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
));
1396 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
1398 last_sample_clock
= msclock();
1399 sample_period
= 2000; // initial rough estimate. Will be refined.
1400 bool initialize
= true;
1401 bool field_off
= false;
1402 hardnested_stage
= CHECK_1ST_BYTES
;
1403 bool acquisition_completed
= false;
1405 uint8_t write_buf
[9];
1406 uint32_t total_num_nonces
= 0;
1408 bool reported_suma8
= false;
1409 FILE *fnonces
= NULL
;
1412 num_acquired_nonces
= 0;
1414 clearCommandBuffer();
1418 flags
|= initialize
? 0x0001 : 0;
1419 flags
|= slow
? 0x0002 : 0;
1420 flags
|= field_off
? 0x0004 : 0;
1421 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
1422 memcpy(c
.d
.asBytes
, key
, 6);
1426 if (field_off
) break;
1429 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
1431 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
1434 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
1435 if (nonce_file_write
&& fnonces
== NULL
) {
1436 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
1437 PrintAndLog("Could not create file nonces.bin");
1440 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
1441 num_to_bytes(cuid
, 4, write_buf
);
1442 fwrite(write_buf
, 1, 4, fnonces
);
1443 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1444 fwrite(&trgKeyType
, 1, 1, fnonces
);
1449 uint32_t nt_enc1
, nt_enc2
;
1451 uint16_t num_sampled_nonces
= resp
.arg
[2];
1452 uint8_t *bufp
= resp
.d
.asBytes
;
1453 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+=2) {
1454 nt_enc1
= bytes_to_num(bufp
, 4);
1455 nt_enc2
= bytes_to_num(bufp
+4, 4);
1456 par_enc
= bytes_to_num(bufp
+8, 1);
1458 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1459 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1460 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1461 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1463 if (nonce_file_write
) {
1464 fwrite(bufp
, 1, 9, fnonces
);
1468 total_num_nonces
+= num_sampled_nonces
;
1470 if (first_byte_num
== 256 ) {
1471 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1472 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1473 if (first_byte_Sum
== sums
[i
]) {
1478 hardnested_stage
|= CHECK_2ND_BYTES
;
1481 update_nonce_data(true);
1482 acquisition_completed
= shrink_key_space(&brute_force
);
1483 if (!reported_suma8
) {
1484 char progress_string
[80];
1485 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1486 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1487 reported_suma8
= true;
1489 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1492 update_nonce_data(true);
1493 acquisition_completed
= shrink_key_space(&brute_force
);
1494 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1498 if (acquisition_completed
) {
1499 field_off
= true; // switch off field with next SendCommand and then finish
1503 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1504 if (nonce_file_write
) {
1510 if (nonce_file_write
) {
1513 return resp
.arg
[0]; // error during nested_hard
1519 if (msclock() - last_sample_clock
< sample_period
) {
1520 sample_period
= msclock() - last_sample_clock
;
1522 last_sample_clock
= msclock();
1524 } while (!acquisition_completed
|| field_off
);
1526 if (nonce_file_write
) {
1530 // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",
1531 // total_num_nonces,
1532 // time(NULL)-time1,
1533 // (float)total_num_nonces*60.0/(time(NULL)-time1));
1539 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1541 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1542 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1543 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1544 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1545 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1546 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1551 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1553 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1554 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1555 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1556 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1557 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1562 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1566 switch (num_common_bits
) {
1567 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1568 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1569 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1570 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1571 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1572 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1573 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1574 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1578 switch (num_common_bits
) {
1579 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1580 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1581 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1582 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1583 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1584 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1585 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1589 return true; // valid state
1593 static pthread_mutex_t statelist_cache_mutex
;
1594 static pthread_mutex_t book_of_work_mutex
;
1603 static struct sl_cache_entry
{
1606 work_status_t cache_status
;
1607 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1610 static void init_statelist_cache(void)
1612 pthread_mutex_lock(&statelist_cache_mutex
);
1613 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1614 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1615 for (uint16_t k
= 0; k
< 2; k
++) {
1616 sl_cache
[i
][j
][k
].sl
= NULL
;
1617 sl_cache
[i
][j
][k
].len
= 0;
1618 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1622 pthread_mutex_unlock(&statelist_cache_mutex
);
1626 static void free_statelist_cache(void)
1628 pthread_mutex_lock(&statelist_cache_mutex
);
1629 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1630 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1631 for (uint16_t k
= 0; k
< 2; k
++) {
1632 free(sl_cache
[i
][j
][k
].sl
);
1636 pthread_mutex_unlock(&statelist_cache_mutex
);
1640 #ifdef DEBUG_KEY_ELIMINATION
1641 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1643 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1646 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1647 bool possible
= test_bit24(bitset
, state
);
1649 #ifdef DEBUG_KEY_ELIMINATION
1650 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1651 printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd");
1652 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd");
1662 static uint_fast8_t reverse(uint_fast8_t byte
)
1664 uint_fast8_t rev_byte
= 0;
1666 for (uint8_t i
= 0; i
< 8; i
++) {
1668 rev_byte
|= (byte
>> i
) & 0x01;
1675 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1677 uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1678 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
1680 for (uint16_t i
= 1; i
< 256; i
++) {
1681 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1682 uint_fast8_t byte2
= byte
^ bytes_diff
;
1683 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1684 uint32_t mask
= masks
[odd_even
][num_common
];
1685 bool found_match
= false;
1686 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1687 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1688 #ifdef DEBUG_KEY_ELIMINATION
1689 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true)) {
1691 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
)) {
1699 #ifdef DEBUG_KEY_ELIMINATION
1700 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1701 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1702 odd_even
==ODD_STATE
?"odd":"even",
1703 test_state
[odd_even
],
1704 byte
, byte2
, num_common
);
1705 if (failstr
[0] == '\0') {
1706 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even");
1718 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
)
1720 uint32_t *p
= state_list
;
1721 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1<<24); state
= next_state(bitarray
, state
)) {
1722 if (all_bitflips_match(byte
, state
, odd_even
)) {
1726 // add End Of List marker
1728 *len
= p
- state_list
;
1732 static void add_cached_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1734 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
;
1735 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
;
1740 static void add_matching_states(statelist_t
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
)
1742 uint32_t worstcase_size
= 1<<20;
1743 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1744 if (candidates
->states
[odd_even
] == NULL
) {
1745 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
1748 uint32_t *candidates_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
1749 if (candidates_bitarray
== NULL
) {
1750 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
1751 free(candidates
->states
[odd_even
]);
1755 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2];
1756 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2];
1757 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1759 // for (uint32_t i = 0; i < (1<<19); i++) {
1760 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
1762 bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1764 bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1765 if (candidates
->len
[odd_even
] == 0) {
1766 free(candidates
->states
[odd_even
]);
1767 candidates
->states
[odd_even
] = NULL
;
1768 } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1769 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1771 free_bitarray(candidates_bitarray
);
1774 pthread_mutex_lock(&statelist_cache_mutex
);
1775 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
= candidates
->states
[odd_even
];
1776 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
= candidates
->len
[odd_even
];
1777 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status
= COMPLETED
;
1778 pthread_mutex_unlock(&statelist_cache_mutex
);
1784 static statelist_t
*add_more_candidates(void)
1786 statelist_t
*new_candidates
= candidates
;
1787 if (candidates
== NULL
) {
1788 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1789 new_candidates
= candidates
;
1791 new_candidates
= candidates
;
1792 while (new_candidates
->next
!= NULL
) {
1793 new_candidates
= new_candidates
->next
;
1795 new_candidates
= new_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1797 new_candidates
->next
= NULL
;
1798 new_candidates
->len
[ODD_STATE
] = 0;
1799 new_candidates
->len
[EVEN_STATE
] = 0;
1800 new_candidates
->states
[ODD_STATE
] = NULL
;
1801 new_candidates
->states
[EVEN_STATE
] = NULL
;
1802 return new_candidates
;
1806 static void add_bitflip_candidates(uint8_t byte
)
1808 statelist_t
*candidates
= add_more_candidates();
1810 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1811 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1812 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1813 if (candidates
->states
[odd_even
] == NULL
) {
1814 PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
1818 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1820 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1821 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1828 static bool TestIfKeyExists(uint64_t key
)
1830 struct Crypto1State
*pcs
;
1831 pcs
= crypto1_create(key
);
1832 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1834 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1835 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1838 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1839 bool found_odd
= false;
1840 bool found_even
= false;
1841 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1842 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1843 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1844 while (*p_odd
!= 0xffffffff) {
1845 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1851 while (*p_even
!= 0xffffffff) {
1852 if ((*p_even
& 0x00ffffff) == state_even
) {
1857 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1859 if (found_odd
&& found_even
) {
1860 num_keys_tested
+= count
;
1861 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1862 crypto1_destroy(pcs
);
1867 num_keys_tested
+= count
;
1868 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1870 crypto1_destroy(pcs
);
1875 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1878 static void init_book_of_work(void)
1880 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1881 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1882 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1883 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1884 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1892 static void *generate_candidates_worker_thread(void *args
)
1894 uint16_t *sum_args
= (uint16_t *)args
;
1895 uint16_t sum_a0
= sums
[sum_args
[0]];
1896 uint16_t sum_a8
= sums
[sum_args
[1]];
1897 // uint16_t my_thread_number = sums[2];
1899 bool there_might_be_more_work
= true;
1901 there_might_be_more_work
= false;
1902 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1903 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1904 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
1905 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1906 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1907 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1908 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1909 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
1910 pthread_mutex_lock(&book_of_work_mutex
);
1911 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1912 pthread_mutex_unlock(&book_of_work_mutex
);
1916 pthread_mutex_lock(&statelist_cache_mutex
);
1917 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1918 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1919 pthread_mutex_unlock(&statelist_cache_mutex
);
1920 pthread_mutex_unlock(&book_of_work_mutex
);
1921 there_might_be_more_work
= true;
1925 // we finally can do some work.
1926 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1927 statelist_t
*current_candidates
= add_more_candidates();
1929 // Check for cached results and add them first
1930 bool odd_completed
= false;
1931 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1932 add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1933 odd_completed
= true;
1935 bool even_completed
= false;
1936 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1937 add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1938 even_completed
= true;
1941 bool work_required
= true;
1943 // if there had been two cached results, there is no more work to do
1944 if (even_completed
&& odd_completed
) {
1945 work_required
= false;
1948 // if there had been one cached empty result, there is no need to calculate the other part:
1949 if (work_required
) {
1950 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
1951 current_candidates
->len
[ODD_STATE
] = 0;
1952 current_candidates
->states
[ODD_STATE
] = NULL
;
1953 work_required
= false;
1955 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
1956 current_candidates
->len
[EVEN_STATE
] = 0;
1957 current_candidates
->states
[EVEN_STATE
] = NULL
;
1958 work_required
= false;
1962 if (!work_required
) {
1963 pthread_mutex_unlock(&statelist_cache_mutex
);
1964 pthread_mutex_unlock(&book_of_work_mutex
);
1966 // we really need to calculate something
1967 if (even_completed
) { // we had one cache hit with non-zero even states
1968 // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
1969 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1970 pthread_mutex_unlock(&statelist_cache_mutex
);
1971 pthread_mutex_unlock(&book_of_work_mutex
);
1972 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1973 work_required
= false;
1974 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
1975 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1976 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1977 pthread_mutex_unlock(&statelist_cache_mutex
);
1978 pthread_mutex_unlock(&book_of_work_mutex
);
1979 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1980 work_required
= false;
1984 if (work_required
) { // we had no cached result. Need to calculate both odd and even
1985 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1986 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1987 pthread_mutex_unlock(&statelist_cache_mutex
);
1988 pthread_mutex_unlock(&book_of_work_mutex
);
1990 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1991 if(current_candidates
->len
[ODD_STATE
]) {
1992 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1993 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1994 } else { // no need to calculate even states yet
1995 pthread_mutex_lock(&statelist_cache_mutex
);
1996 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
1997 pthread_mutex_unlock(&statelist_cache_mutex
);
1998 current_candidates
->len
[EVEN_STATE
] = 0;
1999 current_candidates
->states
[EVEN_STATE
] = NULL
;
2003 // update book of work
2004 pthread_mutex_lock(&book_of_work_mutex
);
2005 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2006 pthread_mutex_unlock(&book_of_work_mutex
);
2008 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2009 // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2010 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2011 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2012 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2013 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2014 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2015 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2016 // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2017 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2018 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");
2028 } while (there_might_be_more_work
);
2034 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
)
2036 // printf("Generating crypto1 state candidates... \n");
2038 // estimate maximum candidate states
2039 // maximum_states = 0;
2040 // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
2041 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
2042 // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
2043 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])
2044 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
2048 // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
2050 init_statelist_cache();
2051 init_book_of_work();
2053 // create mutexes for accessing the statelist cache and our "book of work"
2054 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2055 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2057 // create and run worker threads
2058 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2060 uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3];
2061 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2062 sums
[i
][0] = sum_a0_idx
;
2063 sums
[i
][1] = sum_a8_idx
;
2065 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]);
2068 // wait for threads to terminate:
2069 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2070 pthread_join(thread_id
[i
], NULL
);
2074 pthread_mutex_destroy(&statelist_cache_mutex
);
2077 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2078 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2081 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2082 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2083 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2087 update_expected_brute_force(best_first_bytes
[0]);
2089 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2093 static void free_candidates_memory(statelist_t
*sl
)
2098 free_candidates_memory(sl
->next
);
2104 static void pre_XOR_nonces(void)
2106 // prepare acquired nonces for faster brute forcing.
2108 // XOR the cryptoUID and its parity
2109 for (uint16_t i
= 0; i
< 256; i
++) {
2110 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2111 while (test_nonce
!= NULL
) {
2112 test_nonce
->nonce_enc
^= cuid
;
2113 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2114 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2115 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2116 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2117 test_nonce
= test_nonce
->next
;
2123 static bool brute_force(void)
2125 if (known_target_key
!= -1) {
2126 TestIfKeyExists(known_target_key
);
2128 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
);
2132 static uint16_t SumProperty(struct Crypto1State
*s
)
2134 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2135 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2136 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
2143 /* #define NUM_STATISTICS 100000
2144 uint32_t statistics_odd[17];
2145 uint64_t statistics[257];
2146 uint32_t statistics_even[17];
2147 struct Crypto1State cs;
2148 uint64_t time1 = msclock();
2150 for (uint16_t i = 0; i < 257; i++) {
2153 for (uint16_t i = 0; i < 17; i++) {
2154 statistics_odd[i] = 0;
2155 statistics_even[i] = 0;
2158 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2159 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2160 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2161 uint16_t sum_property = SumProperty(&cs);
2162 statistics[sum_property] += 1;
2163 sum_property = PartialSumProperty(cs.even, EVEN_STATE);
2164 statistics_even[sum_property]++;
2165 sum_property = PartialSumProperty(cs.odd, ODD_STATE);
2166 statistics_odd[sum_property]++;
2167 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2170 printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2171 for (uint16_t i = 0; i < 257; i++) {
2172 if (statistics[i] != 0) {
2173 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
2176 for (uint16_t i = 0; i <= 16; i++) {
2177 if (statistics_odd[i] != 0) {
2178 printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
2181 for (uint16_t i = 0; i <= 16; i++) {
2182 if (statistics_odd[i] != 0) {
2183 printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
2188 /* #define NUM_STATISTICS 100000000LL
2189 uint64_t statistics_a0[257];
2190 uint64_t statistics_a8[257][257];
2191 struct Crypto1State cs;
2192 uint64_t time1 = msclock();
2194 for (uint16_t i = 0; i < 257; i++) {
2195 statistics_a0[i] = 0;
2196 for (uint16_t j = 0; j < 257; j++) {
2197 statistics_a8[i][j] = 0;
2201 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2202 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2203 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2204 uint16_t sum_property_a0 = SumProperty(&cs);
2205 statistics_a0[sum_property_a0]++;
2206 uint8_t first_byte = rand() & 0xff;
2207 crypto1_byte(&cs, first_byte, true);
2208 uint16_t sum_property_a8 = SumProperty(&cs);
2209 statistics_a8[sum_property_a0][sum_property_a8] += 1;
2210 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2213 printf("\nTests: Probability Distribution of a8 depending on a0:\n");
2215 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2216 printf("%7d ", sums[i]);
2218 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2220 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2221 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
2224 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2225 printf("%3d ", sums[i]);
2226 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2227 printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
2231 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2234 /* #define NUM_STATISTICS 100000LL
2235 uint64_t statistics_a8[257];
2236 struct Crypto1State cs;
2237 uint64_t time1 = msclock();
2239 printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
2241 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2242 printf("%7d ", sums[i]);
2244 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2245 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
2246 for (uint16_t i = 0; i < 257; i++) {
2247 statistics_a8[i] = 0;
2249 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2250 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2251 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2252 crypto1_byte(&cs, first_byte, true);
2253 uint16_t sum_property_a8 = SumProperty(&cs);
2254 statistics_a8[sum_property_a8] += 1;
2256 printf("%03x ", first_byte);
2257 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2258 printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
2262 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2265 /* printf("Tests: Sum Probabilities based on Partial Sums\n");
2266 for (uint16_t i = 0; i < 257; i++) {
2269 uint64_t num_states = 0;
2270 for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
2271 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
2272 uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
2273 statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2274 num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2277 printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
2278 for (uint16_t i = 0; i < 257; i++) {
2279 if (statistics[i] != 0) {
2280 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
2285 /* struct Crypto1State *pcs;
2286 pcs = crypto1_create(0xffffffffffff);
2287 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2288 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2289 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2290 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2291 best_first_bytes[0],
2293 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2294 //test_state_odd = pcs->odd & 0x00ffffff;
2295 //test_state_even = pcs->even & 0x00ffffff;
2296 crypto1_destroy(pcs);
2297 pcs = crypto1_create(0xa0a1a2a3a4a5);
2298 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2299 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2300 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2301 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2302 best_first_bytes[0],
2304 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2305 //test_state_odd = pcs->odd & 0x00ffffff;
2306 //test_state_even = pcs->even & 0x00ffffff;
2307 crypto1_destroy(pcs);
2308 pcs = crypto1_create(0xa6b9aa97b955);
2309 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2310 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2311 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2312 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2313 best_first_bytes[0],
2315 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2316 test_state_odd = pcs->odd & 0x00ffffff;
2317 test_state_even = pcs->even & 0x00ffffff;
2318 crypto1_destroy(pcs);
2321 // printf("\nTests: Sorted First Bytes:\n");
2322 // for (uint16_t i = 0; i < 20; i++) {
2323 // uint8_t best_byte = best_first_bytes[i];
2324 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",
2325 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
2326 // for (uint16_t j = 0; j < 3; j++) {
2327 // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
2329 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",
2330 // nonces[best_byte].sum_a8_guess[0].num_states,
2331 // nonces[best_byte].sum_a8_guess[1].num_states,
2332 // nonces[best_byte].sum_a8_guess[2].num_states,
2333 // nonces[best_byte].expected_num_brute_force);
2336 // printf("\nTests: Actual BitFlipProperties of best byte:\n");
2337 // printf("[%02x]:", best_first_bytes[0]);
2338 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2339 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2340 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
2341 // printf(" %03" PRIx16 , bitflip_prop);
2346 // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
2347 // printf("[%02x]:", best_first_byte_smallest_bitarray);
2348 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2349 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2350 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
2351 // printf(" %03" PRIx16 , bitflip_prop);
2356 if (known_target_key
!= -1) {
2357 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2358 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2359 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2360 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2361 odd_even
==EVEN_STATE
?"even":"odd ",
2362 best_first_bytes
[0]);
2367 if (known_target_key
!= -1) {
2368 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2369 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2370 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2371 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2372 odd_even
==EVEN_STATE
?"even":"odd ");
2377 // if (known_target_key != -1) {
2378 // int16_t p = -1, q = -1, r = -1, s = -1;
2380 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
2381 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2382 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2383 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2384 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
2385 // if (test_bit24(bitset, test_state[odd_even])) {
2386 // printf("%d ", i);
2387 // if (odd_even == ODD_STATE) {
2397 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
2398 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2399 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2400 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2401 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
2402 // if (test_bit24(bitset, test_state[odd_even])) {
2403 // printf("%d ", i);
2404 // if (odd_even == ODD_STATE) {
2414 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
2415 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
2418 /* printf("\nTests: parity performance\n");
2419 uint64_t time1p = msclock();
2420 uint32_t par_sum = 0;
2421 for (uint32_t i = 0; i < 100000000; i++) {
2422 par_sum += parity(i);
2424 printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2428 for (uint32_t i = 0; i < 100000000; i++) {
2429 par_sum += evenparity32(i);
2431 printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2437 static void Tests2(void)
2439 if (known_target_key
!= -1) {
2440 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2441 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2442 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2443 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2444 odd_even
==EVEN_STATE
?"even":"odd ",
2445 best_first_byte_smallest_bitarray
);
2450 if (known_target_key
!= -1) {
2451 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2452 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2453 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2454 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2455 odd_even
==EVEN_STATE
?"even":"odd ");
2463 static uint16_t real_sum_a8
= 0;
2465 static void set_test_state(uint8_t byte
)
2467 struct Crypto1State
*pcs
;
2468 pcs
= crypto1_create(known_target_key
);
2469 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2470 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2471 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2472 real_sum_a8
= SumProperty(pcs
);
2473 crypto1_destroy(pcs
);
2477 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
2479 char progress_text
[80];
2481 srand((unsigned) time(NULL
));
2482 brute_force_per_second
= brute_force_benchmark();
2483 write_stats
= false;
2486 // set the correct locale for the stats printing
2488 setlocale(LC_NUMERIC
, "");
2489 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
2490 PrintAndLog("Could not create/open file hardnested_stats.txt");
2493 for (uint32_t i
= 0; i
< tests
; i
++) {
2494 start_time
= msclock();
2495 print_progress_header();
2496 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2497 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2498 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+1);
2499 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2500 if (trgkey
!= NULL
) {
2501 known_target_key
= bytes_to_num(trgkey
, 6);
2503 known_target_key
= -1;
2506 init_bitflip_bitarrays();
2507 init_part_sum_bitarrays();
2508 init_sum_bitarrays();
2509 init_allbitflips_array();
2510 init_nonce_memory();
2511 update_reduction_rate(0.0, true);
2513 simulate_acquire_nonces();
2515 set_test_state(best_first_bytes
[0]);
2518 free_bitflip_bitarrays();
2520 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0));
2521 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0));
2522 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2524 #ifdef DEBUG_KEY_ELIMINATION
2527 bool key_found
= false;
2528 num_keys_tested
= 0;
2529 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2530 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2531 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2532 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2533 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0));
2534 if (expected_brute_force1
< expected_brute_force2
) {
2535 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2536 set_test_state(best_first_byte_smallest_bitarray
);
2537 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2540 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2541 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2543 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2544 // fprintf("fstats, "%" PRIu64 ";", maximum_states);
2545 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2547 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2548 key_found
= brute_force();
2549 free(candidates
->states
[ODD_STATE
]);
2550 free(candidates
->states
[EVEN_STATE
]);
2551 free_candidates_memory(candidates
);
2555 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2556 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2557 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2558 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2559 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2560 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2561 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2562 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2564 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2565 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2566 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2567 key_found
= brute_force();
2568 free_statelist_cache();
2569 free_candidates_memory(candidates
);
2572 // update the statistics
2573 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2574 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2575 // and calculate new expected number of brute forces
2576 update_expected_brute_force(best_first_bytes
[0]);
2580 #ifdef DEBUG_KEY_ELIMINATION
2581 fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
);
2583 fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
);
2586 free_nonces_memory();
2587 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2588 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2589 free_sum_bitarrays();
2590 free_part_sum_bitarrays();
2594 start_time
= msclock();
2595 print_progress_header();
2596 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2597 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2598 init_bitflip_bitarrays();
2599 init_part_sum_bitarrays();
2600 init_sum_bitarrays();
2601 init_allbitflips_array();
2602 init_nonce_memory();
2603 update_reduction_rate(0.0, true);
2605 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2606 if (read_nonce_file() != 0) {
2609 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2610 update_nonce_data(false);
2612 shrink_key_space(&brute_force
);
2613 } else { // acquire nonces.
2614 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
2620 if (trgkey
!= NULL
) {
2621 known_target_key
= bytes_to_num(trgkey
, 6);
2622 set_test_state(best_first_bytes
[0]);
2624 known_target_key
= -1;
2629 free_bitflip_bitarrays();
2630 bool key_found
= false;
2631 num_keys_tested
= 0;
2632 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2633 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2634 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2635 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2636 if (expected_brute_force1
< expected_brute_force2
) {
2637 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2638 set_test_state(best_first_byte_smallest_bitarray
);
2639 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2642 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2643 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2645 printf("Number of remaining possible keys: %" PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
2646 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2648 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2649 key_found
= brute_force();
2650 free(candidates
->states
[ODD_STATE
]);
2651 free(candidates
->states
[EVEN_STATE
]);
2652 free_candidates_memory(candidates
);
2656 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2657 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2658 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2659 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2660 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2661 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2662 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2663 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2665 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2666 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2667 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2668 key_found
= brute_force();
2669 free_statelist_cache();
2670 free_candidates_memory(candidates
);
2673 // update the statistics
2674 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2675 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2676 // and calculate new expected number of brute forces
2677 update_expected_brute_force(best_first_bytes
[0]);
2683 free_nonces_memory();
2684 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2685 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2686 free_sum_bitarrays();
2687 free_part_sum_bitarrays();